Graviton Couplings on Hilbert space (joint work with J. M. Gracia-Bondía and K.-H. Rehren)

Christian Gaß

Chair of Mathematical Methods in Physics Department of Physics University of Warsaw

Quantum Effects in Gravitational Fields Leipzig August 30, 2023

based on Quantum General Covariance, Class. Quant. Grav. 2023.

Introduction	Graviton self-coupling	Graviton coupling to matter	Outlook
0000	000	00000	0

Introduction

Graviton self-coupling

Graviton coupling to matter

Outlook

Introduction	Graviton self-coupling	Graviton coupling to matter	Outlook
•000	000	00000	O
	Introduction		

Scharf's approach to perturbative QFT

- Do not assume interaction Lagrangian as given (from a classical theory) but fix it perturbatively by quantum consistency conditions, mainly BRST.
- Start at lowest order in the coupling constant with terms of smallest possible UV dimension and work your way up order by order, implementing the consistency conditions.
- Implementation of the Epstein-Glaser scheme.

But: Gauge theories with massless gauge fields are formulated on a large indefinite metric space with many "unphysical" d.o.f. (gauge d.o.f., ghost fields, ...).

A proper quantum theory should be formulated *on a Hilbert space*.

Introduction Graviton self-cou	bling Graviton coupling to mat	ter Outlook
0000 000	00000	0

String-localized fields

S-loc fields can be defined by acting with the following operation on other fields:

Definition

Let $H := \{e \in \mathbb{R}^{1+3} \mid e^2 < 0\}$ and $c \in C_c^{\infty}(H)$ (with some technical assumptions). Define

$$I_{c}^{\mu}f(x) := \int_{H} d^{4}e \, c(e)e^{\mu} \int_{0}^{\infty} ds \, f(x+se).$$
⁽¹⁾

Translate Scharf's approach to s-loc QFT:

Main consistency condition is locality of observables

(despite the non-locality of certain fields).

Why should one pay the price of non-local fields? S-loc fields ...

- ... allow for a covariant formulation of PT with massless tensor fields on Hilbert space.
- ... allow for a more economic construction of models by avoiding unphysical d.o.f.

The massless free *field strength* $F_{[\mu\kappa][\nu\lambda]}(x)$ is defined on the Wigner-Fock space corresponding to the (m = 0, |h| = 2) rep. of \mathcal{P} . It has 2 degrees of freedom.

The only s-loc fields in this talk will be the graviton potential and its string variation:

Definition

The string-localized graviton potential is defined via $h_{\mu\nu}(x;c) := I_c^{\kappa} I_c^{\lambda} F_{[\mu\kappa][\nu\lambda]}(x)$.

- It also has only the two physical degrees of freedom.
- Its string variation is $\delta_c h_{\mu\nu}(x;c) = \partial_{\mu}w_{\nu}(x;c) + \partial_{\nu}w_{\mu}(x;c)$.

The formal power series for the S-matrix in s-loc QFT then depends on c via the s-loc fields:

$$\mathbb{S}[g;c] = 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \int d^4 x_1 \cdots \int d^4 x_n \, g(x_1) \dots g(x_n) \, S_n(x_1, \dots, x_n; c), \tag{2}$$

where $g\in\mathcal{S}(\mathbb{R}^d)$ and the S_n are time-ordered products of an interaction density.

Introduction	Graviton self-coupling	Graviton coupling to matter	Outlook
0000	000	00000	0

Implementing locality: the string independence (SI) condition

Main consistency condition: $\mathbb{S}[g;c]$ must be local and string independent in the adiabatic limit:

$$\lim_{g\uparrow \text{const}} \delta_c \left(\mathbb{S}[g;c] \right) \stackrel{!}{=} 0 \quad \Leftarrow \quad \delta_c \left(S_n(x_1,\ldots,x_n;c) \right) = i^n \sum_{k=1}^n \partial_{x_k,\mu} Q_n^{\mu}(x_1,\ldots,x_n;c).$$

- \Rightarrow Lowest order of interaction density $L_1 = -iS_1$ must satisfy L-Q condition $\delta_c L_1 = \partial_\mu Q^\mu$.
- \Rightarrow 2nd order: S_2 is the T-product of S_1 , possibly plus *local* terms (all strings emanate from the same point):

$$S_2(x_1, x_2; c) = i^2 T_{\mathsf{ren}}[L_1(x_1; c)L_1(x_2; c)] + iL_2(x_1; c)\delta(x_1 - x_2),$$
(3)

with the 2nd order contribution to the interaction density L_2 .

