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What makes us confident about the existence of quarks?

Fun facts:

Neither quarks nor gluons ever observed
as free particles (confinement)

Only hadrons can be detected
(bound states of quarks and gluons)

I Mesons: q̄q-states (π±0, K±, . . . )
I Baryons: qqq-states (p, n, . . . )
I Anti-Baryons: q̄q̄q̄-states (p̄, . . . )

Typical hadron size: ∼ 1 fm

Wrap it up!

Scattering experiments are our
“magnifying-glass”

Ab initio QCD calculation agree with
experimental observations
(will show you examples)
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Scattering experiments

Elastic e−p → e−p scattering
(Considered as Coulomb scattering)

both point-like particles
no recoil of proton (~p′ = 0)

Rutherford Scattering
(point-like, spin-less particles, non-relativistic)

dσ

dΩ Rutherford
=

α2

4E 2 sin4 θ/2

Mott-Scattering
(e− with spin and relativistic)

dσ

dΩ Mott
' α2

4E 2 sin4 θ/2
cos2 θ

2

Dirac-Scattering (both have spin-1/2)
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Scattering experiments

Elastic e−p → e−p scattering

Proton: extended object at rest
(charge distributed, no recoil)

dσ

dΩ
=

dσ

dΩ Mott
|F (~q 2)|2

F (~q 2) form factor is Fourier
transform of charge distribution

F (~q 2) =

∫
ρ(~r)e i~q~rd3r

At low ~q 2, deviations from 1
measure for proton charge radius

F (~q 2)
~q2'0−−−→ 1− 1

6
~q2~r 2 + . . .

Hofstadter (Nobel lecture 1961)

Experiment by Hofstadter 1954: First evidence proton has a finite size (∼ 0.74 fm)
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Scattering experiments

Elastic e−p → e−p scattering Rosenbluth-Formula (Lorentz-invariant)

dσ

dΩ
=

α2

4E 2 sin4 θ/2

E ′

E

(
GE

2 + τGM
2

1 + τ
cos2 θ

2
+ 2τGM

2 sin2 θ

2

)
τ = − q2

2M2
P

Electron (me = 0) point-like, proton extended recoiling object, both have spin

Two elastic form factors (functions of q2)

GE (q2)
τ�1−−−→

∫
e i~q~rρ(~r)d3r

(q2=0)
= 1

GM (q2)
τ�1−−−→

∫
e i~q~rµ(~r)d3r

(q2=0)
= 2.79

4-momentum transfer

q2 = (k − k ′)2 (me =0)
' −4EE ′ sin2 θ

2

Anomalous magnetic moment of proton another
evidence for not being point-like

But: does not prove substructure
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High-energy scattering experiments

Inelastic scattering

Collision become inelastic when Ee− > 1 GeV
(SLAC, 1968: Ee− = 5− 20 GeV)

Invariant mass: p2
4 = (p2 + q)2

(virtual photon: Q2 = −q2 > 0)

Two degrees of freedom, e.g.,

x = −q2/(2p2 · q), y = q · p2/p1 · p2

Deep inelastic scattering (Q2 � m2
py

2)

d2σ

dxdQ2
' 4πα2

Q4

[
(1− y)

F2(x ,Q2)

x
+ y 2F1(x ,Q2)

]
Observation

Fi (x ,Q
2)→ Fi (x) Bjorken scaling

F2(x) = 2F1(x) Callan-Cross relation

Photon scatters elastically from spin-1/2 constituent particles (partons) within proton
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Quark Modell — Eightfold Way of Gell-Mann (1962)

Many hadrons are known
(quantum number, masses)

Fit to representations of SUF (3) groups

3⊗ 3̄ (mesons) 3⊗ 3⊗ 3 (baryons)

If so, particles (quarks) forming
fundamental representation must exists.

Spin-0 mesons (nonet) Spin-1/2 baryons (octet) Spin-3/2 baryons (decuplet)

Today understood as flavor symmetry
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Scattering experiments: Summary

e−p→ e−p scattering: nature of interaction of the virtual γ with proton depends on
wavelength (or Q2)

Scattering at very low e− energies (λ� rP )
equivalent to scattering with point-like
spin-less particle

At low e− energies (λ ∼ rP ) scattering
equivalent to that from extended charged
object

At high e− energies the wavelength
(λ < rP ) Scattering from constituent quarks
(partons). Used to resolve sub-structure of
proton.

