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Negatives energies in quantum matter

– negative energies are abundant in quantum field theory [Epstein/Glaser/Jaffe’65]

– pointwise energy density becomes arbitrarily negative
– remnant notion of stability is expected:

⇒ bounds of negative energy in magnitude and duration, ...

– unifying mathematical framework: Quantum energy inequality (QEI)

– let
T (g2, γ) :=

∫
dt g2(t) γ̇µγ̇νTµν(γ(t))

– a QEI can take the form:

〈ϕ|T (g2, γ)|ϕ〉 ≥ −cg,γ ,

holds for (sufficiently large) class of (normalized) states ϕ and cg,γ ≥ 0
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QEIs: Status quo

– QEIs in semiclassical gravity can have similar consequences as classical energy
conditions. They can:

- constrain exotic spacetimes [Ford/Roman/Everett/Pfennig’96-’98]

- imply the formation of singularities [Fewster/Galloway/Kontou/Brown/Freivogel..’11-’23]

– QEIs hold in many kinds of free QFTs in both flat and curved spacetimes
– in generic settings, weaker bounds have been derived

[Bostelmann/Fewster’09] [Much/Passegger/Verch’22]

– strict inequalities have been proven in few examples with self-interaction
massive Ising model [Bostelmann/Cadamuro/Fewster’13]

sine-Gordon model with adiabatic cutoff [Cadamuro/Fröb’22]

– integrable models of one scalar particle [Bostelmann/Cadamuro’16]
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Integrability and scattering theory

Integrability in QFT
↔ existence of infinite set of (indep.) conserved charges

↔ highly constrained scattering theory

- conservation of particle number and momenta
- S-matrix factorization

into 2-to-2-particle scattering functions
- trivial S-matrix in higher than 1+1 dimensions

⇒ Construct integrable models
via an inverse scattering approach:

- fix asymptotic data (particle spectrum and S-matrix)
- reconstruct local field content (form factor program)

α1

α2

β1

β2
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Aim: QEI

For (sufficiently large) class of (normalized) states ϕ,

〈ϕ|T (g2, γ)|ϕ〉 ≥ −cg,γ

8
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The stress tensor

T µν(x) is expected to be

– a local conserved generator of the translations,∫
dx1 T 0µ(0, x1) = P µ, ∂µT µν = 0,

– Poincare-covariant,

U(Λ, a)T µν(x)U(Λ, a)−1 = Λµ
ρΛν

σT ρσ(Λ−1x + a), T µν = T νµ,

– chargeless under global symmetries (CPT, ...)
– regularity
– ...
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One-particle expression

For parity-covariant and diagonal-in-mass T µν , we have
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Proposition (General form at one-particle level)

ϕ ∈ H1, 〈ϕ, Tµν(x)ϕ〉 =
∫

dθdη T free,1
µν (θ, η)ei(P (θ)−P (η)).xϕα(θ)F α

β (θ − η)ϕβ(η)
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One-particle expression

For parity-covariant and diagonal-in-mass T µν , we have
Proposition (General form at one-particle level)

ϕ ∈ H1, 〈ϕ, Tµν(x)ϕ〉 =
∫

dθdη T free,1
µν (θ, η)ei(P (θ)−P (η)).xϕα(θ)F α

β (θ − η)ϕβ(η)

Proposition (No-Go)

If for some c > 1
4 , ‖F (ζ)‖B(K) & c exp | Re ζ|, | Re ζ| → ∞,

then there exists a sequence (ϕj) ⊂ D(R, K), ||ϕj || = 1 such that

〈ϕj , T (g2, γ)ϕj〉 j→∞→ −∞.
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Freedom of choice for the (one-particle) stress tensor

Integrable model Stress tensor family

free, sinh-Gordon one-parameter family [Bostelmann/Cadamuro’15]

Ising unique (q = 1) [Bostelmann/Cadamuro’15]

Bullough-Dodd two-parameter family

O(N)-nonlinear-sigma unique (q = 1)

Federbush unique for parity-invariant part (q1 = q2 = 1)

13
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State-independent QEI

Theorem

For constant “diagonal” S-matrix S and suff.
regular normalized states Ψ ∈ H

〈Ψ, T (g2, γ)Ψ〉 ≥ − trK⊗2
diag

(cfree
+ P+ + cfree

− P−),

with constants cfree
± representing bounds for the

free scalar bosonic/fermionic field depending
only on m, g and γ.

