w/ Y. Kaku, A. Matsumura & Y. Michimura

based on arXiv: 2308.14552

Tomohiro Fujita (Waseda U & Tokyo. U)

Aug 30th @ Leipzig

Towards the Optimal Experiment of Gravity-induced Quantum Entanglement

Outline

1. Introduction

2. Previous Proposals

3. General Analysis

4. Our Proposal

5. Summary

Outline

1. Introduction

2. Previous Proposals

3. General Analysis

4. Our Proposal

5. Summary

Is Gravity Quantum?

Physics celebrities said...

Ricard Feynman

"Maybe we should not try to quantize gravity." Roger Penrose

"Quantum theory fits most uncomfortably with the curved space-time notion of the general relativity." Freeman Dyson

"Should quantum mechanics and GR be unified? I don't think so. Maybe, they should not be unified..."

Is Gravity Quantum?

We aren't sure.

We often take **Quantum Gravity** for granted.

1 Grav. fields can be in quantum superposition

② Graviton are quantized like QED.

(As a cosmologist, I often assume 2) in my work)

Their validity has never been confirmed.

That's science

Let's test it with experiments!

"Is Gravity Quantum?"

Do weak gravitational fields
become quantum superposition?

2 graviton is (far) future step.

Is Gravity Quantum?

We aren't sure.

Let's test it!

Outline

1. Introduction

2. Previous Proposals

3. General Analysis

4. Our Proposal

5. Summary

Sketch of idea

Does quantum superposition of a source mass lead to the superposition of gravitational fields?

• We can check it with entanglement.

Proposers

Sougato Bose et al.

Chiara Marletto

Vlatko Vedral

2 papers were publishedin PRL on the same day.= BMV proposal

BMV experiment

Bose+ PRL119.240401(2017) Marletto&Vedral PRL119.240402(2017)

2 Each is put into a superposition of two spin directions.

3 A magnetic field separates the spin components.

BMV experiment

BMV experiment

The initial state is

$$\begin{aligned} |\Psi_1\rangle &= \frac{1}{2} \left(|\psi_1^L\rangle + |\psi_1^R\rangle \right) \otimes (|\psi_2^L\rangle + |\psi_2^R\rangle \right) \otimes |g\rangle. \\ &= \frac{1}{2} \left(|LL\rangle + |RR\rangle + |LR\rangle + |RL\rangle \right) \otimes |g\rangle. \end{aligned}$$

if GFs can be quantum superposition

$$\begin{split} |\Psi_2\rangle &= \frac{1}{2} \left(|LL\rangle \otimes |g_{d_{LL}}\rangle + |RR\rangle \otimes |g_{d_{RR}}\rangle \right. \\ &+ |LR\rangle \otimes |g_{d_{LR}}\rangle + |RL\rangle \otimes |g_{d_{RL}}\rangle \right), \end{split}$$

Only the nearest pair |RL> gains a significant phase factor

$$\begin{aligned} |\Psi_{3}\rangle &= \frac{1}{2} \left(|LL \, g_{d_{LL}}\rangle + |RR \, g_{d_{RR}}\rangle \right. \\ &+ |LR \, g_{d_{LR}}\rangle + e^{i \frac{Gm^{2}t}{\hbar d}} |RL \, g_{d_{RL}}\rangle \right). \end{aligned}$$

Simple Procedure:

1. Trap two masses in a harmonic potential

Tanjung Krisnanda

Tanjung Krisnanda

Simple Procedure:

- 1. Trap two masses in a harmonic potential
- 2. Release and let them grav. interact

Grav. Int.

Simple Procedure:

- 1. Trap two masses in a harmonic potential
- 2. Release and let them grav. interact
- 3. Measure the positions and momenta

Tanjung Krisnanda

Simple Procedure:

1. Trap two masses in a harmonic potential

Tanjung Krisnanda

Wavefunction

Simple Procedure:

- 1. Trap two masses in a harmonic potential
- 2. Release and let them grav. interact

Spread out

Tanjung Krisnanda

Simple Procedure:

- 1. Trap two masses in a harmonic potential
- 2. Release and let them grav. interact
- 3. Measure the positions and momenta

Grav. Int.

Entangled

Feasibility

Simone Rijavec

Air molecule Scattering

For a real experiment, <u>1. Ultra-high vacuum to avoid decoherence</u>

Feasibility

Simone Rijavec

For a real experiment,

- 1. Ultra-high vacuum to avoid decoherence
- 2. Free-fall problem

Free-fall 40m down for 3 sec

Outline

1. Introduction

2. Previous Proposals

3. General Analysis

4. Our Proposal

5. Summary

General Hamiltonian

Our quadratic Hamiltonian:

$$H = \frac{p_1^2}{2m} + \frac{1}{2}k_1x_1^2 + \frac{p_2^2}{2m} + \frac{1}{2}k_2x_2^2 - \frac{Gm^2}{d^3}(x_1 - x_2)^2,$$

oscillator1 oscillator2 Grav. Int.
 $(d \gg |x_1 - x_2|)$

The system is quadratic. Exactly Solvable!

