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Negatives energies in quantum matter

negative energies are abundant in quantum field theory [Epstriv/Graser/Jarre'65]

pointwise energy density becomes arbitrarily negative

remnant notion of stability is expected:

= bounds of negative energy in magnitude and duration, ...

unifying mathematical framework: Quantum energy inequality (QEI)
— let i
T(g%7) = [ dtg(®) 74 T (5(0)

a QEI can take the form:

(Pl T (g% )|p) > —cgys

holds for (sufficiently large) class of (normalized) states ¢ and ¢4, > 0
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QEls: Status quo

QEls in semiclassical gravity can have similar consequences as classical energy
conditions. They can:

- constrain exotic spacetimes [Forp/Roman/EVERETT/PFENNIG’96-"98]
- imply the formation of singularities [Fewster/GALLOWAY /KONTOU/BROWN /FREIVOGEL.. 11-'23]

QEls hold in many kinds of free QFTs in both flat and curved spacetimes
in generic settings, weaker bounds have been derived
[BOSTELMANN/FEWSTER'09] [MUCH/PASSEGGER/VERCH 22]

strict inequalities have been proven in few examples with self-interaction
massive Ising model [BOSTELMANN/CADAMURO/FEWSTER'13]

sine-Gordon model with adiabatic cutoff [Capamuro/FréB’22]

integrable models of one scalar particle [Bosteivany/Capaviro'16]
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Integrability and scattering theory

Integrability in QFT
<> existence of infinite set of (indep.) conserved charges
+> highly constrained scattering theory
- conservation of particle number and momenta a1

- S-matrix factorization
into 2-to-2-particle scattering functions

- trivial S-matrix in higher than 141 dimensions
= Construct integrable models 2
via an inverse scattering approach:
- fix asymptotic data (particle spectrum and S-matrix)

- reconstruct local field content (form factor program)

B
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Aim: QEI

For (sufficiently large) class of (normalized) states ¢,

<90‘T(927’Y)‘90> > —Cgny
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One-particle expression

For parity-covariant and diagonal-in-mass TH”, we have

Proposition (General form at one-particle level)
p et (0. Tul@)e) = [ BT (6, mePO-FD o @) F5 (0~ n)eP (n)
Proposition (Go)

If for some ¢ < 1, IF(Olls) S cexp|Re(|, |Red| — oo

then there exists cq, > 0 such that Vo € D(R,K), ||¢|| = 1:

(907 T(927 ’7)90> > —Cg,y-
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One-particle expression

For parity-covariant and diagonal-in-mass TH”, we have

Proposition (General form at one-particle level)
0 € Hi, (o, Tw(@)p) = / dfdn Tieet (0, m)e" PO=PM) =, (9)Fg (0 — n)¢” (n)
Proposition (No-Go)

If for some ¢ > 1, I1F(Ollsk) 2 cexp|Rec], |Re¢| — oo,

then there exists a sequence (¢;) C D(R,K),||¢;|| = 1 such that

j—
<§0J7 T(927 7)¢J> ’ _>OO —00.
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Freedom of choice for the (one-particle) stress tensor

Integrable model

free, sinh-Gordon
Ising

Bullough-Dodd
O(N)-nonlinear-sigma

Federbush

Stress tensor family

one-parameter family [BOSTELMANN/CADAMURO’15]
Unique (q = 1) [BOSTELMANN/CADAMURO’15]
two-parameter family

unique (¢ = 1)

unique for parity-invariant part (¢1 = g2 = 1)

13
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State-independent QEI

Theorem

For constant “diagonal” S-matrix S and suff.  Plot for g Gaussian; averaging scale o

regular normalized states W € H cfee/m?
+

1
(T NY) = —trgg (FPy +c™P.), |
-10

with constants c'I*® representing bounds for the 10
free scalar bosonic/fermionic field depending 107

only on m, g and ~.

— Includes previous results: Free fields and the Ising model

[BOSTELMANN/CADAMURO/FEWSTER'13]

a/m
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State-independent QEI

Theorem

For constant “diagonal” S-matrix S and suff.
regular normalized states W € H

(W, T(g*,7)®) > —trgse (fPy + cIP.),

with constants c'I*® representing bounds for the
free scalar bosonic/fermionic field depending

only on m, g and ~.