Plot for g Gaussian; averaging scale σ

+ -

1 5
σ/m

-1

1

10
-5

10
-10

10
-15

c±
free

/m
2

– Includes previous results: Free fields and the Ising model
[Bostelmann/Cadamuro/Fewster’13]

– Includes new models: Fermionic Ising model, Federbush model, generalizations
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Conclusions and outlook

– In models with simple interactions QEIs can hold independent of the state

– One-particle-QEIs hold for a large class of models with self-interaction. This
includes models with bound states, with more than one particle type and with
inner degrees of freedom

– (One-particle-)QEIs can be imposed to select physically reasonable stress tensors
in situations where unambiguous definitions don’t apply

– I have also conducted a numerical analysis of the two-particle level for the
sinh-Gordon and O(n)-NLS model where similar bounds seem to hold

– Analytic results for higher particle numbers would be desirable

17
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Conclusions and outlook

– In models with simple interactions QEIs can hold independent of the state
– One-particle-QEIs hold for a large class of models with self-interaction. This

includes models with bound states, with more than one particle type and with
inner degrees of freedom

– (One-particle-)QEIs can be imposed to select physically reasonable stress tensors
in situations where unambiguous definitions don’t apply

– I have also conducted a numerical analysis of the two-particle level for the
sinh-Gordon and O(n)-NLS model where similar bounds seem to hold

– Analytic results for higher particle numbers would be desirable

Thanks for your attention!
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Optional slides
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O(n)-nonlinear σ (NLS) model

– n ≥ 3 massive spinless particles, global O(n)-symmetry, no bound states

– Lagrangian density:

LNLS = 1
2∂µΦt∂µΦ, ΦtΦ = 1

2g
, Φ = (φ1, . . . , φn)t,

19
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– n ≥ 3 massive spinless particles, global O(n)-symmetry, no bound states
– Lagrangian density:

LNLS = 1
2∂µΦt∂µΦ, ΦtΦ = 1

2g
, Φ = (φ1, . . . , φn)t,

– Large n-expansion correspondence:

SNLS(ζ) = (b(ζ)1 + c(ζ)F + d(ζ)K)F,

with
- 1γδ

αβ = δδ
αδγ

β , Fγδ
αβ = δγ

αδδ
β , Kγδ

αβ = δγδδαβ

- c(ζ) = −iπνζ−1b(ζ), d(ζ) = −iπν(iπ − ζ)−1)b(ζ), b(ζ) = q(ζ)q(iπ − ζ)

- q(ζ) =
Γ
(

ν
2 + ζ

2πi

)
Γ
(

1
2 + ζ

2πi

)
Γ
(

1+ν
2 + ζ

2πi

)
Γ
(

ζ
2πi

)
- ν = 2

n−2
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One-particle QEI for NLS model

NLS model: n ≥ 3 massive spinless particles, global O(n)-symmetry, no bound states

Lemma

The two-particle form factor of the stress tensor is of the form

Fαβ(θ − η) = q(− ch(θ − η))fmin
0 (θ − η)δαβ,

where q is a real polynomial with q(1) = 1 and fmin
0 is the minimal solution wrt S0.

The case q = 1 corresponds to the quantized classical stress tensor.
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NLS model: n ≥ 3 massive spinless particles, global O(n)-symmetry, no bound states
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The two-particle form factor of the stress tensor is of the form

Fαβ(θ − η) = q(− ch(θ − η))fmin
0 (θ − η)δαβ,

where q is a real polynomial with q(1) = 1 and fmin
0 is the minimal solution wrt S0.

Lemma

∃c > 0 : |fmin
0 (ζ)| . c | Re ζ|−cn exp

(
1
2 | Re ζ|

)
, | Re ζ| → ∞

Theorem

A one-particle QEI in the NLS model holds iff q = 1.

The case q = 1 corresponds to the quantized classical stress tensor.
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O(N)-Nonlinear σ (NLS) model

– N massive spinless particles, global O(N)-symmetry, no bound states

SNLS(ζ) = b(ζ)1 + c(ζ)P + d(ζ)K,

with

– 1γδ
αβ = δδ

αδγ
β , Pγδ

αβ = δγ
αδδ

β, Kγδ
αβ = δγδδαβ
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ν
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2πi
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1
2 + ζ

2πi

)
Γ
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Minimal solution and characteristic function

– S0(θ) = b(θ) + c(θ) + Nd(θ) = −
Γ
(

1+ ν
2 + θ

2πi

)
Γ
(

3
2 + θ

2πi

)
Γ
(

1
2 + ν

2 − θ
2πi

)
Γ
(

1− θ
2πi

)
Γ
(

1
2 + ν

2 + θ
2πi

)
Γ
(

1+ θ
2πi

)
Γ
(

1+ ν
2 − θ

2πi

)
Γ
(

3
2 − θ

2πi

) .

– Malmstèn’s formula: For Re z > 0
log Γ(z) =

∫ ∞
0

(
z − 1 − 1−e−(z−1)t

1−e−t

)
e−t

t dt

– f [S0](t) = 1 + e−t+e−νt

et+1 = 2 − (1 + ν
2 )t + O(t2), t → 0.

