Quantenfeldtheorie aus der Vogelperspektive

Holger Gies

Friedrich-Schiller-Universität Jena

 $Q \ F \ T$

[particle physics @ CERN]

[QCD phase diagram]

QFT

[CMB]

[Strongly correlated electrons]

[strong fields @ JENA]

[ultracold atom gases]

 $Q \ F \ T$

$Q_{\text{uantum}}\,F_{\text{ield}}\,T_{\text{heory}}$

Field

CAVE: $P = |\Psi|^2$ $E^2 = (mc^2)^2 + \mathbf{p}^2 c^2$

CAVE:

 $\Delta x \cdot \Delta p \geq \frac{\hbar}{2}$

(Heisenberg)

CAVE:

 $\Delta x \cdot \Delta p \geq \frac{\hbar}{2}$

(Heisenberg)

Prerequisites:

Quantum mechanics:

$$i\frac{\partial}{\partial t}\Psi = H\Psi, \qquad P = |\Psi|^2$$

Special theory of relativity:

$$E^2 = m^2 + \mathbf{p}^2$$

Prerequisites:

Quantum mechanics:

$$i\frac{\partial}{\partial t}\Psi = H\Psi, \qquad P = |\Psi|^2$$

Special theory of relativity:

$$E^2 = m^2 + \mathbf{p}^2$$

Of course: $\hbar = 1 = c$

matter:

u(p) and d(own) quarks:

proton: u u d neutron: u d d

force carriers:

Photon γ

force carriers:

Photon γ

Photon γ

10 000 000 000 000 000 000 000 photons/sec

Quantum mechanics: necessary if

$$S[x_{\rm cl}] \sim \hbar \sim 10^{-34}$$
Js

special relativity: necessary if

$$v \lesssim c \sim 3 \times 10^8 m/s$$

[WIKIPEDIA]

For particle physics:

relativistic quantum mechanics should be sufficient ...?

For particle physics:

relativistic quantum mechanics should be sufficient ...?

A simple (counter-) example: QM:

$$i\frac{\partial}{\partial t}\Psi = H\Psi$$

SRT:

$$E^2 = m^2 + \mathbf{p}^2$$
, choose : $E \to H = \sqrt{\mathbf{p}^2 + m^2}$

use replacement rule: $\mathbf{p}
ightarrow -i \mathbf{\nabla}$

 \implies relativistic QM equation:

$$i\frac{\partial}{\partial t}\Psi(\mathbf{x},t)=\sqrt{-\boldsymbol{\nabla}^2+m^2}\Psi(\mathbf{x},t)$$

admits plane wave solutions:

$$\Psi_{\mathbf{p}}(\mathbf{x},t) = e^{-iEt+i\mathbf{p}\cdot\mathbf{x}}$$

 \implies free relativistic quantum particle!

Causality check: localized point source

$$\Psi(\mathbf{x},t=0) = \delta^{(3)}(\mathbf{x})$$

causality requires

$$\Psi(\mathbf{x},t) = 0$$
 for $\mathbf{x}^2 > t^2$

Consider Green's function

$$G(\mathbf{x},t) = \langle \mathbf{x} | e^{-iHt} | \mathbf{0} \rangle$$

= $\int \frac{d^3p}{(2\pi)^3} e^{-i\sqrt{\mathbf{p}^2 + m^2}t + i\mathbf{p} \cdot \mathbf{x}}$

Beyond the light cone:

$$G(\mathbf{x},t)\sim\exp\left(-m\sqrt{\mathbf{x}^2-t^2}
ight)
eq 0$$

for $\mathbf{x}^2 > t^2$

finite probability that particle is detected outside the light cone

 \implies causality can be violated

Note: probability decays exponentially with range

$$\lambda \sim \frac{1}{m}$$
 (Compton wave length)

... similar problems with Klein-Gordon or Dirac equation

Idea: start with classical causal field theory ... and quantize!

e.g.: classical electrodynamics (in vacuum)

Quantization: try to understand Maxwell's equations as QM Heisenberg equations of motion:

a la
$$\frac{d}{dt}\mathbf{x} = -i[\mathbf{x}, H], \quad \frac{d}{dt}\mathbf{p} = -i[\mathbf{p}, H]$$

Dictionary:

e.g., harmonic oscillator

$$H=\frac{1}{2}p^2+\frac{1}{2}\omega^2q^2$$

canonical variables: q, p

Q-EoM:

$$\dot{x} = -i[x, H], \dot{p} = -i[p, H]$$

$$\implies \ddot{q} + \omega^2 q = 0$$

fundamental commutators:

$$[q, p] = i,$$

 $[q, q] = 0, [p, p] = 0$

Dictionary:

EM field energy \rightarrow Hamiltonian

$$H = \frac{1}{2} \int_{x} \mathbf{E}^2 + \mathbf{B}^2$$

canonical variables: **A**, **E** (magnetic field: $\mathbf{B} = \nabla \times \mathbf{A}$) Q-EoM:

$$\dot{\mathbf{A}}_{\mathbf{x}} = -i[\mathbf{A}_{\mathbf{x}}, H], \dot{\mathbf{E}}_{\mathbf{x}} = -i[\mathbf{E}_{\mathbf{x}}, H]$$