Partonic picture of proton result of SLAC deep inelastic scattering.
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Scattering experiments: Fast-forward many years

At very high energies (λ� rP ):
Proton looks like sea of quarks & gluons.

d2σ

dxdQ2
' 4πα2

2xQ4
[1 + (1− y)2]F2(x ,Q2)

F2 not a delta-function
(not all quarks have x = 1/3)

Can calculate Q2-dependence caused by
dynamics of quarks and gluons

QCD: quarks have color charge and interact via colored gluons as described by QCD
(theory of the strong interaction)
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Parton distribution function

Probability distribution of quarks and gluons in (fast moving) proton with momentum
fraction x

Parton model: all quarks have x = 1/3 → F2 = delta-function

Extract f (x) from measurements of proton / neutron structure function

Cannot predicted them from the theory (nonperturbative), only approximate

deviations of parton distribution with Q2 well described by QCD
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Proton
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Strong-interaction process
Animation of proton-proton collision

From Richard Ruiz http://www.quantumdiaries.org/tag/qcd/
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Standard model of elementary particle physics

(Credits: Wikimedia Commons)

(CERN Mug)

Building blocks:

Quantum Chromodynamic (QCD)
(strong interaction of quarks and gluons)

Electroweak interaction
(electromagnetic + weak interaction)

Higgs sector
(gives mass to `, q, Z and W±)
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Quantum Chromodynamic (QCD)

Lagrange density describes dynamics of quarks and gluons (Euclidean)

LQCD =
1

4
F a
µν [A]Fµν,a[A]− ψ̄ (γµDµ[A]−m)ψ

Field strength tensor: F a
µν = ∂µA

a
ν − ∂νAa

µ − gs f
abcAb

µA
c
ν

Gluons: Aa
µ (massless gauge bosons, color-charge → self-int)

Fermions: ψf
a , ψ̄

f
a (quark and anti-quark)

(Flavour: f = u, d , s, c, b, t, Color: a = r , g , b)

invariant under gauge transformations

Parameters (scale & ren-scheme dependent, fixed through experiment)

Strong coupling constant: gs

Quark masses: m = diag(mu,md ,ms , . . .)

Action (Euclidean)

SQCD =

∫
d4xLQCD
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Path integral formalism
Quantization of a generic field theory

Partition function of a Euclidean QFT as a path integral (formally)

Z =

∫
DΦ e−S(Φ)

Φ denotes all fields of the theory, S(Φ) is the action

“formally” because integral may not be defined a priori

DΦ integration over all paths

→ on a finite lattice with N sites:

∫
DΦ ≡

∫
· · ·
∫ N∏

i=1

dΦi

Expectation value of an observable

〈O〉 =

∫
DΦO[Φ] e−S(Φ)
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Path integral formalism
Sketch for QCD

Partition function (formally)

Z =

∫
DAµ

∫
DψDψ̄ e−(SG +SF )

SG . . . Euclidean gauge action

SG [A] =
1

4

∫
d4x F a

µν [A]F a
µν [A],

SF . . . fermion action: ψ(f ) where f = {u, d , s, . . .}

SF =

∫
dx4 ψ̄ (γµDµ + m0)︸ ︷︷ ︸

“fermion matrix“ M

ψ where Dµ = ∂µ + ig0Aµ

“formally” because integral over DA not defined a prioi (gauge invariance)

I have to fix a gauge (perturbation theory) → additional terms to action
I physical observables independent of gauge
I often covariant gauges (unique in the context of perturbation theory)

Sgfix =
1

2ξ2
(∂µAµ)2 + (∂µχ̄)Dµχ
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Main difficulties (compared to QED calculations)

High-energy physics experiments (perturbative regime of QCD)

Strong coupling much larger (αs ∼ 0.1 vs. α ∼ 1/137)

αs constant grows for decreasing energy-momentum transfer

Loop expansions much more involved (self-interactions of gluons)

Hadrons are bound states (no free quark nor gluons ever observed)

1 Mesons: qq̄ (π±0, . . . )
2 Baryon: qqq (P, N, . . . )

quarks and gluons interact strongly, and electro-weak with the other elementary
particles
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Faces of Strong Interaction physics

Experimental Side

Hadron properties

Scattering experiments

High-Temperature / density

. . .