Our quadratic Hamiltonian:

$$H = \frac{p_1^2}{2m} + \frac{1}{2}k_1x_1^2 + \frac{p_2^2}{2m} + \frac{1}{2}k_2x_2^2 - \frac{Gm^2}{d^3}(x_1 - x_2)^2,$$

Spring constant k_i

Potential parameter: $\lambda_i \equiv k_i / m\omega^2$

Our quadratic Hamiltonian:

$$H = \frac{p_1^2}{2m} + \frac{1}{2}k_1x_1^2 + \frac{p_2^2}{2m} + \frac{1}{2}k_2x_2^2 - \frac{Gm^2}{d^3}(x_1 - x_2)^2,$$

Spring constant k_i

Potential parameter: $\lambda_i \equiv k_i / m\omega^2$

 $\lambda = 1$: Harmonic

andratic Usmiltonian

$$H = \frac{p_1^2}{2m} + \frac{1}{2}k_1x_1^2 + \frac{p_2^2}{2m} + \frac{1}{2}k_2x_2^2 - \frac{Gm^2}{d^3}(x_1 - x_2)^2,$$

Potential parameter: $\lambda_i \equiv k_i / m\omega^2$

- $\lambda = 1$: Harmonic
- $\lambda = 0$: Free mass

TF. et al. (2023) [2308.14552]

Our quadratic Hamiltonian:

$$H = \frac{p_1^2}{2m} + \frac{1}{2}k_1x_1^2 + \frac{p_2^2}{2m} + \frac{1}{2}k_2x_2^2 - \frac{Gm^2}{d^3}(x_1 - x_2)^2,$$

Potential parameter: $\lambda_i \equiv k_i / m\omega^2$

- $\lambda = 1$: Harmonic
- $\lambda = 0$: Free mass
- $\lambda = -1$: Inverted

Experimental Goal

Good indicator of entanglement:

Logarithmic Negativity E_N

- $E_N > 0 \Leftrightarrow$ Two oscillators are entangled
- Larger E_N indicates larger entanglement
- $E_N = 0.01$ is experimentally detectable.

$$E_N \equiv \max\left[0, -\log_2\left(2\tilde{\nu}_{\min}\right)\right] \qquad \tilde{\nu}_{\min} \equiv \left[\frac{1}{2}\left(\tilde{\Sigma} - \sqrt{\tilde{\Sigma}^2 - 4\det\sigma}\right)\right]^{1/2}$$
$$u_i(t) = \left(X_1(t), P_1(t), X_2(t), P_2(t)\right), \qquad \left[\sigma - \sigma\right]$$

$$\sigma_{ij}(t) = \frac{1}{2} \langle u_i(t)u_j(t) + u_j(t)u_i(t) \rangle. \qquad \sigma(t) = \begin{bmatrix} \sigma_1 & \sigma_3 \\ \sigma_3^{\mathrm{T}} & \sigma_2 \end{bmatrix} \quad \tilde{\Sigma} \equiv \det \sigma_1 + \det \sigma_2 - 2 \det \sigma_3$$

Calculation

We compute E_N when

At t = 0, they're in the ground state w/o gravity

For t > 0, they evolve in the λ_i potential w/ gravity

Result of Entanglement

Contour of E_N ($\omega t = 13$, $\eta = 2\mu = 10^{-12}$)

Result of Entanglement

Contour of E_N ($\omega t = 13$, $\eta = 2\mu = 10^{-12}$)

Heisenberg-Langevin eqs:

$$\dot{X}_i = \omega P_i, \quad \dot{P}_i = -\lambda \omega X_i + \omega \eta (X_i - X_j) + \xi_i,$$

 ξ_i : random noise force \Rightarrow decoherence

$$\frac{1}{2} \langle \xi_i(t)\xi_j(t') + \xi_i(t')\xi_j(t) \rangle = \mu \omega \delta(t-t')\delta_{ij}$$

 μ : size of env. fluctuation

η : grav. coupling constant

$$\eta \equiv \frac{2Gm}{\omega^2 d^3} = 2.7 \times 10^{-13} \, \omega_{\rm kHz}^{-2} \left(\frac{m/d^3}{2 \ {\rm g/cm^3}} \right)$$