Maxwell's eq. (Coulomb-Weyl gauge) fundamental commutators:

$$\begin{split} [\mathbf{A}_{\mathbf{x}},\mathbf{E}_{\mathbf{y}}] &= \quad i \delta_{\mathrm{T}}^{(3)}(\mathbf{x}-\mathbf{y}), \\ [\mathbf{A}_{\mathbf{x}},\mathbf{A}_{\mathbf{y}}] &= \quad 0, \ [\mathbf{E}_{\mathbf{x}},\mathbf{E}_{\mathbf{y}}] = 0 \end{split}$$

e.g., harmonic oscillator

$$H=\frac{1}{2}p^2+\frac{1}{2}\omega^2q^2$$

canonical variables: q, p

Q-EoM:

$$\dot{x} = -i[x, H], \dot{p} = -i[p, H]$$

 $\implies \ddot{a} + \omega^2 a = 0$

fundamental commutators:

$$[q, p] = i,$$

 $[q, q] = 0, [p, p] = 0$

Dictionary:

canonical variables: q, p

ladder operators:

$$q=rac{1}{\sqrt{2\omega}}(a{+}a^{\dagger}),\,p=-i\sqrt{rac{\omega}{2}}(a{-}a^{\dagger})$$

quantized states

$$|n\rangle$$
, e.g. $|1\rangle = a^{\dagger}|0\rangle$

Dictionary:

canonical variables: A, E

creation/annihilation operators:

$$\mathbf{A}_{\mathbf{x}} = \int_{\mathbf{p}} \frac{1}{\sqrt{2\omega_{\mathbf{p}}}} \left(e^{i\mathbf{p}\cdot\mathbf{x}} a_{\mathbf{p}} + e^{-i\mathbf{p}\cdot\mathbf{x}} a_{\mathbf{p}}^{\dagger} \right)$$

photon states

$$|n_{\mathbf{p}_1}, n_{\mathbf{p}_2}, \dots \rangle, \text{ e.g. } |1_{\mathbf{p}}\rangle = a_{\mathbf{p}}^{\dagger}|0\rangle$$

energy levels:

$$E = \int_{\mathbf{p}} \omega_{\mathbf{p}} \left(n_{\mathbf{p}} + \frac{1}{2} \right)$$

canonical variables: q, p

ladder operators:

$$q=rac{1}{\sqrt{2\omega}}(a{+}a^{\dagger}),\,p=-i\sqrt{rac{\omega}{2}}(a{-}a^{\dagger})$$

quantized states

$$|n\rangle$$
, e.g. $|1\rangle = a^{\dagger}|0\rangle$

Quantized EM field:

$$\mathbf{A_x} = \int_{\mathbf{p}} \frac{1}{\sqrt{2\omega_{\mathbf{p}}}} \left(e^{i\mathbf{p}\cdot\mathbf{x}} a_{\mathbf{p}} + e^{-i\mathbf{p}\cdot\mathbf{x}} a_{\mathbf{p}}^{\dagger} \right)$$

zero-point fluctuations:

$$E_0 = rac{1}{2} \int_{\mathbf{p}} \omega_{\mathbf{p}} \qquad
ightarrow ext{Part I}$$

Summary I

• "Unification" of quantum mechanics and special relativity?

... causality (+ other) problems in relativistic QM

• consistent "unification" possible:

 \dots by quantizing relativistic field theories

• \implies field operators

$$\mathbf{A_x} = \int_{\mathbf{p}} \frac{1}{\sqrt{2\omega_{\mathbf{p}}}} \left(e^{i\mathbf{p}\cdot\mathbf{x}} a_{\mathbf{p}} + e^{-i\mathbf{p}\cdot\mathbf{x}} a_{\mathbf{p}}^{\dagger} \right)$$

... can create and annihilate excitations = particles

Ume (yeard With the provide of the

• Causality: built in!

$$[\mathbf{A}_{\mathbf{x}},\mathbf{A}_{\mathbf{y}}]=0$$

Interacting quantum fields

▷ general field operator $\phi(\mathbf{x})$:

$$\phi_{\mathbf{x}} = \int_{\mathbf{p}} \frac{1}{\sqrt{2\omega_{\mathbf{p}}}} \left(e^{i\mathbf{p}\cdot\mathbf{x}} a_{\mathbf{p}} + e^{-i\mathbf{p}\cdot\mathbf{x}} a_{\mathbf{p}}^{\dagger} \right)$$

creates/annihilates particles

 \triangleright general interactions, e.g., $\sim g \phi^4$

 \implies interactions can create / annihilate particles

 \implies QFT $\hat{=}$ many-body theory

 \implies QFT generalizes QM to \leq infinitely many degrees of freedom

Interacting quantum fields

 \triangleright field operator that carries a conserved charge: (e.g. electron e^-)