 \Rightarrow Continue to higher orders: $L_{\text{tot}} = \sum_{n=1}^{\infty} \frac{g^n}{n!} L_n$.

We currently restrict ourselves to tree graphs, s.t. 2nd order SI becomes

$$\delta_c L_1 L_1' \stackrel{!}{=} \partial_\mu Q_{2,\text{tree}}^\mu + i\delta(x - x') \ \delta_c L_{2,\text{tree}}.$$
(4)

Introduction	Graviton self-coupling	Graviton coupling to matter	Outlook
0000	●OO	00000	0
	Graviton s	self-coupling	

• $O(\kappa)$ (cubic self-coupling, 1st order in perturbation theory): L-Q condition selects

$$L_1 \stackrel{\text{div}}{=} h^{\mu\nu} \Big[\frac{1}{2} ((\partial_{\mu} h \partial_{\nu} h)) + \partial^{\kappa} h_{\mu\lambda} \partial^{\lambda} h_{\nu\kappa} - (\partial_{\kappa} h \partial^{\kappa} h)_{\mu\nu} \Big].$$
(5)

• $O(\kappa^2)$ (2nd order in perturbation theory): tree graph is

$$L_1 L_1' \stackrel{\text{div}}{=} U^{\mu\nu} \langle\!\langle T_{\mathsf{ren}} h_{\mu\nu} h_{\rho\sigma}' \rangle\!\rangle U'^{\rho\sigma}.$$
(6)

with $U^{\mu\nu}$ a quadratic Wick polynomial, $\langle\!\langle T_{\rm ren} \bullet \bullet' \rangle\!\rangle$ the renormalized propagator.

Theorem

The SI condition at tree level determines a unique (up to div) 2nd order self-interaction

$$L_2 \stackrel{\text{div}}{=} -2(\partial_\nu hhh\partial_\mu h)^{\mu\nu} - \frac{1}{2}((h\partial_\mu h))((h\partial^\mu h)) - 2((h\partial_\mu h\partial_\nu h))h^{\mu\nu}.$$
(7)

Intro	οdι	ıct	ic	n
00	00)		

Graviton coupling to matter

Brute force proof.

- Fix the pertinent properties of the renormalized propagator.
- **②** List all possible independent candidate monomials for L_2 .
- (a) Apply δ_c to $U^{\mu\nu}\langle\!\langle T_{\rm ren}h_{\mu\nu}h'_{\rho\sigma}\rangle\!\rangle U'^{\rho\sigma}$ and to the candidates.
- **@** Perform a cascade of integrations by parts to remove all derivatives from w_{κ} .
- \bigcirc Remove further linear dependencies (up to div).
- **6** Compare coefficients.

Renormalized graviton propagators

- Epstein-Glaser: possible ambiguities in defining time-ordered products.
- In s-loc case: ambiguities are certain string-deltas.
- Important constraints: $\eta^{\mu\nu} \langle\!\langle T_{\rm ren} h_{\mu\nu} h'_{\rho\sigma} \rangle\!\rangle = 0$, scaling behavior, SI condition.

•
$$\langle\!\langle T_{\rm ren}\partial_{\kappa}h_{\mu\nu}h'_{\rho\sigma}\rangle\!\rangle = \partial_{\kappa}\langle\!\langle T_{\rm ren}h_{\mu\nu}h'_{\rho\sigma}\rangle\!\rangle$$

Introduction	Graviton self-coupling	Graviton coupling to matter	Outlook
0000	000	00000	0

There are shorter proofs but with the brute force method, one obtains an interesting corollary:

Corollary

Any interaction density with field and derivative content $(\partial, \partial, h, h, h, h)$, which is string-independent on its own, must itself be a total divergence.

Introduction	Graviton self-coupling	Graviton coupling to matter	Outlook O

Graviton coupling to matter

We consider the coupling of an s-loc $h_{\mu\nu}(x;c)$ to Maxwell, Dirac and scalar "matter".