Analytic Solution

Exponential

For the identical oscillators $(\lambda_1 = \lambda_2)$ Logarithmic Negativity reads $E_N \simeq 3(\eta - \mu) f_{\text{gra}} \quad (\lambda \le 0)$ Grav. coupling constant Random noise parameter Power-law

$$f_{\rm gra} \simeq \begin{cases} \frac{1}{2} |\sin(\omega t)| & (\lambda = 1) \\ \frac{1}{6} (\omega t)^3 & (\lambda = 0) \\ \frac{1}{8} e^{2\omega t} & (\lambda = -1) \end{cases}$$

The time required to generate observable $E_N = 0.01$

$$\tau_{\rm ent} \simeq \begin{cases} 4.2 \,\omega_{\rm kHz}^{-1/3} \, {\rm sec} & (\lambda = 0) \\ 1.3 \times 10^{-2} \,\omega_{\rm kHz}^{-1} \, {\rm sec} & (\lambda = -1) \end{cases}$$

300 times faster!

Including decoherence parameter μ

$$\tau_{\rm ent} \simeq \begin{cases} 4.2 \, \omega_{\rm kHz}^{-1/3} \, [\eta/(\eta - \mu)]^{1/3} \, {\rm sec} & (\lambda = 0) \\ 1.3 \times 10^{-2} \, \omega_{\rm kHz}^{-1} \, {\rm sec} & (\lambda = -1) \\ + \log[\eta/(\eta - \mu)]/(2\omega) & \\ & \simeq \mathcal{O}(10^{-3}) \omega_{\rm kHz}^{-1} \, {\rm sec} \end{cases}$$

The time required to generate observable $E_N = 0.01$

The inverted oscillators generate the gravity-induced entanglement most quickly and are most resistant to decoherence.

Outline

1. Introduction

2. Previous Proposals

3. General Analysis

4. Our Proposal

5. Summary

Optomechanics

• Free fall problem

Free-fall 40m down for 3 sec

• Optical levitation

demonstrated to levitate small particle by laser pressure w/o mechanical support

Sandwich Setup

Inverted Oscillator \Leftrightarrow Anti-spring effect

Sandwich Setup

We can realize high frequency inverted oscillator

$$\omega_{\rm hor}^2 = \frac{2}{mc} \left(\frac{P_{\rm U}}{a_U} - \frac{P_{\rm L}}{a_L} \right) = \frac{2(a_L - a_U)}{mc \, a_U a_L} P_L - \frac{g}{a_U},$$
$$\simeq -(1 \,\mathrm{kHz})^2 \left(\frac{m}{0.1 \,\mathrm{mg}} \right)^{-1} \left(\frac{P_L}{30 \,\mathrm{kW}} \right) \left(\frac{a_L}{2 \,\mathrm{mm}} \right)^{-1},$$

while suppressing decoherence due to photon shot noise.

$$\mu_{\rm shot,hor} = \frac{16\omega_{\ell}P_L}{m\omega^2 c^2 T_{\rm in}} \left(\frac{\Delta x}{a_L}\right)^2 \simeq \frac{8\omega_{\ell}\Delta x^2}{ca_L T_{\rm in}},$$
$$= 2.5 \times 10^{-14} \,\omega_{\rm kHz}^3 \left(\frac{a_L}{2\rm mm}\right)^{-1} \left(\frac{m}{0.1\rm mg}\right)^{-1} \left(\frac{\omega_{\rm in}}{1\rm MHz}\right)^{-2}$$

Summary

- Lack of experimental verification of quantum gravity. Not even sure if grav. fields can be quantum superposition.
- Many proposals to test gravity-induced entanglement. "Trap & release" masses generates entanglement. (free-fall problem)
- We analyzed two general quadratic oscillators coupled by gravity and found inverted oscillators exponentially generate entanglement and resistant to decoherence.
- As an experimental implementation, we proposed levitated mirror with anti-spring effect in a sandwich configuration.

Thank you

Sketch of idea

Stern-Gerlach experiment enables us to prepare the quantum superposition of a mass at two different locations. Pure state: $|\Psi\rangle = c_1 |\phi_1\rangle + c_2 |\phi_2\rangle$ quantum superposition

It's undetermined whether $\Psi = \phi_1$ or ϕ_2 (c.f. Schrodinger's cat)

It's pre-determined whether $\Psi = \phi_1$ or ϕ_2

The probabilities of each realization p_1 and p_2 are known.

Its QM description = Mixed State

$\hat{\rho}$ gives the probability and the expected value $p_i = \text{Tr}[\hat{P}_i \hat{\rho}] \qquad \langle \hat{O} \rangle = \text{Tr}[\hat{O} \hat{\rho}]$

quantum

$$\hat{\rho}_{\text{pure}} = |\Psi\rangle\langle\Psi| = \Sigma_i |c_i|^2 \left|\phi_i\rangle\langle\phi_i\right| + \Sigma_{i\neq j} c_i c_j^* \left|\phi_i\rangle\langle\phi_j\right|$$

Interference term

classical

 $\hat{\rho}_{\rm mix} = \Sigma_i p_i |\phi_i\rangle \langle \phi_i|$

The essential difference btw quantum and classical state appears in the interference term in the density matrix. A quantum system consists of subsystem A & B.