$$\psi_{\mathbf{x}} = \int_{\mathbf{p}} \frac{1}{\sqrt{2\omega_{\mathbf{p}}}} \left(e^{i\mathbf{p}\cdot\mathbf{x}} a_{\mathbf{p}} + e^{-i\mathbf{p}\cdot\mathbf{x}} b_{\mathbf{p}}^{\dagger}
ight)$$

annihilates particle / creates anti-particle

 \triangleright e.g. photon \leftrightarrow electron-positron:

$$\sim iear{\psi}(x)\gamma_{\mu}A_{\mu}(x)\psi(x)$$

conjugate field operator

$$ar{\psi}_x = \int_{\mathbf{p}} rac{1}{\sqrt{2\omega_{\mathbf{p}}}} \left(e^{i\mathbf{p}\cdot\mathbf{x}} b_{\mathbf{p}} + e^{-i\mathbf{p}\cdot\mathbf{x}} a_{\mathbf{p}}^{\dagger}
ight)$$

QFT requires the existence of anti-particles / holes

▷ physics can be extracted from correlators:

$$G^{(4)}(x_1, x_2, x_3, x_4) \sim$$

▷ physics can be extracted from correlators:

 $\frac{d\sigma}{d\Omega}$

⊳ QFT "recipes":

$$G^{(n)}(x_1, x_2, x_3, \ldots, x_n) \longrightarrow$$

▷ Master Formula:

$$G^{(n)}(x_1,\ldots,x_n) = \frac{\langle 0|\mathcal{T}(\phi(x_1)\ldots\phi(x_n)e^{-iH_{\text{int}}})|0\rangle}{\langle 0|e^{-iH_{\text{int}}}|0\rangle}$$

⊳ e.g.,

$$H_{\mathrm{int}} = g \int d^4 x \phi^4(x), \qquad H_{\mathrm{int}}^{\mathrm{QED}} = ie \int d^4 x \bar{\psi}(x) \gamma_\mu A_\mu \psi(x), \dots$$

different representation, cf. talks by A. Wipf, A. Sternbeck

ho Master Formula: \sim constitutional freedom of quantum fields

Everything which is not forbidden is allowed

ho Master Formula: \sim constitutional freedom of quantum fields

Everything which is not forbidden is allowed

ho Master Formula: \sim constitutional freedom of quantum fields

Everything which is not forbidden is allowed

Perturbative expansion:

Feynman diagrams

(Feynman'48)

each diagram \sim # of integrals

▶ Master Formula: \sim constitutional freedom of quantum fields

Everything which is not forbidden is allowed

(FEYNMAN'48)

ho Master Formula: \sim constitutional freedom of quantum fields

Everything which is not forbidden is allowed

ho Master Formula: \sim constitutional freedom of quantum fields

Everything which is not forbidden is allowed

Summary II

- physical observables from correlation functions $G^{(n)}(x_1, x_2, ..., x_n)$
- QFT: Master formula for $G^{(n)}$

...+ recipes for computing observables

- evaluation of Master formula is difficult ...exact solutions known only for simple systems
- perturbative weak coupling expansion

 \rightarrow Feynman diagrams ... sum over possibilities/fluctuations

nonperturbative methods:

cf. talks by M. Ammon, G. Bergner, A. Sternbeck, A. Wipf

For instance: particle physics

Standard Model:

▷ interactions:

"under the spell of the gauge principle" $({}^{\mbox{\tiny THOOFT}})$

$$H_{\text{int}} = \cdots + ie \ \bar{e}\gamma_{\mu}A_{\mu}e \qquad \cdots \qquad + ig \ \bar{u}\gamma_{\mu}\tau^{a}G_{\mu}^{a}u \qquad \cdots$$
$$\cdots + \frac{ig_{w}}{2\sqrt{2}} W_{\mu}^{-}[(\bar{e}\gamma^{\mu}(1+\gamma^{5})\nu) + (\bar{d}C_{u\bar{d}}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u)] \cdots$$

Theory of Everything

$$\mathcal{L} = -\frac{1}{2} \partial_{\nu} g^{a}_{\mu} \partial_{\nu} g^{a}_{\mu} - g_{sf}^{abc} \partial_{\mu} g^{a}_{\nu} g^{b}_{\mu} g^{c}_{\nu} - \frac{1}{4} g^{2}_{sf}^{c} d^{b} f^{abc} g^{b}_{\mu} g^{c}_{\nu} g^{d}_{\mu} g^{c}_{\nu} + \frac{1}{2} g^{2}_{s}^{c} (\bar{q}^{\sigma} \gamma^{\mu} q^{\sigma}_{j}) g^{a}_{\mu} + \bar{c}^{a} \partial^{2} c^{a}$$