Theory

Quantum Chromodynamic (QCD)
(QFT of strong interaction)

Effective Models
(Chirale Perturbation, HQET, . . . )

. . .

Perturbative Methods

extensive Loop-Calculations
(algebraic, numerical)

. . .

Non-perturbative Numerical Methods

Lattice QCD calculations
(Discretized QCD)

Numerically solving coupled QCD
equations (truncated QCD)

I Bound-state equations
I Dyson-Schwinger equations
I Functional RG

. . .
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Lattice regularization of QCD (LQCD)

QCD action

SQCD =

∫
d4x

[
− 1

2g 2
0

Tr F 2[A] +
∑

f

ψ̄f
x

(
/D[A]−mf

0

)
ψf

x

]

Discretization of Euclidean space-time

Introduce 4-dim lattice L3 × T

x = n a4, n ∈ Z4

Quark fields ψ,ψ̄ dwell on sites

But: naive discretization of gluon field
Aµ(x) not gauge-invariant at finite a

ψ̄x ψx

← a→
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Lattice regularization of QCD (LQCD)
introduced by K. Wilson (1974-77)

Parallel transporter between x and x + µ̂

Uµ(n) = Pe iag0
∫ n+µ̂

n Aµ(z)dz ∈ SUc (3)

Using “links” Uµ(n) gives a gauge-invariant
discretized action for any a.

ψ(n), ψ̄(n)

Example: unimproved Wilson action (a ≡ 1)

SW
LQCD =

gauge part︷ ︸︸ ︷
β
∑

n,µ<ν

(
1− 1

3
ReTr�n,µν

)
+

fermionic part︷ ︸︸ ︷∑
n,m,f

ψ̄f
nM

W
nm[U, κf ]ψf

m
a→0−−−→ SQCD

Fermion matrix: MW
nm[U, κf ] = δnm − κf

∑
±µ δm,n+µ̂(1 + γµ)Uµ(n)

QCD Parameters: β ≡ 6/g2
0 , κf ≡ 1/(2mf

0 − 8)

Other (improved) discretizations possible, requirement: SLQCD
a→0−−−→ SQCD
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Lattice QCD calculation

Expectation value of an observable via path integral

〈O〉 =
1

Z

∫ ∏
nµ

dUnµ dψ̄n dψn O[U, ψ̄, ψ] e−(Sg [U]+Sf [U,ψ̄,ψ])

No gauge-fixing needed! (compact gauge group)

Integrate over quark fields exactly =⇒ modified action and integrand
(non-local functional of links U)

Left: Master integral for expectation value

〈O〉β,κ,L =
1

Z

∫ ∏
nµ

dUnµ FO[U] e−Seff [U,β,κ]

Effective (partly integrated) action

Seff [U;β, κ] = Sg [U;β] + log detM[U;κ]

A. Sternbeck (Uni Jena) From Random Numbers to the Physics of Hadrons April 3, 2019 23 / 55



Lattice QCD calculation
Monte-Carlo calculation

Master integral is very-high dimensional integral

〈O〉β,κ,L =
1

Z

∫ ∏
nµ

dUnµ FO[U] e−Seff [U,β,κ]

Number of integration variables
(Nc = 3,Nd = 4)

643 × 128 ×(N2
c − 1)× Nd = 1 073 741 824

163 × 32 ×(N2
c − 1)× Nd = 4 194 304

Estimate integrals stochastically 0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8

S[U ]

e−S[U ]

Monte-Carlo integration: Sample links U with probability density
(“important sampling”)

P[U(i)] =
1

Z
e−Seff [U(i)] Markov chain: U(1),U(2), . . . ,U(N) ∈ SU(3)

Estimate for expectation value: O ≡ 1

N

N∑
i=1

Ô[U(i)]
N→∞−−−−→ 〈O〉β,κ,L
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Monte-Carlo / Stochastic integration: How does it work?
1-dim example

f (x) = (1− x2) · e−x2

, I =

∫ 1

−1

f (x)dx =
1

e
+

√
π

2
Erf (1) ' 1.114703573983869

Numerical integration with rectangular rule

I '
N∑

i=1

f (xi )∆x , ∆x =
x2 − x1

N

Stochastic sampling of xi ∈ [−1 : 1] with p(x) ∝ 1

I ' (x2 − x1) · 1

N

N∑
i=1

f (xi ) = (x2 − x1) · 〈f 〉N

Improved Estimator: sample with p(x) ∝ (1− x2)

