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Motivation



ACCURACY VS. PERFORMANCE

In numerical simulations, often a balance must be sought between accuracy
and performance.

“Accuracy” is quantified e.g. as: Performance improvements include:
- shock capturing abilities - stability for large timesteps
hydrodynamic equations - optimal single CPU use
- constraint preservation multi-threading
dynamical spacetimes vectorization
Maxwell equations - reducing communication
- handling of stiff terms overhead between CPUs

resistive MHD
neutrino transport (M1)
- well-balancedness

balance laws (e.g. relativistic
hydro)



THE ADER APPROACH

The ADER (Arbitrary Accuracy DERivative Riemann problem) ' can address
many of the previous points:

uniformly high order

High order DG expansion = )
§ P in both space and time
WENO reconstruction = shock handling
L . large At and
Implicit timestepping =

handling of stiff terms

Fluxes and sources

) = well balanced scheme
on equal footing

Most operations element local = small communication overhead

"e.g. (Dumbser et al,, 2008; Dumbser and Toro, 2011; Dumbser et al., 2013, 2014; Dumbser et al., 2017)



EINSTEIN EQUATIONS FOR ADER-DG SCHEMES

DG schemes are typically formulated for 1st order (often flux-conservative)
systems?. 3+1 Einstein equations are a 2nd order (non-conservative) system
of equations.

Cast the 3+1 Efe in 1st order form Afiisterdensystemiisiiotenctien:

I
Promote &;A = A; to an - need to ensure hyperbolicity
independently evolved variable: - constraint violation damping is a
OAi = ... desirable property (undtach et al, 2005;

Brodbeck et al., 1999)
— Increase in the number of evolved
fields

2an exception: Miller and Schnetter (2017)



The ADER-DG method



THE ADER-DG APPROACH

Finite element decomposition of the
domain Q = |J, Qx;

Nodal DG representation of the
solution in each element

u(t®,x) = YN ul b
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Placement of the predictor collocation nodes in a 1D
reference element. Figure from Hidalgo and Dumbser
(2017).

Given a hyperbolic PDE
Ogu + B(u)0xu = S(u)
we have to solve the equation:
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THE ADER-DG APPROACH

Finite element decomposition of the Given a hyperbolic PDE
domain Q = |J, Qx; Ogu + B(u)0xu = S(u)
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Placement of the predictor collocation nodes in a 1D
reference element. Figure from Hidalgo and Dumbser
(2017).



THE ADER-DG APPROACH

A few more details:

- Path-conservative approach?® for the jump terms
_ a1 ! P |
D(a",qa") =3 B(¥) nds)(a" —a7) - 50(a" —qa7)
0

- Switch to a WENO FV scheme in troubled cells

Gauss-Legendre basis at order N (N + 1 nodes) Ng = 2N + 1 Finite Volume subcells
N=2: s I I ! ! Nsg=5
=3 - B w7
=4 » B e e e N9
N=s e
=10} x=05 x=1 x=0 x=05 x=1

Placement of the predictor collocation nodes in

- (Fixed) mesh refinement for BH spacetimes

3 pares (2006)



The FO-CCZ4 formulation of Einstein’s
equations



THE 3+1 FRAMEWORK

Starting from the vacuum Efe
R, =0,

switch from g, to 55, Kij ~ Oy,
o, B!
= ADM formulation.

Split ¢ = (det(7i)) "/, 5y = ¢

K = K7, Ay = ¢*(Ky — 5Ky)
and also introduce I = 3%,

= BSSN formulation (shibata and Nakamura,

1995; Baumgarte and Shapiro, 1999; Nakamura et al., 1987;

Brown, 2009)

Starting from the Z4 system:

Ruv + V(uZu)+
+ki(n.Z,) — (1 — k2)gunaz2*) =0,
Zy =0

= CCZ4 formulation (atic et al, 2012)
Note however the Z4c formulation of Bernuzzi and

Hilditch (2010)

t+dt
z* — Bidt ﬁ

an
ZH»dl

Xy
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Starting from the vacuum Efe
R, =0,

switch from g, to 55, Kij ~ Oy,
o, B!
= ADM formulation.

Split ¢ = (det(7i)) "/, 5y = ¢

K = K7, Ay = ¢*(Ky — 5Ky)

and also introduce I = 3%,

= BSSN formulation (shibata and Nakamura,
1995; Baumgarte and Shapiro, 1999; Nakamura et al., 1987;

Brown, 2009)

V') Constraint damping

Starting from the Z4 system:

Ryw +V(uZ,)+
+ki(n.Z,) — (1 — k2)gunaz2*) =0,
Zy =0

= CCZ4 formulation (atic et al, 2012)
Note however the Z4c formulation of Bernuzzi and

Hilditch (2010)

t+dt
zt — Bidt ﬁ

an
Sttt

Xy

FO-CCZ4 is based on CCZ4, which includes a constraint-damping mechanism



THE FO-CCZ4 FORMULATION

V) 1st order formulation V') Hyperbolicity

Achieved by introducing: Achieved via the use of

- a fully non-conservative

. formulation: dyu + A’ - diu = S(u)

Dig = 58157”7 Pi= dilogé - appropriate recombinations of
the second order ordering
constraints

A= dloga, By = e

A = OkA; — A =0




THE FO-CCZ4 FORMULATION

Properties of FO-CCZ4:

- 1st order, fully non-conservative
- manifestly linearly degenerate

- proven hyperbolic for all gauges
(full set of eigenvectors and
eigenvalues)

- constraint damping

- adjustable constraint

propagation speed

- a,¢ > 0 guaranteed by evolving

log o and log ¢



Tests and applications




LINEARIZED GW TEST

ds® = —dt®+dx>+[1+esin(27r(x—t))]dy* +[1—esin(27 (x—t))]dz> ,
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Solution profile of the Ayy component of the traceless

extrinsic curvature at t = 1000.
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Solution profile of the ~,, component of the metric at
t = 500 for a FD code. Figure from (Alcubierre et al,,
2004).
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GAUGE WAVE TEST

ds® = —Hdt* + Hdx” + dy® + dz”, H(t,x) = 1 — Asin(27(x — t))
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GAUGE WAVE TEST

Resolution  Convergence order
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LONG TERM EVOLUTION OF A PUNCTURE BH

Solution profile of the lapse and grid setup

Average L2 error
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HEAD-ON COLLISION OF BH

average L2 errors
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EAD-ON COLLISION OF BH

First successful evolution -stationary BH in three dimensions with
DG methods
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Conclusions




CONCLUSIONS

The ADER(-DG) method is a
promising framework, which
can deliver

. stable evoutions (also
against e.g. stiffness)

- high-order, accurate results

- performance improvement
opportunities
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Testing of a FO-CCZ4/ADER-DG scheme yielded excellent
results. Next step: include matter and microphysics.
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