$$+ g_{sf}^{abc} \partial_{\mu} \bar{c}^{a} c^{b} g^{c}_{\mu} - \partial_{\nu} w^{+}_{\mu} \partial_{\nu} w^{-}_{\mu} - w^{2} w^{+}_{\mu} w^{-}_{\mu} - \frac{1}{2} \partial_{\nu} z^{0}_{\mu} \partial_{\nu} z^{0}_{\mu} - \frac{1}{2c^{2}_{w}} M^{2} \bar{d}^{a} z^{0}_{\mu} z^{0}_{\mu} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu}$$

$$- \frac{1}{2} \partial_{\mu} H \partial_{\mu} H - \frac{1}{2} m^{2}_{h} H^{2} - \partial_{\mu} \phi^{+} \partial_{\mu} \phi^{-} - M^{2} \phi^{+} \phi^{-} - \frac{1}{2} \partial_{\mu} \phi^{0} \partial_{\mu} \phi^{0} - \frac{1}{2c^{2}_{w}} M^{\phi} \phi^{0}$$

$$- \beta_{h} [\frac{2M^{2}}{g^{2}} + \frac{2M}{g} H + \frac{1}{2} (H^{2} + \phi^{0} \phi^{0} + 2\phi^{+} \phi^{-})] + \frac{2M^{4}}{g^{2}} \alpha_{h} - igcw [\partial_{\nu} Z^{0}_{\mu} (w^{+}_{\mu} w^{-}_{\nu} - w^{+}_{\nu} w^{-}_{\mu})$$

$$- Z^{0}_{\nu} (w^{+}_{\mu} \partial_{\nu} w^{-}_{\mu} - w^{-}_{\mu} \partial_{\nu} w^{+}_{\mu}) + Z^{0}_{\mu} (w^{+}_{\nu} \partial_{\nu} w^{-}_{\mu} - w^{-}_{\nu} \partial_{\nu} w^{+}_{\mu})] - igs_{w} [\partial_{\nu} A_{\mu} (w^{+}_{\mu} w^{-}_{\nu} - w^{+}_{\nu} w^{-}_{\mu})$$

$$- A_{\nu} (w^{+}_{\mu} \partial_{\nu} w^{-}_{\mu} - w^{-}_{\mu} \partial_{\nu} w^{+}_{\mu}) + Z^{0}_{\mu} (w^{+}_{\nu} \partial_{\nu} w^{-}_{\mu} - w^{-}_{\nu} \partial_{\nu} w^{+}_{\mu})] - \frac{1}{2} g^{2} w^{+}_{\mu} w^{-}_{\mu} w^{+}_{\nu} w^{-}_{\nu} + \frac{1}{2} g^{2} w^{+}_{\mu} w^{-}_{\nu} w^{+}_{\mu} w^{-}_{\nu}$$

$$+ g^{2} c^{2}_{w} (z^{0}_{\mu} w^{+}_{\mu} z^{0}_{\nu} w^{-}_{\nu} - z^{0}_{\mu} z^{0}_{\mu} w^{+}_{\nu} w^{-}_{\nu}) + g^{2} s^{2}_{w} (A_{\mu} w^{+}_{\mu} A_{\nu} w^{-}_{\nu} - A_{\mu} A_{\mu} w^{+}_{\nu} w^{-}_{\nu})$$

$$+ g^{2} s_{w} c_{w} [A_{\mu} z^{0}_{\nu} (w^{+}_{\mu} w^{-}_{\nu} - w^{+}_{\mu} w^{-}_{\mu}) - 2A_{\mu} z^{0}_{\mu} w^{+}_{\nu} w^{-}_{\mu} - 2(e^{0})^{2} H^{2}_{\mu} - g^{0} w^{+}_{\mu} w^{-}_{\mu} H$$

$$- \frac{1}{2} g^{2} \frac{d^{A}}{c^{A}} z^{0}_{\mu} z^{0}_{\mu} d^{A}_{\mu} + (\phi^{0} \partial_{\mu} \phi^{-}_{\mu} - \phi^{-}_{\mu} \partial_{\mu} \phi^{0}_{\mu}) - w^{-}_{\mu} (\phi^{0} \partial_{\mu} \phi^{+}_{\mu} - \phi^{+}_{\mu} \partial_{\mu} \phi^{0}_{\mu})$$

$$+ g^{2} c^{a}_{w} (z^{0}_{\mu} d^{0}_{\mu} - \frac{1}{2} ig[w^{+}_{\mu} (\phi^{0} \partial_{\mu} \phi^{-}_{\mu} - \phi^{-}_{\mu} \partial_{\mu} \phi^{0}_{\mu}) - w^{-}_{\mu} (\phi^{0} \partial_{\mu} \phi^{+}_{\mu} - \phi^{+}_{\mu} \partial_{\mu} \phi^{0}$$