I ' (x2 − x1) · 1

N

N∑
i=1

p(xi )
f (xi )

p(xi )
= (x2 − x1) · 〈f /p〉 p

0

1

-1 -0.5 0 0.5 1

f
(x
)

x
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x

p(x) ∝ (1− x2)

Efficiency: stochastic integration wins when dim > 10
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Systematics

LQCD comes with the same parameters as QCD
(coupling, quark masses and volume)

〈O〉β,κ,L =
1

Z

∫ ∏
nµ

dUxµ FO[U] e−Seff [U,β,κ] =
〈
FO[U(i)]

〉
p(β,κ)

Parameters: β ≡ 6/g0
2, κf ≡ 1/(2mf

0 − 8) tune them to “physical point“, e.g.,

aM2

aM1
(β, κ)

β,L large−−−−−→ R21(κ)
κf→κf

c−−−−→ Mphys
2

Mphys
1

Access to lattice spacing via physical observable → a = a(β, κ) ≈ a(β)

Challenge: Control over systematic error when extrapolating to physical point
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Landscape of lattice simulations

Status

Nf = 2,Nf = 2+1,Nf = 2+1+1

Lattice spacings: a ≥ 0.04 fm, Volumes: L ≤ 6 fm

compiled by S. Collins (Regensburg)

Much progress in last ten years (algorithmic and computationally)

Many lattice collaborations reach physical point (hadron masses)

Safe extrapolation to continuum limit often remains (no always an issue)
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Calculations close to physical point very expensive

Monte-Carlo chain needs numerical inversion for every step: [ /D(U) + mf ]−1

Require

Volume large enough: Lightest hadron is pion with m2
π ∝ (mu + md )

Lattice fine enough: discretization effects small

Rule of thumb: Lmπ ≥ 4
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//////////////////Proton-Proton “Lattice QCD” accelerator

Lattice QCD often requires supercomputers and highly efficient codes
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Challenge and Progress in recent years

— Big computers are only one part of the success —
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Lattice QCD calculation
Monte-Carlo calculation

Master integral is very-high dimensional integral

〈O〉β,κ,L =
1

Z

∫ ∏
nµ

dUnµ FO[U] e−Seff [U,β,κ]

Number of integration variables
(Nc = 3,Nd = 4)

643 × 128 ×(N2
c − 1)× Nd = 1 073 741 824

163 × 32 ×(N2
c − 1)× Nd = 4 194 304

Estimate integrals stochastically 0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8

S[U ]

e−S[U ]

Monte-Carlo integration: Sample links U with probability density
(“important sampling”)

P[U(i)] =
1

Z
e−Seff [U(i)] Markov chain: U(1),U(2), . . . ,U(N) ∈ SU(3)

Estimate for expectation value: O ≡ 1

N

N∑
i=1

Ô[U(i)]
N→∞−−−−→ 〈O〉β,κ,L
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Main numerical challenge
Solving a linear system

For each U (varies strongly) solve linear system again, again and again

D(U) · ~ψ = ~b → ~ψ = D−1(U) · ~b

D(U) : sparse matrix, C12V×12V elements, mostly zero

~b : C12V elements, for V = 643 × 128 =̂ 402 653 184 elements

Numerical solution needed for:

Monte-Carlo chain

many observable
(whenever quarks are part of the operator)

Problem:

Simulation parameters β, κ direcly
connected to phys. parameters

Physical limit very expensive
(”Critical slowing down”)

Reason: eigen vectors for smallest eigenvalues
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Standard-Trick: Präkonditionierung

Solver

typical: Krylov-space methods

Number of iterations grows ∝ 1/λ0

Präconditioning

A · ψ = b

LA · Rψ = Lb

if LAR ' I, then LA · ψ̃ = b̃ found fast
and so ψ = R−1ψ̄

additional numerical costs vs. reduction
of number of iterations

Typical methods used for lattice QCD

Domain decomp. (checkerboard,
DD, Hasenbusch trick)

Multigrid (MG)

Helps but can not to avoid
”critical slowing down”

Deflation

Determination of Eigen space for
smallest EV λ0, λ1, . . .