1st order

L-Q condition implies that

$$L_{1,\text{mat}} \stackrel{\text{div}}{=} \frac{1}{2} h_{\mu
u}(x;c) \Theta_{\text{mat}}^{\mu
u}(x)$$

with the symmetric and conserved matter stress energy tensors

$$\begin{split} \Theta^{\mu\nu}_{\phi} &= \partial^{\mu}\phi\partial^{\nu}\phi - \frac{1}{2}\eta^{\mu\nu} \left(\partial_{\kappa}\phi\partial^{\kappa}\phi - m^{2}\phi^{2}\right) & \text{ of a scalar field } \phi(x); \\ \Theta^{\mu\nu}_{F} &= -F^{\mu\kappa}F^{\nu}{}_{\kappa} + \frac{1}{4}\eta^{\mu\nu}F^{\kappa\lambda}F_{\kappa\lambda} & \text{ of the Maxwell field strength } F_{\mu\nu}(x); \\ \Theta^{\mu\nu}_{\psi} &= \frac{i}{4} \left(\overline{\psi}\gamma^{\mu}\overleftrightarrow{\partial^{\nu}}\psi + \overline{\psi}\gamma^{\nu}\overleftrightarrow{\partial^{\mu}}\psi\right) & \text{ of a Dirac field } \psi(x). \end{split}$$

(8)

Introduction 0000

2nd order

For all three cases, one finds

$$\delta_c \Big(L_{1,\text{mat}} L'_{1,\text{mat}} \Big) = \partial_\mu Q^\mu_{2,\text{mat,tree}}(x, x') + i \delta_c \big(L_{2,1,\text{mat}} \big) \delta(x - x') + \mathcal{O}_{2,\text{mat}}(x, x'), \tag{9}$$

with a non-resolvable universal obstruction to SI at second order tree level

$$\mathcal{O}_{2,\mathrm{mat}}(x,x') = -i\,\Theta_{\mathrm{mat}}^{\mu\nu}\,w^{\kappa} \big(\partial_{\kappa}h_{\mu\nu} - \partial_{\mu}h_{\kappa\nu} - \partial_{\nu}h_{\kappa\mu}\big)\,\delta(x-x'). \tag{10}$$

 $\mathcal{O}_{2,\mathrm{mat}}(x,x')$ only appears due to the violation of a matter (i.e., point-localized) Ward identity:

$$\partial_{\mu} \sum_{\varphi,\chi'} \frac{d\Theta_{\text{mat}}^{\mu\nu}}{d\varphi} \langle\!\langle T_{\text{ren}}\varphi\chi'\rangle\!\rangle \frac{d\Theta'_{\text{mat}}^{\rho\sigma}}{d\chi'} \neq 0.$$
(11)

The s-loc field does not contribute to this obstruction!

On its own, the graviton-matter coupling is inconsistent.

	utlook
0000 000 000 00 00 00	

Theorem

The non-resolvable obstruction to SI at 2nd order of the graviton-matter interaction is exactly cancelled if the graviton self-coupling is taken into account.

ntroduction	Graviton self-coupling	Graviton coupling to matter	Outlo
0000	000	00000	0

Proof.

The proof is independent of the type of matter. We only use that $L_{1,\text{mat}} = \frac{1}{2}h_{\mu\nu}\Theta_{\text{mat}}^{\mu\nu}$ with $\Theta_{\text{mat}}^{\mu\nu}$ point-localized, symmetric and conserved and the universal form of $\mathcal{O}_{2,\text{mat}}$.

Write $\tilde{L}_1 = L_1 + L_{1,mat}$. Then

$$\delta_c \Big(\tilde{L}_1 \tilde{L}_1' \Big) \stackrel{\text{div}}{=} i \delta_c \Big(L_{2,1,\text{mat}} + L_2 \Big) \delta(x - x') + \mathcal{O}_{2,\text{mat}}(x, x') + \delta_c \Big(\underline{L}_1 L_{1,\text{mat}}' + \underline{L}_{1,\text{mat}} L_1' \Big).$$

Interference term cancels $\mathcal{O}_{2,\mathrm{mat}}(x,x')$ and gives a contribution $i\delta_c(L_{2,2,\mathrm{mat}})\delta(x-x')$.