$$\begin{split} +igs_{W}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{+}) &-\frac{1}{4}g^{2}W_{\mu}^{+}W_{\mu}^{-}[\mu^{2}+(\phi^{0})^{2}+2\phi^{+}\phi^{-}] -\frac{1}{4}g^{2}\frac{1}{c_{w}^{\mu}}Z_{\mu}^{0}\mu^{0}[\mu^{2}+(\phi^{0})^{2}\\ +2(2s_{w}^{2}-1)^{2}\phi^{+}\phi^{-}] &-\frac{1}{2}g^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}\phi^{0}(W_{\mu}^{+}\phi^{-}+W_{\mu}^{-}\phi^{+}) -\frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})\\ +\frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-}+W_{\mu}^{-}\phi^{+}) +\frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+}) -g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2}-1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-}\\ -g^{1}s_{w}^{2}A_{\mu}A_{\mu}\phi^{+}\phi^{-}-\bar{e}^{\lambda}(\gamma\partial+m_{e}^{\lambda}) +\bar{e}^{\lambda}\gamma\partial^{\lambda}\partial^{\lambda} -\bar{u}^{\lambda}\gamma(\partial+m_{u}^{\lambda})u_{j}^{\lambda} -\bar{d}^{\lambda}\gamma(\gamma\partial+m_{d}^{\lambda})d_{j}^{\lambda}\\ +igs_{w}A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) +\frac{2}{3}(\bar{u}_{j}^{\lambda}\gamma^{\mu}u_{j}^{\lambda}) -\frac{1}{3}(\bar{d}_{j}^{\lambda}\gamma^{\mu}d_{j}^{\lambda})] +\frac{ig}{4c_{w}}Z_{\mu}^{0}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) +(\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2}-1-\gamma^{5})e^{\lambda})+\\ (\bar{u}_{j}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})u_{j}^{\lambda}) +(\bar{d}_{j}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}-\gamma^{5})d_{j}^{\lambda})] +\frac{ig}{2\sqrt{2}}W_{\mu}^{+}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda}) +(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})c_{\lambda,\kappa}d_{j}^{\kappa})]\\ +\frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) +(\bar{d}_{j}^{\kappa}c_{\lambda\kappa}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})] +\frac{ig}{2\sqrt{2}}\frac{m_{e}^{2}}{M}[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) +\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})]\\ +\frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) +(\bar{d}_{j}^{\kappa}c_{\lambda\kappa}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})] +\frac{ig}{2\sqrt{2}}\frac{m_{e}^{\lambda}}{M}[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) +\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})]\\ -\frac{g}{2}\frac{m_{e}^{\lambda}}{M}[\mu(\bar{e}^{\lambda}e^{\lambda}) +i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] +\frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) +m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}]\\ +\frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\mu}(1+\gamma^{5})u_{j}^{\kappa}) -m_{w}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})u_{j}^{\kappa})] -\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}) -\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})\\ +\frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})u_{j}^{\kappa}) -m_{w}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})u_{j}^{\kappa})] -\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d$$

$$\begin{split} + & ig_{SW}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + ig_{SW}y^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + ig_{SW}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) \\ & - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] + \frac{1 - 2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+} - \bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2c_{w}}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] \\ & + igM_{Sw}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}] \\ & + \kappa\sqrt{-g}(R - 2\Lambda) \end{split}$$

$$\begin{split} +ig_{SW} W^{-}_{\mu} (\partial_{\mu} \bar{X}^{-} Y - \partial_{\mu} \bar{Y} X^{+}) + ig_{SW} Z^{0}_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + ig_{SW} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) \\ - \frac{1}{2} g \mathcal{M} [\bar{X}^{+} X^{+} H + \bar{X}^{-} X^{-} H + \frac{1}{c_{w}^{2}} \bar{X}^{0} \partial_{\mu}] + \frac{1 - 2c_{w}^{2}}{2c_{w}} ig \mathcal{M} [\bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-}] + \frac{1}{2} ig \mathcal{M} [\bar{X}^{0} X^{-} \phi^{+} - \bar{X}^{0} X^{+} \phi^{-}] \\ + ig \mathcal{M}_{SW} [\bar{X}^{0} X^{-} \phi^{+} - \bar{X}^{0} X^{+} \phi^{-}] + \frac{1}{2} ig \mathcal{M} [\bar{X}^{+} X^{+} \phi^{0} - \bar{X}^{-} X^{-} \phi^{0}] \\ + \kappa \sqrt{-g} (R - 2\Lambda) \end{split}$$

$$\begin{split} + & ig_{SW} W^{-}_{\mu} (\partial_{\mu} \bar{X}^{-} Y - \partial_{\mu} \bar{Y} X^{+}) + ig_{SW} x^{0}_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + ig_{SW} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) \\ & - \frac{1}{2} g \mathcal{M} [\bar{X}^{+} X^{+} H + \bar{X}^{-} X^{-} H + \frac{1}{c_{W}^{2}} \bar{X}^{0} \chi^{0} H] + \frac{1 - 2c_{W}^{2}}{2c_{W}} ig \mathcal{M} [\bar{X}^{+} \chi^{0} \phi^{+} - \bar{X}^{-} \chi^{0} \phi^{-}] + \frac{1}{2c_{W}} ig \mathcal{M} [\bar{X}^{0} \chi^{-} \phi^{+} - \bar{X}^{0} \chi^{+} \phi^{-}] \\ & + ig \mathcal{M}_{SW} [\bar{\chi}^{0} \chi^{-} \phi^{+} - \bar{\chi}^{0} \chi^{+} \phi^{-}] + \frac{1}{2} ig \mathcal{M} [\bar{\chi}^{+} \chi^{+} \phi^{0} - \bar{\chi}^{-} \chi^{-} \phi^{0}] \\ & + \kappa \sqrt{-g} (R - 2\Lambda) \end{split}$$

+?

