

Black hole simulations with the FO-CCZ4 formulation of the Einstein equations and ADER discontinuous Galerkin schemes

MICRA Conference, Jena, Germany — August 15th, 2019

Federico Maria Guercilena

From Dumbser, Guercilena, Köppel, Rezzolla, and Zanotti (2018) Institut für Kernphysik

Technische Universität Darmstadt Darmstadt, Germany

European Research Council Established by the European Commission

Motivation

In numerical simulations, often a balance must be sought between accuracy and performance.

"Accuracy" is quantified e.g. as:

- shock capturing abilities hydrodynamic equations
- constraint preservation dynamical spacetimes Maxwell equations
- handling of stiff terms
 resistive MHD
 neutrino transport (M1)
- well-balancedness

balance laws (*e.g.* relativistic hydro)

Performance improvements include:

- stability for large timesteps
- optimal single CPU use multi-threading vectorization
- reducing communication overhead between CPUs

The ADER (Arbitrary Accuracy DERivative Riemann problem)¹ can address many of the previous points:

uniformly high order High order DG expansion in both space and time WENO reconstruction shock handling \Rightarrow large Δt and Implicit timestepping \Rightarrow handling of stiff terms Fluxes and sources well balanced scheme on equal footing Most operations element local \Rightarrow small communication overhead

¹e.g. (Dumbser et al., 2008; Dumbser and Toro, 2011; Dumbser et al., 2013, 2014; Dumbser et al., 2017)

DG schemes are typically formulated for 1st order (often flux-conservative) systems². 3+1 Einstein equations are a 2nd order (non-conservative) system of equations.

Cast the 3+1 Efe in 1st order form $\label{eq:promote} \bigcup_i A = A_i \text{ to an}$ independently evolved variable: $\partial_t A_i = \dots$

 \rightarrow Increase in the number of evolved fields

A first order system is not enough.

- need to ensure hyperbolicity
- constraint violation damping is a desirable property (Gundlach et al., 2005; Brodbeck et al., 1999)

²an exception: *Miller and Schnetter* (2017)

The ADER-DG method

THE ADER-DG APPROACH

Finite element decomposition of the domain $\Omega = \bigcup_k \Omega_k;$

Nodal DG representation of the solution in each element $u(t^n,x) = \sum_{i=0}^{N} u_i^n \ell_i$

Placement of the predictor collocation nodes in a 1D reference element. *Figure from Hidalgo and Dumbser* (2011). Given a hyperbolic PDE $\partial_t u + B(u) \partial_x u = S(u)$ we have to solve the equation:

$$\begin{split} & \left(\int_{\Omega_{k}}\ell_{j}\ell_{i}dV\right)\left(u_{i,k}^{n+1}-u_{i,k}^{n}\right) \\ & +\int_{t^{n}}^{t^{n+1}}\int_{\Omega_{k}^{o}}\ell_{j}(B(q)\cdot\nabla q)dVdt \\ & +\int_{t^{n}}^{t^{n+1}}\int_{\partial\Omega_{k}}\ell_{j}D(q^{-},q^{+})\cdot ndSdt \\ & =\int_{t^{n}}^{t^{n+1}}\int_{\Omega_{k}}\ell_{j}S(q)dVdt \end{split}$$

THE ADER-DG APPROACH

Finite element decomposition of the domain $\Omega = \bigcup_k \Omega_k;$

Nodal DG representation of the solution in each element $u(t^n,x) = \sum_{i=0}^{N} u_i^n \ell_i$

Placement of the predictor collocation nodes in a 1D reference element. *Figure from Hidalgo and Dumbser* (2011). Given a hyperbolic PDE $\partial_t u + B(u)\partial_x u = S(u)$ we have to solve the equation:

A few more details:

 $\cdot\,$ Path-conservative approach 3 for the jump terms

$$D(q^{-}, q^{+}) = \frac{1}{2} \left(\int_{0}^{1} B(\psi) \cdot nds \right) (q^{+} - q^{-}) - \frac{1}{2} \Theta(q^{+} - q^{-})$$