Plot for g Gaussian, averaging scale o
cree/m?
1
107
10-10

10-15

a/m

— Includes previous results: Free fields and the Ising model

[BOSTELMANN/CADAMURO/FEWSTER'13]

— Includes new models: Fermionic Ising model, Federbush model, generalizations
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Conclusions and outlook

— In models with simple interactions QEls can hold independent of the state

— One-particle-QEls hold for a large class of models with self-interaction. This
includes models with bound states, with more than one particle type and with
inner degrees of freedom

— (One-particle-)QEls can be imposed to select physically reasonable stress tensors
in situations where unambiguous definitions don't apply

— | have also conducted a numerical analysis of the two-particle level for the
sinh-Gordon and O(n)-NLS model where similar bounds seem to hold

Analytic results for higher particle numbers would be desirable

Thanks for your attention!
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O(n)-nonlinear ¢ (NLS) model

— n > 3 massive spinless particles, global O(n)-symmetry, no bound states

— Lagrangian density:
1
Lnis = 20,0'0'®, ©'® = 5" D= (¢1,...,00)",
— Large n-expansion correspondence:

Snrs(€) = (06(¢)1 + ¢(Q)F + d(OK)F,

with
100 =0083, L =0005, K% =070
c(¢ ):—WC 1b(C)7 d(¢) = —imv(im — O)7b(C),  b(¢) = (Q)q(im — C)
4(¢) = Dbt m)r (3 a5)
P50 (o)
=2
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O(n)-nonlinear ¢ (NLS) model

— n > 3 massive spinless particles, global O(n)-symmetry, no bound states
— Lagrangian density:
1
LNLs = %8uq>tauq)> 'P = 277 ¢ = (¢17 ce 7¢n)t7
9

— Large n-expansion correspondence:

Snrs(¢) = (S+(Q)5(1+F = 2K) + S (¢)5(1 = F) + So(¢) £K)F,

with
- Sy =bte, So=b+c+ nd,
100 =0083, FL=0005, K% =070
- Q) = —imv(TIb((),  d(C) = —imv(im — )THb(C),  b(C) = q(Q)g(im — C)

_ Dlsram)r(54ak)
- Q(C) F(1§u+#)r %)
_ 2
SV=Ea=2

19
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One-particle QEI for NLS model

NLS model: n > 3 massive spinless particles, global O(n)-symmetry, no bound states

Lemma

The two-particle form factor of the stress tensor is of the form

Fop(0 —n) = q(— ch(6 — 0)) f5™ (0 — n)dag,

where q is a real polynomial with q(1) = 1 and fi" is the minimal solution wrt Sp.

The case ¢ = 1 corresponds to the quantized classical stress tensor.
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NLS model: n > 3 massive spinless particles, global O(n)-symmetry, no bound states

Lemma

The two-particle form factor of the stress tensor is of the form
Fap(0 —n) = (= ch(6 —)) 5" (0 — 0)dap,

where q is a real polynomial with q(1) = 1 and fi™™ is the minimal solution wrt Sy.

Lemma
Je > 0: Q)] S e|Re¢| > exp(3|Re(]), [Re(| — o9

The case ¢ = 1 corresponds to the quantized classical stress tensor.
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One-particle QEI for NLS model

NLS model: n > 3 massive spinless particles, global O(n)-symmetry, no bound states

Lemma

The two-particle form factor of the stress tensor is of the form
Fop(0 —n) = q(—ch(8 — n)) f5""( — 1)dag,

where q is a real polynomial with q(1) = 1 and fi™™ is the minimal solution wrt Sy.

Lemma
Je > 0: |f§1(0)] S | Re¢| = exp(3| Re¢l), |Re¢| — o0

Theorem
A one-particle QEl in the NLS model holds iff ¢ = 1.

20
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O(N)-Nonlinear ¢ (NLS) model

— N massive spinless particles, global O(N)-symmetry, no bound states

Snrs(Q) = b(¢)1 + ()P + d(¢)K,
with

6 4 o
- L5 =0a0% Ply=0305 Kig=0"dus
= e(Q) = —imuCB(Q),  d(C) = —imv(im — O)~H(C),
- b(¢) = q(Q)qlim — ()

D(3+30)0(3+5%)

- ([(C): T(%+ﬁ)r(ﬁ)
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Lemma

3¢ > 0: |[F(Q)] £ e| Re¢|~0+8) exp(4 Rec]), |Re] = oo
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Minimal solution and characteristic function

— So(0) = b(8) + ¢(#) + Nd(6) = F<1+;+2iv¢>r(§+2zﬂ)r(

1, v 0 v 0 3 :
F(§+§+%)F(1+2m)F<1+5*ﬁ)F(§*zm)

— Malmstén’s formula: For Rez > 0
—t

00 _e— (=1t ¢
].Og F(Z) = fo (Z —1- 11?) Tdt

Lemma

3¢ > 0: |[F(Q)] £ e| Re¢|~0+8) exp(4 Rec]), |Re] = oo
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Minimal solution and characteristic function

v 0 3
T 1+§+ﬁ>F<§+

[V
FES

1 v 0 0
)F(§+§*?)F(1*m)
0

[

— 50(6) = b(6) + c(8) + Nd(#) = — (
0(6) = H(0) + <(0) (i
— Malmstén’s formula: For Rez > 0
log'(2) = [5° (z —-1- %) egtdt

— fISol(t) =1+ e =2 — 1+ 5)t+ O(#), t— 0.
Lemma
3e > 01 [F(0)] S ¢|Re¢| 02 exp(3|Re([), |Re¢| - oo

