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Motivation



ACCURACY VS. PERFORMANCE

In numerical simulations, often a balance must be sought between accuracy
and performance.

“Accuracy” is quantified e.g. as:
· shock capturing abilities

hydrodynamic equations

· constraint preservation
dynamical spacetimes
Maxwell equations

· handling of stiff terms
resistive MHD
neutrino transport (M1)

· well-balancedness
balance laws (e.g. relativistic
hydro)

Performance improvements include:
· stability for large timesteps
· optimal single CPU use

multi-threading
vectorization

· reducing communication
overhead between CPUs
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THE ADER APPROACH

The ADER (Arbitrary Accuracy DERivative Riemann problem) 1 can address
many of the previous points:

High order DG expansion ⇒ uniformly high order
in both space and time

WENO reconstruction ⇒ shock handling

Implicit timestepping ⇒ large ∆t and
handling of stiff terms

Fluxes and sources
on equal footing

⇒ well balanced scheme

Most operations element local ⇒ small communication overhead

1e.g. (Dumbser et al., 2008; Dumbser and Toro, 2011; Dumbser et al., 2013, 2014; Dumbser et al., 2017)
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EINSTEIN EQUATIONS FOR ADER-DG SCHEMES

DG schemes are typically formulated for 1st order (often flux-conservative)
systems2. 3+1 Einstein equations are a 2nd order (non-conservative) system
of equations.

Cast the 3+1 Efe in 1st order form
⇓

Promote ∂iA = Ai to an
independently evolved variable:

∂tAi = . . .

→ Increase in the number of evolved
fields

A first order system is not enough.

· need to ensure hyperbolicity
· constraint violation damping is a
desirable property (Gundlach et al., 2005;

Brodbeck et al., 1999)

2an exception: Miller and Schnetter (2017)
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The ADER-DG method



THE ADER-DG APPROACH

Finite element decomposition of the
domain Ω =

∪
k Ωk;

Nodal DG representation of the
solution in each element
u(tn, x) =

∑N
i=0 un

i ℓi

Placement of the predictor collocation nodes in a 1D
reference element. Figure from Hidalgo and Dumbser

(2011).

Given a hyperbolic PDE
∂tu + B(u)∂xu = S(u)
we have to solve the equation:

(∫
Ωk

ℓjℓidV
)
(un+1

i,k − un
i,k)

+

∫ tn+1

tn

∫
Ω◦

k

ℓj(B(q) · ∇q)dVdt

+

∫ tn+1

tn

∫
∂Ωk

ℓjD(q−, q+) · ndSdt

=

∫ tn+1

tn

∫
Ωk

ℓjS(q)dVdt
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THE ADER-DG APPROACH

A few more details:

· Path-conservative approach3 for the jump terms

D(q−, q+) =
1
2

(∫ 1

0
B(ψ) · nds

)
(q+ − q−)− 1

2Θ(q+ − q−)

· Switch to a WENO FV scheme in troubled cells
Gauss-Legendre basis at order N (N +1 nodes) NS = 2N +1 Finite Volume subcells

N = 2: NS = 5→
N = 3: NS = 7→
N = 4: NS = 9→
N = 5: NS = 11→

x = 0 x = 0.5 x = 1 x = 0 x = 0.5 x = 1

Placement of the predictor collocation nodes in

· (Fixed) mesh refinement for BH spacetimes

3Pares (2006)

5



The FO-CCZ4 formulation of Einstein’s
equations



THE 3+1 FRAMEWORK

Starting from the vacuum Efe

Rµν = 0 ,

switch from gµν to γij, Kij ∼ ∂tγij,
α, βi

⇒ ADM formulation.