 $\cdot\,$ Switch to a WENO FV scheme in troubled cells

Placement of the predictor collocation nodes in

 \cdot (Fixed) mesh refinement for BH spacetimes

³Pares (2006)

The FO-CCZ4 formulation of Einstein's equations

Starting from the vacuum Efe

 $R_{\mu\nu} = 0 \,,$

switch from $g_{\mu\nu}$ to γ_{ij} , $K_{ij} \sim \partial_t \gamma_{ij}$, $\alpha, \beta^i \Rightarrow ADM$ formulation.

 $\begin{array}{l} \text{Split} \ \phi = (\det(\gamma_{ij}))^{-1/6}, \ \tilde{\gamma}_{ij} = \phi^2 \gamma_{ij} \\ \text{K} = \text{K}_{ij} \gamma^{ij}, \ \tilde{A}_{ij} = \phi^2(\text{K}_{ij} - \frac{1}{3}\text{K}\gamma_{ij}) \\ \text{and also introduce } \ \tilde{\Gamma}^i = \tilde{\gamma}^{jk} \tilde{\Gamma}^i_{jk} \end{array}$

⇒ BSSN formulation (Shibata and Nakamura, 1995; Baumgarte and Shapiro, 1999; Nakamura et al., 1987; Brown, 2009) Starting from the Z4 system:

$$\begin{split} & R_{\mu\nu} + \nabla_{(\mu} Z_{\nu)} + \\ & + k_1 (n_{(\mu} Z_{\nu)} - (1 - k_2) g_{\mu\nu} n_\alpha Z^\alpha) = 0 \,, \\ & Z_\mu = 0 \end{split}$$

⇒ CCZ4 formulation (Alic et al., 2012) Note however the Z4c formulation of Bernuzzi and Hilditch (2010)

Starting from the vacuum Efe

 $R_{\mu\nu} = 0 \,,$

switch from $g_{\mu\nu}$ to γ_{ij} , $K_{ij} \sim \partial_t \gamma_{ij}$, $\alpha, \beta^i \Rightarrow ADM$ formulation.

 $\begin{array}{l} \text{Split } \phi = (\det(\gamma_{ij}))^{-1/6}, \, \tilde{\gamma}_{ij} = \phi^2 \gamma_{ij} \\ \text{K} = \text{K}_{ij} \gamma^{ij}, \, \tilde{\text{A}}_{ij} = \phi^2 (\text{K}_{ij} - \frac{1}{3} \text{K} \gamma_{ij}) \\ \text{and also introduce } \, \tilde{\Gamma}^i = \tilde{\gamma}^{jk} \tilde{\Gamma}^i_{jk} \end{array}$

⇒ BSSN formulation (Shibata and Nakamura, 1995; Baumgarte and Shapiro, 1999; Nakamura et al., 1987; Brown, 2009)

Starting from the Z4 system:

$$\begin{aligned} R_{\mu\nu} + \nabla_{(\mu} Z_{\nu)} + \\ + k_1 (n_{(\mu} Z_{\nu)} - (1 - k_2) g_{\mu\nu} n_{\alpha} Z^{\alpha}) &= 0 \,, \\ Z_{\mu} &= 0 \end{aligned}$$

⇒ CCZ4 formulation (Alic et al., 2012) Note however the Z4c formulation of Bernuzzi and Hilditch (2010)

\checkmark) Constraint damping

FO-CCZ4 is based on CCZ4, which includes a constraint-damping mechanism

THE FO-CCZ4 FORMULATION

\checkmark) 1st order formulation

Achieved by introducing:

$$\begin{split} \mathbf{A}_{\mathbf{i}} &= \partial_{\mathbf{i}} \log \alpha \,, \quad \mathbf{B}^{\mathbf{i}}_{\mathbf{k}} = -\partial_{\mathbf{k}} \beta^{\mathbf{i}} \\ \mathbf{D}_{\mathbf{i}\mathbf{k}\mathbf{j}} &= -\frac{1}{\alpha} \partial_{\mathbf{k}} \tilde{\gamma}_{\mathbf{i}\mathbf{j}} \,, \quad \mathbf{P}_{\mathbf{i}} = -\partial_{\mathbf{i}} \log \phi \end{split}$$