▷ Thomson scattering ($\omega \rightarrow 0$) ω e^{-}

$$\frac{d\sigma}{d\cos\theta} = \frac{\pi\alpha^2}{m^2} (1 + \cos^2\theta), \quad \alpha = \frac{e^2}{4\pi} \simeq \frac{1}{137}$$

Ubiquitous Quantum Fluctuations

$$E_0=\frac{1}{2}\int_p\hbar\,\omega_p$$

▷ vacuum polarization

 \triangleright Thomson scattering ($\omega \rightarrow 0$)

...sees averaged coupling $\alpha \simeq \frac{1}{137}$

 \triangleright short wavelength photon ($\omega \gg m \simeq 511$ keV)

...sees less screened coupling $\alpha \nearrow$

 \triangleright short wavelength photon ($\omega \gg m \simeq 511$ keV)

 $\triangleright \alpha$ at LEP (m_Z):

(EIDELMANN, JEGERLEHNER'95)

 $\alpha \simeq \frac{1}{128.9}$

... mainly hadronic corrections

⇒ measured values of couplings/parameters can depend on the scale:

⇒ Running Couplings

Fundamental QED?

Extrapolating perturbative running

Landau pole singularity

▷ world's best tested theory!

But ill-defined?

(LANDAU'55)

▷ evidence for scale of maximum high-energy extension: (Gockeler et al.'98; HG.JAECKEL'04)

$$\Lambda_L \simeq 10^{272} \text{ GeV}$$

 \implies QFTs can predict their own failure!

Standard model particles: pre-LHC

Standard model

Consistent description requires Higgs field

Search for the Higgs boson

▷ 4 Jul. 2012ATLAS & CMS@CERN

▷ 14 Mar 2013, CERN press release:

"...the new particle is looking more and more like a Higgs boson ..."

CMS'12: $125.3 \pm 0.4(stat) \pm 0.5(sys)GeV$, ATLAS'12: $126.0 \pm 0.4(stat) \pm 0.4(sys)GeV$

$$\mathcal{L} = -\frac{1}{2} \partial_{\nu} g^{a}_{\mu} \partial_{\nu} g^{a}_{\mu} - g_{s} f^{abc} \partial_{\mu} g^{a}_{\nu} g^{b}_{\mu} g^{c}_{\nu} - \frac{1}{4} g^{2}_{s} f^{abc} f^{adc} g^{b}_{\mu} g^{c}_{\nu} g^{d}_{\mu} g^{c}_{\nu} + \frac{1}{2} i g^{2}_{s} (\bar{q}^{\sigma}_{j} \gamma^{\mu} q^{\sigma}_{j}) g^{a}_{\mu} + \bar{c}^{a} \partial^{2} G^{a} + g_{s} f^{abc} \partial_{\mu} \bar{c}^{a} G^{b} g^{c}_{\mu} - \partial_{\nu} w^{+}_{\mu} \partial_{\nu} w^{-}_{\mu} - w^{2} w^{+}_{\mu} w^{-}_{\mu} - \frac{1}{2} \partial_{\nu} z^{0}_{\mu} \partial_{\nu} z^{0}_{\mu} - \frac{1}{2c^{2}_{w}} M^{2} z^{0}_{\mu} z^{0}_{\mu} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H - \frac{1}{2} m^{2}_{h} H^{2} - \partial_{\mu} \phi^{+} \partial_{\mu} \phi^{-} - M^{2} \phi^{+} \phi^{-} - \frac{1}{2} \partial_{\mu} \phi^{0} \partial_{\mu} \phi^{0} - \frac{1}{2c^{2}_{w}} M \phi^{0} \phi^{0} - \partial_{h} [\frac{2M^{2}}{g^{2}} + \frac{2M}{g} H + \frac{1}{2} (H^{2} + \phi^{0} \phi^{0} + 2\phi^{+} \phi^{-})] + \frac{2M^{4}}{g^{2}} \alpha_{h} - ig_{cw} [\partial_{\nu} z^{0}_{\mu} (w^{+}_{\mu} w^{-}_{\nu} - w^{+}_{\nu} w^{-}_{\mu})]$$

Standard model works (surprisingly) well so far ...

