

Black hole simulations with the FO-CCZ4 formulation of the Einstein equations and ADER discontinuous Galerkin schemes

MICRA Conference, Jena, Germany - August 15th, 2019

Federico Maria Guercilena

From Dumbser, Guercilena, Köppel, Rezzolla, and
Zanotti (2018)

Institut für Kernphysik
Technische Universität Darmstadt
Darmstadt, Germany

Motivation

ACCURACY VS. PERFORMANCE

In numerical simulations, often a balance must be sought between accuracy and performance.
"Accuracy" is quantified e.g. as:

- shock capturing abilities
hydrodynamic equations
- constraint preservation
dynamical spacetimes
Maxwell equations
- handling of stiff terms
resistive MHD
neutrino transport (M1)
- well-balancedness
balance laws (e.g. relativistic hydro)

Performance improvements include:

- stability for large timesteps
- optimal single CPU use multi-threading vectorization
- reducing communication overhead between CPUs

The ADER APPROACH

The ADER (Arbitrary Accuracy DERivative Riemann problem) ${ }^{1}$ can address many of the previous points:

$$
\left.\begin{array}{ll}
\text { High order DG expansion } & \Rightarrow \begin{array}{l}
\text { uniformly high order } \\
\text { in both space and time }
\end{array} \\
\text { WENO reconstruction } & \Rightarrow \text { shock handling }
\end{array}\right] \begin{aligned}
& \text { large } \Delta \text { t and } \\
& \text { handling of stiff terms }
\end{aligned}
$$

[^0]
EInstein equations for AdER-DG SCHEMES

DG schemes are typically formulated for 1st order (often flux-conservative) systems ${ }^{2}$. 3+1 Einstein equations are a 2nd order (non-conservative) system of equations.

Cast the 3+1 Efe in 1st order form \Downarrow
Promote $\partial_{\mathrm{i}} \mathrm{A}=\mathrm{A}_{\mathrm{i}}$ to an independently evolved variable:

$$
\partial_{\mathrm{t}} \mathrm{~A}_{\mathrm{i}}=\ldots
$$

\rightarrow Increase in the number of evolved fields

A first order system is not enough.

- need to ensure hyperbolicity
- constraint violation damping is a desirable property (Gundlach et al., 2005; Brodbeck et al., 1999)

[^1]The ADER-DG method

The ADER-DG APPROACH

Finite element decomposition of the domain $\Omega=\bigcup_{\mathrm{k}} \Omega_{\mathrm{k}}$;

Nodal DG representation of the solution in each element

$$
\mathrm{u}\left(\mathrm{t}^{\mathrm{n}}, \mathrm{x}\right)=\sum_{\mathrm{i}=0}^{\mathrm{N}} \mathrm{u}_{\mathrm{i}}^{\mathrm{n}} \ell_{\mathrm{i}}
$$

Placement of the predictor collocation nodes in a 1D reference element. Figure from Hidalgo and Dumbser (2011).

Given a hyperbolic PDE
$\partial_{\mathrm{t}} \mathrm{u}+\mathrm{B}(\mathrm{u}) \partial_{\mathrm{x}} \mathrm{u}=\mathrm{S}(\mathrm{u})$
we have to solve the equation:

$$
\begin{array}{r}
\left(\int_{\Omega_{\mathrm{k}}} \ell_{\mathrm{j}} \ell_{\mathrm{i}} \mathrm{dV}\right)\left(\mathrm{u}_{\mathrm{i}, \mathrm{k}}^{\mathrm{n}+1}-\mathrm{u}_{\mathrm{i}, \mathrm{k}}^{\mathrm{n}}\right) \\
+\int_{\mathrm{t}^{\mathrm{n}}}^{\mathrm{t}^{\mathrm{n}+1}} \int_{\Omega_{\mathrm{k}}^{\mathrm{o}}} \ell_{\mathrm{j}}(\mathrm{~B}(\mathrm{q}) \cdot \nabla \mathrm{q}) \mathrm{dVdt} \\
+\int_{\mathrm{t}^{\mathrm{n}}}^{\mathrm{t}^{\mathrm{n}+1}} \int_{\partial \Omega_{\mathrm{k}}} \ell_{\mathrm{j}} \mathrm{D}\left(\mathrm{q}^{-}, \mathrm{q}^{+}\right) \cdot \mathrm{ndSdt} \\
\quad=\int_{\mathrm{t}^{\mathrm{n}}}^{\mathrm{t}^{\mathrm{n}+1}} \int_{\Omega_{\mathrm{k}}} \ell_{\mathrm{j}} \mathrm{~S}(\mathrm{q}) \mathrm{dVdt}
\end{array}
$$