2
v 0 3 :
m)%”i*%)%?zm)
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One-particle stress tensor (NLS model)

— F(f) must be a Hermitian O(NN)-invariant tensor
= F(Q) = Fo(e)l(cn)(gz

Lemma

(0,0 + im) = Gz, (457) Q(ch(6 — ) F&™(9 — 0 + im)L cmyen,

where @ is a real polynomial with Q(1) = 1.
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One-particle stress tensor (NLS model)

— F(f) must be a Hermitian O(NN)-invariant tensor
= F(Q) = Fo(e)l(cn)(gz

— Uniqueness of minimal solution implies
Fo(0) = Q(ch 0)FM(6 + imr)

Lemma

(0,0 + im) = Glav, (457) Q(ch(6 — ) F&™(9 — 0 + im)L cmyen,

where Q) is a real polynomial with Q(1) = 1.

23
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BD model: one massive spinless particle which fuses to itself
— Lagrangian density:

2
m _
Lpp = % L0t — 6792(26950 +e 29“0)

25
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BD model: one massive spinless particle which fuses to itself
— Lagrangian density:

2
m
Lep = 39updp — 6792(26%0 +e29%)

2 2
— Perturbation theoretic correspondence: b = £-(1+ £-)~! yields S-matrix

T 4

_ sh{ —isinmd

Sep(¢) = s(¢; —g)S(C g)S(C; 2T_b)a 5(¢;0) = m

25
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One-particle QEI for Bullough-Dodd model

BD model: one massive spinless particle which fuses to itself

Lemma
The 1particle stress tensor is of the form

F3%(0,m; %) = Thee 1 (0,7 2)q(— ch(0 — n))(2¢h(0 —n) — 1)~ fig™ (0 — ),

where q is a real polynomial with (1) =1 and f{i® is the minimal solution wrt Spq.

Lemma
Je>0: [fI™(C)] S cexp{—|Re(|}, |Re¢| = o0

Theorem
A Iparticle QEl in the BD model holds if deg g < 2 and cannot hold if degq > 4. For
deg q = 3 there is a threshold for the leading coefficient of ¢ which decides the QEI.

26
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Asymptotic growth estimate

Lemma
Let f € C(R>0,R) be exponentially decaying. Let further fy := f(0), fi := f'(0).
Then there is a constant ¢ > 0 such that with Im ¢ € [0, 27]

FIf1(¢) ~ ¢|Re¢|™ exp(£|Re(]), |Re¢|— oo.

27
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Sketch of proof 1

Lemma
FIf)(¢) ~ e|Re ¢/t exp(£|Re(]), |Re¢|— oo.

Proof.
Let z,y € R, |y| < 3, then for |z| — oo

I(z +iy) := Relog F[f](27(x + iy) + im)

> f(t) . 9 ,
= t
2 : tshtResm ((z+1y)t)d
> f(t)
= = 2ut)dt
] tsht(l cos 2zt ch 2yt)
i
~ = 2zt ch 2 o1
; tsht( cos 2zt ch 2yt)dt + O(1)

28
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Sketch of proof 2

Lemma
FIf)(¢) ~ c|Re¢lt exp(£[Rec[), [Re¢| - oo.

Proof.
1
I(x +iy) ~ 7;f(t)(l — cos 2zt ch2yt)dt + O(1)
o tsht
L fo + fit + O(t?
~ 0 1t2 ( )(1 — cos 2zt)dt + O(1)

11 — cos2xt 11 — cos 2xt
0 0

~ forle| + filnla| + OQ), ] = oc.

29
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Construction of QFT from scattering function: Setup

S-deformed Fock space construction

start with adequate one-particle space H; = L*(R)

define n-particle state space H,, as the subspace of S-symmetric functions of
L2(R")

define full state space H as direct sum of n-particle subspaces

unitary representation of the Poincaré group as for ordinary Fock space

(U(z,\)®),,(0) := ePO7d, (6 — X)
creation and annihilation operators are given by
(N @) = VP (f @ ®n1) and  (2(f)®)n = Vn@uia(f,_).
one may define an (auxillary) wedge-local field
o(f) =21 () +2(f7), F50) = f(p(+0))

(sharing many properties with the free scalar field)
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— creation and annihilation operators fulfill ZF-relations (S-deformed CCR):

[2,2]s = [zT,zT]S =0
[Z,ZT]S(G,U) = 5(0 - 77) ey

where [a, b]5(0,n) = a(0)b(n) — S(6 —n)b(#)a(n) is the S-deformed commutator.

— an observable O is a quadratic form on a dense subspace of regularized states D
of H

— Araki-Haag expansion

0= Z /dadn m+n (0 +i0,m + im — i0)z7(61)...2T () 2(m1)...2(nn)

Inl
m,n=0 nmen

— COHStReoH " SF QP T B R St attérifig ' fietion:® Observ-
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