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: March 2019

	Model	ℓ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	-1]	Limit				Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \gamma\gamma \\ \text{ADD DO BH} \\ \text{ADD BH high } \sum p_T \\ \text{ADD BH high } \sum p_T \\ \text{ADD BH multijet} \\ \text{RS1 } G_{KK} \rightarrow \gamma\gamma \\ \text{Bulk RS } G_{KK} \rightarrow WW/ZZ \\ \text{Bulk RS } G_{KK} \rightarrow tW/ZZ \\ \text{Bulk RS } tr \\ \text{Bulk RS } p_T \\ \text{ADD } \text{BUR } \text{ADD } \text{BUR } \text{ADD }$	$\begin{array}{c} 0 \ e,\mu \\ 2 \ \gamma \\ \hline \\ e,\mu \\ 2 \ \gamma \\ \hline \\ e,\mu \\ 1 \ e,\mu \\ 1 \ e,\mu \end{array}$	1 - 4j - 2j $\ge 2j$ $\ge 3j$ - - - - 2J ≥ 1 ≥ 2 2 2 - - - - - - - -	Yes - - - - /2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	M _D M _A M _A M _A M _A Georemass Georemass Georemass Georemass Kormass Kormass		4.1 TeV 2.3 TeV 2.8 TeV 3.8 TeV 1.8 TeV	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV	$\begin{array}{l} n=2\\ n=3\;\text{HZ}\;\text{NLO}\\ n=6\\ n=6,\;M_D=3\;\text{TeV}, \text{rot BH}\\ n=6,\;M_D=3\;\text{TeV}, \text{rot BH}\\ k/M_H=0\;1\\ k/M_H=1\;0\\ k/M_H=1\;0\\ k/M_H=1\;0\\ Tr(M_H=1\;0\\ r=15\;6\\ Tr(1,1);\;\mathcal{R}(A^{(1,1)}\to \text{tr})=1 \end{array}$	1711.03301 1707.04147 1703.09127 1606.0225 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM} \ Z' \to \ell\ell \\ \text{SSM} \ Z' \to \tau\tau \\ \text{Leptophobic} \ Z' \to bb \\ \text{Leptophobic} \ Z' \to tr \\ \text{SSM} \ W' \to \ell\nu \\ \text{SSM} \ W' \to \tau\nu \\ \text{HVT} \ V' \to WV \to qqqq \ m \\ \text{HVT} \ V' \to WH/ZH \ model \\ \text{LRSM} \ W_R' \to tb \end{array}$	2 e, µ 2 τ - 1 e, µ 1 c, µ 1 τ odel B 0 e, µ B multi-channe multi-channe	- 2b ≥1b,≥1J - 2J al	- - Yes Yes -	139 36.1 36.1 79.8 36.1 139 36.1 36.1 36.1	Z' mass Z' mass Z' mass Z' mass W' mass V' mass V' mass V' mass V' mass		5.1 Te 2.42 TeV 2.1 TeV 3.0 TeV 5.6 * 3.7 TeV 4.4 TeV 2.93 TeV 3.25 TeV	V TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$	1903.06248 1709.07242 1805.08299 1804.10823 ATLAS-CONF-2018-017 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473
G	Cl qqqq Cl tttt	 ≥1 e,μ	2 j 	- - j Yes	37.0 36.1 36.1	Λ Λ Λ		2.57 TeV		21.8 TeV $\bar{\eta}_{LL}$ 40.0 TeV $\bar{\eta}_{LL}$ $ C_{tf} = 4\pi$	1703.09127 1707.02424 1811.02305
MQ	Axial-vector mediator (Dirac Colored scalar mediator (Di $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t_{\chi}$ (Dirac	DM) 0 e, μ rac DM) 0 e, μ 0 e, μ c DM) 0-1 e, μ	$\begin{array}{c} 1-4 \ j \\ 1-4 \ j \\ 1 \ J, \leq 1 \ j \\ 1 \ b, \ 0 \ 1 \ J \end{array}$	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	m _{mod} m _{mod} M, m _p	1. 1 700 GeV	55 TeV 1.67 TeV 3.4 TeV		$\begin{array}{l} g_{q}{=}0.25, g_{\chi}{=}1.0, \ m(\chi) = 1 \ {\rm GeV} \\ g{=}1.0, \ m(\chi) = 1 \ {\rm GeV} \\ m(\chi) < 150 \ {\rm GeV} \\ y = 0.4, \ \lambda = 0.2, \ m(\chi) = 10 \ {\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
70	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 nd gen Scalar LQ 3 nd gen	1,2 e 1,2 μ 2 τ 0-1 e,μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass LQ mass LQ [*] mass LQ [*] mass	1.4 1. 1.03 TeV 970 GeV	56 TeV		$\beta = 1$ $\beta = 1$ $B(LQ_3^c \rightarrow b\tau) = 1$ $B(LQ_3^d \rightarrow t\tau) = 0$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$\begin{array}{l} VLQ\; TT \rightarrow Ht/Zt/Wb + \mathcal{X}\\ VLQ\; BB \rightarrow Wt/Zb + \mathcal{X}\\ VLQ\; T_{S/3}\; T_{S/3}\; T_{S/3} \rightarrow Wt + \mathcal{X}\\ VLQ\; Y \rightarrow Wb + \mathcal{X}\\ VLQ\; B \rightarrow Hb + \mathcal{X}\\ VLQ\; QQ \rightarrow WqWq \end{array}$	X multi-channe multi-channe + X $2(SS)/\ge 3 e$, $1 e, \mu$ $0 e, \mu, 2 \gamma$ $1 e, \mu$	b $\mu \ge 1 \ b, \ge 1$ $\ge 4 \ j$	j Yes j Yes j Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass B mass T _{\$/3} mass Y mass B mass Q mass	1.37 1.34 1 1.21 Te 690 GeV	TeV TeV .64 TeV 1.85 TeV eV		$\begin{array}{l} SU(2) \mbox{ doublet} \\ SU(2) \mbox{ doublet} \\ \mathcal{B}(T_{5(2)} \rightarrow Wt) = 1, \ c_R(T_{5(2)}Wt) = 1 \\ \mathcal{B}(Y \rightarrow Wb) = 1, \ c_R(Wb) = 1 \\ \kappa_B = 0.5 \end{array}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e, μ 3 e, μ, τ	2j 1j 1b,1j -		139 36.7 36.1 20.3 20.3	q* mass q* mass b* mass l* mass v* mass		6 5.3 Tr 2.6 TeV 3.0 TeV 1.6 TeV	eV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana ν Higgs triplet $H^{++} \rightarrow \ell\ell$ Higgs triplet $H^{++} \rightarrow \ell\tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	1 e,μ 2μ 2,3,4 e,μ (St 3 e,μ,τ - - - - -	≥ 2 j 2 j S) - - - - - -	Yes - - - - 3 TeV	79.8 36.1 36.1 20.3 36.1 7.0	N ^e mass N _R mass H ^{H+} mass H ^{H+} mass Monopole mass monopole mass	560 GeV 870 GeV GeV 1.22 To 1.34	3.2 TeV eV TeV		$\begin{split} m(W_{01}) &= 4.1 \text{ TeV}, g_L = g_S \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_L^{**} \to \ell r) = 1 \\ \text{DY production}, g = 5e \\ \text{DY production}, g = 1g_D, \text{spin } 1/2 \end{split}$	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1509.08059
		partial data	full d	lata		10-1	1		10	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