The ADER-DG APPROACH

Finite element decomposition of the domain $\Omega=\bigcup_{\mathrm{k}} \Omega_{\mathrm{k}}$;

Nodal DG representation of the solution in each element

$$
\mathrm{u}\left(\mathrm{t}^{\mathrm{n}}, \mathrm{x}\right)=\sum_{\mathrm{i}=0}^{\mathrm{N}} \mathrm{u}_{\mathrm{i}}^{\mathrm{n}} \ell_{\mathrm{i}}
$$

Placement of the predictor collocation nodes in a 1D reference element. Figure from Hidalgo and Dumbser (2011).

Given a hyperbolic PDE
$\partial_{\mathrm{t}} \mathrm{u}+\mathrm{B}(\mathrm{u}) \partial_{\mathrm{x}} \mathrm{u}=\mathrm{S}(\mathrm{u})$
we have to solve the equation:

$$
\begin{array}{r}
\left(\int_{\Omega_{\mathrm{k}}} \ell_{\mathrm{j}} \ell_{\mathrm{i}} \mathrm{dV}\right)\left(\mathrm{u}_{\mathrm{i}, \mathrm{k}}^{\mathrm{n}+1}-\mathrm{u}_{\mathrm{i}, \mathrm{k}}^{\mathrm{n}}\right) \\
+\int_{\mathrm{t}^{\mathrm{n}}}^{\mathrm{t}^{\mathrm{n}+1}} \int_{\Omega_{\mathrm{k}}^{\circ}} \ell_{\mathrm{j}}(\mathrm{~B}(\mathrm{q}) \cdot \nabla \mathrm{q}) \mathrm{dVdt} \\
=\int_{\partial \Omega_{\mathrm{k}}}^{\mathrm{t}^{\mathrm{n}+1}} \int_{\Omega_{\mathrm{k}}} \ell_{\mathrm{j}} \mathrm{~S}(\mathrm{q}) \mathrm{dVdt}
\end{array}
$$

The ADER-DG APPROACH

A few more details:

- Path-conservative approach ${ }^{3}$ for the jump terms

$$
\mathrm{D}\left(\mathrm{q}^{-}, \mathrm{q}^{+}\right)=\frac{1}{2}\left(\int_{0}^{1} \mathrm{~B}(\psi) \cdot \text { nds }\right)\left(\mathrm{q}^{+}-\mathrm{q}^{-}\right)-\frac{1}{2} \boldsymbol{\Theta}\left(\mathrm{q}^{+}-\mathrm{q}^{-}\right)
$$

- Switch to a WENO FV scheme in troubled cells

Placement of the predictor collocation nodes in

- (Fixed) mesh refinement for BH spacetimes

[^2]The FO-CCZ4 formulation of Einstein's equations

THE 3+1 FRAMEWORK

Starting from the vacuum Efe

$$
\mathrm{R}_{\mu \nu}=0
$$

switch from $\mathrm{g}_{\mu \nu}$ to $\gamma_{\mathrm{ij}}, \mathrm{K}_{\mathrm{ij}} \sim \partial_{\mathrm{t}} \gamma_{\mathrm{ij}}$, $\alpha, \beta^{\text {i }}$
\Rightarrow ADM formulation.

Split $\phi=\left(\operatorname{det}\left(\gamma_{\mathrm{ij}}\right)\right)^{-1 / 6}, \tilde{\gamma}_{\mathrm{ij}}=\phi^{2} \gamma_{\mathrm{ij}}$
$\mathrm{K}=\mathrm{K}_{\mathrm{ij}} \gamma^{\mathrm{ij}}, \tilde{\mathrm{A}}_{\mathrm{ij}}=\phi^{2}\left(\mathrm{~K}_{\mathrm{ij}}-\frac{1}{3} \mathrm{~K} \gamma_{\mathrm{ij}}\right)$
and also introduce $\tilde{\Gamma}^{\mathrm{i}}=\tilde{\gamma}^{\mathrm{jk}} \tilde{\Gamma}_{\mathrm{jk}}^{\mathrm{i}}$
\Rightarrow BSSN formulation (shibata and Nakamura,
1995; Baumgarte and Shapiro, 1999; Nakamura et al., 1987;
Brown, 2009)