The required cancellation of $\mathcal{O}_{2,mat}$ fixes the relative prefactor between L_1 and $L_{1,mat}$.

We define the full induced matter Lagrangian $L_{2,mat} := L_{2,1,mat} + L_{2,2,mat}$.

troduction	Graviton self-coupling	Graviton coupling to matter	Outlook
000	000	00000	0

Matter-matter obstructions for several free fields & obstructions of the interference term are additive. Hence

Corollary

The result of the above Theorem is true for the coupling to any number of scalar, Maxwell and Dirac fields, with the respective sum of induced matter interactions.

Compare to the expansion of the classical Lagrangians (with the s-loc field inserted):

Theorem

The induced terms of the graviton matter and self-interaction as a (Wick)polynomial of the s-loc quantum field $h^{\mu\nu}(x;c)$ and the quantum matter fields coincide with the respective second-order terms of the classical generally covariant Lagrangians as functionals of the classical metric deviation field $h_{\mu\nu}(x)$ and matter fields, provided the matter renormalization constants are chosen to be zero.

Graviton coupling to matter 00000

Main message

Quantum consistency conditions imply a *"lock-key scenario"*: the graviton coupling to matter is only consistent if the self-interaction is taken into account as well.

Further questions

- So far only considered up to second order tree level: What happens at higher orders?
- What is the contribution of loop graphs?
- For what other couplings can we find similar statements?
 - higher-helicity s-loc fields?
 - 2 self-interacting fields?
 - B higher half-integer spin fields?
 - **4** ...?

Thank you for your attention!

Expansion of the classical Lagrangians

The Goldberg variable is

$$\tilde{g}^{\mu\nu} = \sqrt{-g}g^{\mu\nu} = \eta^{\mu\nu} + \kappa h^{\mu\nu}, \quad \tilde{g}_{\mu\nu} = \frac{1}{\sqrt{-g}}g_{\mu\nu} = \eta_{\mu\nu} - \kappa h_{\mu\nu} + \kappa^2 (hh)_{\mu\nu} + \dots,$$
(12)

where $h_{\mu\nu}$ tends to zero at infinity. We have (neglecting ((h))- and $\partial^{\mu}h_{\mu\nu}$ -terms)

$$L_{g,\phi} = \frac{\sqrt{-g}}{2} \left(g^{\mu\nu} \partial_{\mu} \chi \partial_{\nu} \chi - m^{2} \chi^{2} \right)$$

$$= L_{0,\phi} + \frac{1}{2} \kappa ((h\Theta_{\phi})) + \frac{\kappa^{2}}{2} \left[\frac{1}{2} ((hh)) L_{0,\phi} + \frac{1}{4} ((hh)) ((\Theta_{\phi})) \right] + \dots$$

$$L_{g,F} = \sqrt{-g} \left(-\frac{1}{4} g^{\mu\nu} g^{\kappa\lambda} F_{\mu\kappa} F_{\nu\lambda} \right)$$

$$= L_{0,F} + \frac{1}{2} \kappa ((h\Theta_{F})) + \frac{\kappa^{2}}{2} \left[\frac{1}{2} ((hh)) L_{0,F} - \frac{1}{2} h^{\mu\nu} h^{\kappa\lambda} F_{\mu\kappa} F_{\nu\lambda} \right] + \dots$$

$$L_{g,\psi} = \sqrt{-g} \overline{\psi} \left(\frac{i}{2} (\gamma_{g}^{\mu} D_{\mu} - \overleftarrow{D}_{\mu} \gamma_{g}^{\mu}) - m \right) \psi$$

$$= \frac{1}{2} \kappa ((h\Theta_{\psi})) + \frac{\kappa^{2}}{8} \left(((hh)) ((\Theta_{\psi})) - ((hh\Theta_{\psi})) \right)$$

$$- \frac{i\kappa^{2}}{16} \left((hh)_{\mu\nu} \partial^{\mu} j^{\nu} + (h\partial_{\nu} h)_{\beta\alpha} \overline{\psi} \gamma^{\nu} \gamma^{\beta} \gamma^{\alpha} \psi \right) + \dots$$
(13)