Split ϕ = (det(γij))
−1/6, γ̃ij = ϕ2γij

K = Kijγ
ij, Ãij = ϕ2(Kij − 1

3 Kγij)

and also introduce Γ̃i = γ̃jkΓ̃i
jk

⇒BSSN formulation (Shibata and Nakamura,

1995; Baumgarte and Shapiro, 1999; Nakamura et al., 1987;

Brown, 2009)

Starting from the Z4 system:

Rµν +∇(µZν)+

+k1(n(µZν) − (1 − k2)gµνnαZα) = 0 ,
Zµ = 0

⇒ CCZ4 formulation (Alic et al., 2012)

Note however the Z4c formulation of Bernuzzi and

Hilditch (2010)

✓) Constraint damping

FO-CCZ4 is based on CCZ4, which includes a constraint-damping mechanism
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ij, Ãij = ϕ2(Kij − 1

3 Kγij)

and also introduce Γ̃i = γ̃jkΓ̃i
jk

⇒BSSN formulation (Shibata and Nakamura,

1995; Baumgarte and Shapiro, 1999; Nakamura et al., 1987;

Brown, 2009)

Starting from the Z4 system:

Rµν +∇(µZν)+

+k1(n(µZν) − (1 − k2)gµνnαZα) = 0 ,
Zµ = 0

⇒ CCZ4 formulation (Alic et al., 2012)

Note however the Z4c formulation of Bernuzzi and

Hilditch (2010)

✓) Constraint damping

FO-CCZ4 is based on CCZ4, which includes a constraint-damping mechanism
6



THE FO-CCZ4 FORMULATION

✓) 1st order formulation

Achieved by introducing:

Ai = ∂ilogα , Bi
k = ∂kβ

i

Dikj =
1
2∂kγ̃ij , Pi = ∂ilogϕ

γ̃ij α βi φ Ãij KΘ Γ̂i bi Ak Bi
k Dkij Pk

Pk

Dkij

Bi
k

Ak

bi

Γ̂
i

Θ
K

Ãij

φ

βi

α

γ̃ij

✓) Hyperbolicity

Achieved via the use of
· a fully non-conservative
formulation: ∂tu + Ai · ∂iu = S(u)

· appropriate recombinations of
the second order ordering
constraints

Aik = ∂kAi − ∂iAk = 0
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THE FO-CCZ4 FORMULATION

Properties of FO-CCZ4:

· 1st order, fully non-conservative

· manifestly linearly degenerate

· proven hyperbolic for all gauges
(full set of eigenvectors and
eigenvalues)

· constraint damping

· adjustable constraint
propagation speed

· α, ϕ > 0 guaranteed by evolving
logα and logϕ
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Tests and applications



LINEARIZED GW TEST

ds2 = −dt2+dx2+[1+ϵ sin(2π(x−t))]dy2+[1−ϵ sin(2π(x−t))]dz2 , ϵ = 10−8

Constraints violations as function of time.
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Solution profile of the Ãyy component of the traceless
extrinsic curvature at t = 1000.
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Solution profile of the γzz component of the metric at
t = 500 for a FD code. Figure from (Alcubierre et al.,

2004).
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GAUGE WAVE TEST

ds2 = −H dt2 + H dx2 + dy2 + dz2 , H(t, x) = 1 − A sin(2π(x − t))
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Solution profile of the trace of the extrinsic curvature at
t = 1000 for A = 0.1 and e = 1.
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GAUGE WAVE TEST
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Solution profile of the trace of the extrinsic curvature at
t = 10 for A = 0.9 and e = 2.

Resolution Convergence order

N = 4

60
80 5.1
100 5.2
120 5.2

N = 7

30
40 8.4
60 8.0
80 8.8

Convergence order at t = 10 for A = 0.9 and e = 2.
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LONG TERM EVOLUTION OF A PUNCTURE BH

Solution profile of the lapse and grid setup
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HEAD-ON COLLISION OF BH

Solution profile of the conformal factor
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First successful evolution of non-stationary BH in three dimensions with
DG methods
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Conclusions



CONCLUSIONS

The ADER(-DG) method is a
promising framework, which
can deliver
· stable evoutions (also
against e.g. stiffness)

· high-order, accurate results
· performance improvement
opportunities

FO-CCZ4 is a formulation of
Einstein equations which is
· first-order
· constraint-damping
· proven hyperbolic

and therefore suitable to be
discretized with the ADER
approach.

Testing of a FO-CCZ4/ADER-DG scheme yielded excellent
results. Next step: include matter and microphysics.
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