Starting from the Z4 system:

$$
\begin{aligned}
& \quad \mathrm{R}_{\mu \nu}+\nabla_{(\mu} \mathrm{Z}_{\nu)}+ \\
& +\mathrm{k}_{1}\left(\mathrm{n}_{(\mu} \mathrm{Z}_{\nu)}-\left(1-\mathrm{k}_{2}\right) \mathrm{g}_{\mu \nu} \mathrm{n}_{\alpha} \mathrm{Z}^{\alpha}\right)=0 \\
& \quad \mathrm{Z}_{\mu}=0 \\
& \Rightarrow \text { CCZ4 formulation (Alic et al., 2012) }
\end{aligned}
$$

Note however the Z4C formulation of Bernuzzi and
Hilditch (2010)

THE 3+1 FRAMEWORK

Starting from the vacuum Efe

$$
\mathrm{R}_{\mu \nu}=0
$$

switch from $\mathrm{g}_{\mu \nu}$ to $\gamma_{\mathrm{ij}}, \mathrm{K}_{\mathrm{ij}} \sim \partial_{\mathrm{t}} \gamma_{\mathrm{ij}}$, $\alpha, \beta^{\text {i }}$
\Rightarrow ADM formulation.

Split $\phi=\left(\operatorname{det}\left(\gamma_{\mathrm{ij}}\right)\right)^{-1 / 6}, \tilde{\gamma}_{\mathrm{ij}}=\phi^{2} \gamma_{\mathrm{ij}}$
$\mathrm{K}=\mathrm{K}_{\mathrm{ij}} \gamma^{\mathrm{ij}}, \tilde{\mathrm{A}}_{\mathrm{ij}}=\phi^{2}\left(\mathrm{~K}_{\mathrm{ij}}-\frac{1}{3} \mathrm{~K} \gamma_{\mathrm{ij}}\right)$
and also introduce $\tilde{\Gamma}^{\mathrm{i}}=\tilde{\gamma}^{\mathrm{jk}} \tilde{\Gamma}_{\mathrm{jk}}^{\mathrm{i}}$
\Rightarrow BSSN formulation (shibata and Nakamura,
1995; Baumgarte and Shapiro, 1999; Nakamura et al., 1987;
Brown, 2009)

Starting from the Z4 system:

$$
\begin{aligned}
& \quad \mathrm{R}_{\mu \nu}+\nabla_{(\mu} \mathrm{Z}_{\nu)}+ \\
& +\mathrm{k}_{1}\left(\mathrm{n}_{(\mu} \mathrm{Z}_{\nu)}-\left(1-\mathrm{k}_{2}\right) \mathrm{g}_{\mu \nu} \mathrm{n}_{\alpha} \mathrm{Z}^{\alpha}\right)=0 \\
& \quad \mathrm{Z}_{\mu}=0 \\
& \Rightarrow \text { CCZ4 formulation (Alic et al., 2012) }
\end{aligned}
$$

Note however the Z4C formulation of Bernuzzi and
Hilditch (2010)

\checkmark) Constraint damping
FO-CCZ4 is based on CCZ4, which includes a constraint-damping mechanism

The FO-CCZ4 FORMULATION

\checkmark) 1st order formulation
Achieved by introducing:

$$
\begin{aligned}
\mathrm{A}_{\mathrm{i}} & =\partial_{\mathrm{i}} \log \alpha, \quad \mathrm{~B}_{\mathrm{k}}^{\mathrm{i}}=\partial_{\mathrm{k}} \beta^{\mathrm{i}} \\
\mathrm{D}_{\mathrm{ikj}} & =\frac{1}{2} \partial_{\mathrm{k}} \tilde{\gamma}_{\mathrm{ij}}, \quad \mathrm{P}_{\mathrm{i}}=\partial_{\mathrm{i}} \log \phi
\end{aligned}
$$

,) Hyperbolicity
Achieved via the use of

- a fully non-conservative formulation: $\partial_{\mathrm{t}} \mathrm{u}+\mathrm{A}^{\mathrm{i}} \cdot \partial_{\mathrm{i}} \mathrm{u}=\mathrm{S}(\mathrm{u})$
- appropriate recombinations of the second order ordering constraints

$$
\mathcal{A}_{\mathrm{ik}}=\partial_{\mathrm{k}} \mathrm{~A}_{\mathrm{i}}-\partial_{\mathrm{i}} \mathrm{~A}_{\mathrm{k}}=0
$$