ATLAS Preliminary

 $\int f dt = (3.2 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8.13 \text{ TeV}$

LHC "Anomalies"

2016: 750 GeV resonance in diphoton channel?

Maybe the main ...

discovery statistical fluke

... in the last decades.

LHC "Anomalies"

2016: 750 GeV resonance in diphoton channel?

Maybe the main ...

... in the last decades.
LHC "Anomalies"

▷ 2017: Lepton Flavor Universality violation?

ightarrow K^(*) $\mu\mu/ee$

2017: Discovery or Fluke?

LHC "Anomalies"

▷ 2017: Lepton Flavor Universality violation?

B meson decay

ightarrow K^(*) $\mu\mu/ee$

2019: consistent with SM at 2.5 σ

still worthwhile to watch

Summary III

- To(a)E: Quantum Field Theory + Standard Model

 ...tested by experiment to high precision
 (a): neutrino masses, indirect evidence for dark matter
- QFT: running couplings, masses, parameters are scale-dependentrenormalization theory
- QFT: can be fundamental or predict its own failure ...may predict scale of "New Physics"
- recent discovery of the Higgs particle

 \dots SM at special point ? \rightarrow my talk on Thursday

Classification of QFTs

D = 3 + 1

spin	H _{int}	particle physics
0	ϕ^4	Higgs scattering
1/2	$ar{\psi}\psi\phi$	fermion-Higgs interactions, fermion masses
1/2	$ar{\psi}\gamma_{\mu} {\sf A}_{\mu}\psi$	gauge interactions
1	$f^{abc}A^a_\mu A^b_ u \partial_\mu A^c_ u$ $f^{abc}f^{ade}A^a_\mu A^b_ u A^d_\mu A^e_ u$	gluon self-interactions
3/2	_	_
2	_	graviton ?

Classification of QFTs

D > 3 + 1

 ▷ assumptions: Lorentz invariance, local interactions, (perturbative) renormalizability (≜ predictivity)

spin	H _{int}	particle physics	
0	_	_	
1/2	_	_	
1/2	_	-	
1	_	_	
3/2	_	_	
≥ 2	_	_	

Summary IV

 all types of local, Lorentz-invariant, "(perturbatively) renormalizable" interactions realized in Nature

```
... success of "renormalization theory"
```

• Einstein gravity (ART) doesn't fit!

```
options: give up 

locality

Lorentz invariance

weak coupling approach

QFT
```

• D = 3 + 1 (where "good" QFT's can exist) $\equiv D = 3 + 1$ of Nature

Conclusion

 $Q \ F \ T$

[particle physics @ CERN]

[QCD phase diagram]

QFT

[CMB]

[Strongly correlated electrons]

[strong fields @ JENA]

[ultracold atom gases]

CAVEAT: ... aus der Vogelperspektive

Verlockend ist der äußre Schein

der Weise dringet tiefer ein.

(WILHELM BUSCH)