General state $|\Psi\rangle = \Sigma_{ij} c_{ij} |\psi_i\rangle_A \otimes |\phi_j\rangle_B$

If $|\psi\rangle_A = \Sigma_i a_i |\psi_i\rangle_A$ and $|\phi\rangle_B = \Sigma_j b_j |\phi_j\rangle_B$ independently,

Separable state state $|\Psi\rangle = \sum_{ij} a_i b_j |\psi_i\rangle_A \otimes |\phi_j\rangle_B$

Non separable = Entangled state

Interaction btw the subsystems can induce entanglement.

Remember $\langle \hat{O} \rangle = \text{Tr}[\hat{O}\hat{\rho}]$

If we only consider observables of the subsystem A, \hat{O}_A , we take the trace of $\hat{\rho}$ over the subsystem B,

Reduced density matrix: $\hat{\rho}_A = \operatorname{Tr}_B[\hat{\rho}]$

This operation won't change anything in A, if A & B are separable.

Decoherence

Pure entangled state

 $|\Psi\rangle = \Sigma_i c_i |\psi_i\rangle_A \otimes |\phi_i\rangle_B$

Density matrix

$$\hat{\rho} = |\Psi\rangle\langle\Psi| = \Sigma_{ik}c_ic_k^* |\psi_i\rangle\langle\psi_k|\otimes|\phi_i\rangle\langle\phi_k|$$

Trace out:

 $\operatorname{Tr}_{B}[\hat{\rho}] = \Sigma_{l} \langle \phi_{l} | \hat{\rho} | \phi_{l} \rangle = \Sigma_{i} |c_{i}|^{2} |\psi_{i}\rangle \langle \psi_{i}|$

When the original state is entangled, tracing out it into a mixed state.

Decoherence = interference terms (quantum-ness) vanish

Schrodinger eq.: $i\partial_t |\psi\rangle = \widehat{H} |\psi\rangle$ \Rightarrow Phase from mass energy $e^{-imt} |\psi\rangle$

GR replaces t by the proper time s Newtonian: $ds^2 = [1 + 2\Phi]dt^2$, $\Phi = -\frac{Gm}{d}$

The relative phase that |RL> gains is

Phase:
$$\phi = \frac{Gm^2}{d}t \approx 2\pi \left(\frac{t}{1\text{sec}}\right) \left(\frac{d}{1\text{mm}}\right)^{-1} \left(\frac{m}{10^{-11}\text{g}}\right)^2$$

c.f. $m_P \approx 2 \times 10^{-5}$ g $c * \sec \approx 3 \times 10^8$ m

Small mass compensated by long time

Quantum state

$$|\Psi_{3}\rangle = \frac{1}{2} \left(|LL g_{d_{LL}}\rangle + |RR g_{d_{RR}}\rangle + |LR g_{d_{LR}}\rangle + e^{i\frac{Gm^{2}t}{\hbar d}} |RL g_{d_{RL}}\rangle \right).$$

Bring them back by inverse-SG
$$|\psi_4\rangle = \frac{1}{2} [|\downarrow\downarrow\rangle + |\uparrow\uparrow\rangle + |\downarrow\uparrow\rangle + e^{i\phi}|\uparrow\downarrow\rangle]$$

The entangled state is tested by Bell inequality

$$\mathcal{W} = |\langle \sigma_x^{(1)} \otimes \sigma_z^{(2)} \rangle - \langle \sigma_y^{(1)} \otimes \sigma_z^{(2)} \rangle|$$

If W > 1, the state is entangled and GFs are superposed.

Our quadratic Hamiltonian:

$$H = \frac{p_1^2}{2m} + \frac{1}{2}k_1x_1^2 + \frac{p_2^2}{2m} + \frac{1}{2}k_2x_2^2 - \frac{Gm^2}{d^3}(x_1 - x_2)^2,$$

dimentionless form

$$H = \frac{\omega}{2} \left[P_1^2 + \lambda_1 X_1^2 + P_2^2 + \lambda_2 X_2^2 - \eta (X_1 - X_2)^2 \right]$$

oscillator1 oscillator2 Grav. Int.

Variable: $P_i \equiv p_i / \sqrt{\hbar m \omega}$ $X_i \equiv \sqrt{m \omega / \hbar} x_i$

Coupling η constant:

$$\eta \equiv \frac{2Gm}{\omega^2 d^3} = 2.7 \times 10^{-13} \,\omega_{\rm kHz}^{-2} \left(\frac{m/d^3}{2 \text{ g/cm}^3}\right)$$