The FO-CCZ4 FORMULATION

Properties of FO-CCZ4:

- 1st order, fully non-conservative
- manifestly linearly degenerate
- proven hyperbolic for all gauges (full set of eigenvectors and eigenvalues)
- constraint damping
- adjustable constraint propagation speed
- $\alpha, \phi>0$ guaranteed by evolving $\log \alpha$ and $\log \phi$

Tests and applications

Linearized GW test

$$
\mathrm{ds}^{2}=-\mathrm{dt}^{2}+\mathrm{dx}^{2}+[1+\epsilon \sin (2 \pi(\mathrm{x}-\mathrm{t}))] \mathrm{dy}^{2}+[1-\epsilon \sin (2 \pi(\mathrm{x}-\mathrm{t}))] \mathrm{dz}^{2}, \quad \epsilon=10^{-8}
$$

Constraints violations as function of time.

Solution profile of the $\tilde{A}_{y y}$ component of the traceless extrinsic curvature at $\mathrm{t}=1000$.

Linearized GW test

$$
\mathrm{ds}^{2}=-\mathrm{dt}^{2}+\mathrm{dx}^{2}+[1+\epsilon \sin (2 \pi(\mathrm{x}-\mathrm{t}))] \mathrm{dy}^{2}+[1-\epsilon \sin (2 \pi(\mathrm{x}-\mathrm{t}))] \mathrm{dz}^{2}, \quad \epsilon=10^{-8}
$$

Solution profile of the γ_{zz} component of the metric at $\mathrm{t}=500$ for a FD code. Figure from (Alcubierre et al., 2004).

Solution profile of the $\tilde{A}_{y y}$ component of the traceless extrinsic curvature at $\mathrm{t}=1000$.

GAUGE WAVE TEST

$$
\mathrm{ds}^{2}=-\mathrm{Hdt}^{2}+\mathrm{Hdx}{ }^{2}+\mathrm{dy}^{2}+\mathrm{dz}^{2}, \quad \mathrm{H}(\mathrm{t}, \mathrm{x})=1-\mathrm{A} \sin (2 \pi(\mathrm{x}-\mathrm{t}))
$$

Solution profile of the trace of the extrinsic curvature at

$$
\mathrm{t}=1000 \text { for } \mathrm{A}=0.1 \text { and } \mathrm{e}=1
$$

Solution profile of the trace of the extrinsic curvature at

$$
\mathrm{t}=1000 \text { for } \mathrm{A}=0.1 \text { and } \mathrm{e}=2 .
$$

GAUGE WAVE TEST

Resolution	Convergence order
$\mathrm{N}=4$	
60	5.1
80	5.2
100	5.2
120	$\mathrm{~N}=7$
30	8.4
40	8.0
60	8.8
80	

Long term evolution of a puncture BH

Solution profile of the lapse and grid setup

Constraints violations as function of time

$$
\overline{\mathrm{L}}_{2}=\sqrt{\frac{\int_{\Omega} \epsilon^{2} \mathrm{dV}}{\int_{\Omega} \mathrm{dV}}}
$$

Head-on collision of BH

Solution profile of the conformal factor

Constraints violations as function of time

Head-on collision of BH

Conclusions

The ADER(-DG) method is a promising framework, which can deliver

- stable evoutions (also against e.g. stiffness)
- high-order, accurate results
- performance improvement opportunities

The ADER(-DG) method is a promising framework, which can deliver

- stable evoutions (also against e.g. stiffness)
- high-order, accurate results
- performance improvement opportunities

FO-CCZ4 is a formulation of Einstein equations which is

- first-order
- constraint-damping
- proven hyperbolic and therefore suitable to be discretized with the ADER approach.

The ADER(-DG) method is a promising framework, which can deliver

- stable evoutions (also against e.g. stiffness)
- high-order, accurate results
- performance improvement opportunities

FO-CCZ4 is a formulation of Einstein equations which is

- first-order
- constraint-damping
- proven hyperbolic and therefore suitable to be discretized with the ADER approach.

Testing of a FO-CCZ4/ADER-DG scheme yielded excellent results. Next step: include matter and microphysics.

[^0]: ${ }^{1}$ e.g. (Dumbser et al., 2008; Dumbser and Toro, 2011; Dumbser et al., 2013, 2014; Dumbser et al., 2017)

[^1]: ${ }^{2}$ an exception: Miller and Schnetter (2017)

[^2]: ${ }^{3}$ Pares (2006)