Lemma

∃c > 0 : |F min
0 (ζ)| . c | Re ζ|−(1+ ν

2 ) exp
(

1
2 | Re ζ|

)
, | Re ζ| → ∞
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One-particle stress tensor (NLS model)

– F (θ) must be a Hermitian O(N)-invariant tensor
⇒ F (θ) = F0(θ)1(Cn)⊗2

– Uniqueness of minimal solution implies
F0(θ) = Q(ch θ)F min

0 (θ + iπ)

Lemma

F µν
2 (θ, η + iπ) = Gµν

free

(
θ+η

2

)
Q(ch(θ − η))F min

0 (θ − η + iπ)1(Cn)⊗2 ,

where Q is a real polynomial with Q(1) = 1.
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BD model: one massive spinless particle which fuses to itself
– Lagrangian density:

LBD = 1
2∂µϕ∂µϕ − m2

6g2 (2egϕ + e−2gϕ)

– Perturbation theoretic correspondence: b = g2

2π (1 + g2

4π )−1 yields S-matrix

SBD(ζ) = s(ζ; −2
3)s(ζ; b

3)s(ζ; 2−b
3 ), s(ζ; b) = sh ζ − i sin πb

sh ζ + i sin πb
.
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One-particle QEI for Bullough-Dodd model

BD model: one massive spinless particle which fuses to itself
Lemma

The 1particle stress tensor is of the form

F µν
2 (θ, η; x) = T µν

free,1(θ, η; x)q(− ch(θ − η))(2 ch(θ − η) − 1)−1fmin
bd (θ − η),

where q is a real polynomial with q(1) = 1 and fmin
bd is the minimal solution wrt Sbd.

Lemma

∃c > 0 : |fmin
bd (ζ)| . c exp{−| Re ζ|}, | Re ζ| → ∞

Theorem

A 1particle QEI in the BD model holds if deg q ≤ 2 and cannot hold if deg q ≥ 4. For
deg q = 3 there is a threshold for the leading coefficient of q which decides the QEI.
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Asymptotic growth estimate

Lemma

Let f ∈ C(R≥0, R) be exponentially decaying. Let further f0 := f(0), f1 := f ′(0).
Then there is a constant c > 0 such that with Im ζ ∈ [0, 2π]

F [f ](ζ) ∼ c | Re ζ|f1 exp
(

f0
2 | Re ζ|

)
, | Re ζ| → ∞.
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Sketch of proof 1

Lemma

F [f ](ζ) ∼ c | Re ζ|f1 exp
(

f0
2 | Re ζ|

)
, | Re ζ| → ∞.

Proof.

Let x, y ∈ R, |y| ≤ 1
2 , then for |x| → ∞

I(x + iy) := Re log F [f ](2π(x + iy) + iπ)

= 2
∫ ∞

0

f(t)
t sh t

Re sin2((x + iy)t)dt

=
∫ ∞

0

f(t)
t sh t

(1 − cos 2xt ch 2yt)dt

∼
∫ 1

0

f(t)
t sh t

(1 − cos 2xt ch 2yt)dt + O(1)
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Sketch of proof 2

Lemma

F [f ](ζ) ∼ c | Re ζ|f1 exp
(

f0
2 | Re ζ|

)
, | Re ζ| → ∞.

Proof.

I(x + iy) ∼
∫ 1

0

f(t)
t sh t

(1 − cos 2xt ch 2yt)dt + O(1)

∼
∫ 1

0

f0 + f1t + O(t2)
t2 (1 − cos 2xt)dt + O(1)

∼ f0

∫ 1

0

1 − cos 2xt

t2 dt + f1

∫ 1

0

1 − cos 2xt

t
dt + O(1)

∼ f0π|x| + f1 ln |x| + O(1), |x| → ∞.

29



Energy inequalities in integrable quantum field theory | Example: Bullough-Dodd model

Construction of QFT from scattering function: Setup

S-deformed Fock space construction

– start with adequate one-particle space H1 = L2(R)
– define n-particle state space Hn as the subspace of S-symmetric functions of

L2(Rn)
– define full state space H as direct sum of n-particle subspaces
– unitary representation of the Poincaré group as for ordinary Fock space

(U(x, λ)Φ)n(θ) := eip(θ)xΦn(θ − λ)
– creation and annihilation operators are given by

(z†(f)Φ)n :=
√

nP S
n (f ⊗ Φn−1) and (z(f)Φ)n :=

√
nΦn+1(f, _).

– one may define an (auxillary) wedge-local field

ϕ(f) = z†(f+) + z(f−), f±(θ) = f̃(p(±θ))

(sharing many properties with the free scalar field)
30



Energy inequalities in integrable quantum field theory | Example: Bullough-Dodd modelConstruction of QFT from scattering function: Observ-

ables

– creation and annihilation operators fulfill ZF-relations (S-deformed CCR):

[z, z]S = [z†, z†]S = 0
[z, z†]S(θ, η) = δ(θ − η) · 1H

where [a, b]S(θ, η) = a(θ)b(η) − S(θ − η)b(θ)a(η) is the S-deformed commutator.
– an observable O is a quadratic form on a dense subspace of regularized states D

of H
– Araki-Haag expansion

O =
∞∑

m,n=0

∫
dθdη

m!n! F
[O]
m+n(θ + i0, η + iπ − i0)z†(θ1)...z†(θm)z(η1)...z(ηn)
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