✓) Hyperbolicity

Achieved via the use of

- \cdot a fully non-conservative formulation: $\partial_t u + A^i \cdot \partial_i u = S(u)$
- appropriate recombinations of the second order ordering constraints

$$\mathcal{A}_{ik} = \partial_k A_i - \partial_i A_k = 0$$

Properties of FO-CCZ4:

- 1st order, fully non-conservative
- manifestly linearly degenerate
- proven hyperbolic for all gauges (full set of eigenvectors and eigenvalues)

- $\cdot\,$ constraint damping
- adjustable constraint propagation speed
- + $\alpha, \phi > 0$ guaranteed by evolving $\log \alpha$ and $\log \phi$

Tests and applications

$$ds^{2} = -dt^{2} + dx^{2} + [1 + \epsilon \sin(2\pi(x-t))]dy^{2} + [1 - \epsilon \sin(2\pi(x-t))]dz^{2}, \quad \epsilon = 10^{-8}$$

$$ds^{2} = -dt^{2} + dx^{2} + [1 + \epsilon \sin(2\pi(x-t))]dy^{2} + [1 - \epsilon \sin(2\pi(x-t))]dz^{2}, \quad \epsilon = 10^{-8}$$

extrinsic curvature at t = 1000.

$$ds^{2} = -H dt^{2} + H dx^{2} + dy^{2} + dz^{2}$$
, $H(t, x) = 1 - A \sin(2\pi(x - t))$

Solution profile of the trace of the extrinsic curvature at $t\,=\,1000 \text{ for } A\,=\,0.1 \text{ and } e\,=\,1.$

Solution profile of the trace of the extrinsic curvature at $t=1000 \mbox{ for } A=0.1 \mbox{ and } e=2.$

Solution profile of the trace of the extrinsic curvature at $t=10 \mbox{ for } A=0.9 \mbox{ and } e=2.$

Resolution	Convergence order
	N = 4
60	
80	5.1
100	5.2
120	5.2
N = 7	
30	
40	8.4
60	8.0
80	8.8

Convergence order at $t=10 \mbox{ for } A=0.9 \mbox{ and } e=2.$

LONG TERM EVOLUTION OF A PUNCTURE BH

Solution profile of the lapse and grid setup

Constraints violations as function of time

$$\bar{L}_2 = \sqrt{\frac{\int_\Omega \epsilon^2 dV}{\int_\Omega dV}}$$

Solution profile of the conformal factor

Constraints violations as function of time

Solution profile of the conformal factor

Constraints violations as function of time

Conclusions

The ADER(-DG) method is a promising framework, which can deliver

- stable evoutions (also against *e.g.* stiffness)
- high-order, accurate results
- performance improvement opportunities

The ADER(-DG) method is a promising framework, which can deliver

- stable evoutions (also against *e.g.* stiffness)
- high-order, accurate results
- performance improvement opportunities

FO-CCZ4 is a formulation of Einstein equations which is

- \cdot first-order
- constraint-damping
- · proven hyperbolic

and therefore suitable to be discretized with the ADER approach. The ADER(-DG) method is a promising framework, which can deliver

- stable evoutions (also against *e.g.* stiffness)
- high-order, accurate results
- performance improvement opportunities

FO-CCZ4 is a formulation of Einstein equations which is

- \cdot first-order
- constraint-damping
- · proven hyperbolic

and therefore suitable to be discretized with the ADER approach.

Testing of a FO-CCZ4/ADER-DG scheme yielded excellent results. Next step: include matter and microphysics.