Aψ(n) = λnb

Find solution in remaining space
(orthogonal to eigen space)

helps a lot but similar expensive as
original system
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Empirical fact

Lowest EV for fermion matrix

if reduced to small space region (44, 64), build lower dimensional eigen space

EV are local coherent, reason unknown, but seen empirically
(maybe connected toχ-Symmetry breaking in QCD)

i.e. approximation of eigen space sufficient (inexact deflation)

Combined with Domain-Decomposition (DD) or MG

Used in recent years in several algorithms, in particular AMG

allows lattice QCD calculations at physical point (expensive but possible)
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Examples for typical lattice QCD calculations
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Extracting physics from LQCD calculations

Typical observables

Plaquette or other Wilson loops

Chiral condensates

Hadronic properties
(e.g., masses, decay constants, form factors, structure functions. . . )

Fundamental parameters of QCD (strong coupling, quark masses)

. . .

Will illustrate calculation of

1 Wilson loop: quark confinement

2 2-point functions: Hadron masses

3 3-point functions: Hadron structure
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Extracting Wilson loops

Wilson loops

Allow to estimate potential between (two) static color sources.

Prototype of gauge-invariant observable (purely gluonic)

Also used as operators for gluonic bound states (glueballs)
(from exponential decay of correlation function)

Wilson Loop on gauge field configuration U

W [U] = Tr
∏

x,µ∈loop(R,T)

Uxµ

Expectation value

〈W 〉R,T =
1

Z

∫
DU W [U]e−Seff [U] =

1

N

N∑
i=1

W [U(i)] + O

(
1√
N

)
∝ e−tV (r)

(
1 + O(e−t∆E )

)
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Static quark potential from expectation values of Wilson loops

Static quark potential

V (r) = A +
B

r
+ σr

Force between quarks is dV /dr

A irrelevant

2nd term: Coulomb term with
strength B

3rd term: lin. rising potential
σ is string tension (≈ 900 MeV/fm)

Linear rising potential:
energy rises the further quark and
antiquark are pulled apart
(quark confinement)

Lattice Data for quen. approximation
(no sea quarks)

Figure : [Necco/Sommer, NPB622(2002)328] dashed line:
bosonic string model, solid line pert. theory
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String formation
Meson and baryon fluxtubes (by Derek Leinweber)

See CSSM, Adelaide for animations
www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel

Meson fluxtube (left)
www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/FluxTubeAnim2.gif

Baryon fluxtube (right)
www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/VacuumRespAction16t32_Yshape8.gif
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String formation and breaking

Full QCD: If QCD vacuum contains “sea quarks” (unquenched)

creation of sea quark-antiquark pairs at sufficient energy

flux tube breaks for large enough r

String-Breaking from Lattice QCD

SESAM-Collaboration: Bali et al. (2005)

Illustration:
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Extracting physics from LQCD calculations

Typical observables

Plaquette or other Wilson loops

Chiral condensates

Hadronic properties
(e.g., masses, decay constants, form factors, structure functions. . . )

. . .

Will illustrate calculation of

1 Wilson loop: quark confinement

2 2-point functions: Hadron masses, decay constants

3 3-point functions: hadron structure, renormalization etc.
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Hadronic two- and three-point functions on the lattice

1 2-point correlation functions

C h
2pt(~p, t) =

1√
VS

∑
~x

e i~x·~p
〈
h̄(~x , t) h(~0, 0)

〉
U

(~p=0)
= |Z0|2e−m0t + |Z1|2e−m1t + . . .

2 3-point correlation functions

CO3pt(τ, t, ~p, ~p′) =
1√
VS

∑
~x

e i~x·~pe i~z·~∆P
〈
h(t, ~x) | O(τ, z) | h̄(0,~0)

〉
U

= prefactor(t, τ,~p, ~p′) ⊗ 〈H|O|H〉 + . . .

Interpolation operators h have quantum number of hadron

I Proton: hp+ (x) = εabc
{

uaT (x)Cγ5db(x)
}

uc (x)
I Pion: hπ+ (x) = d̄(x) γ5 u(x), x = (~x , t)

Insertion operator O chosen wrt. desired matrix element

I Vector current: ψ̄γµψ
I Axial-Vector current: ψ̄γµγ5ψ
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Illustration: Measurement of a three-point function on the lattice
Connected and disconnected contribution

Diagrams
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On the Lattice

Figure : from R. Horsley (1999)
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Hadron masses from the lattice
QCD works!

ρ K K
∗ η φ N Λ Σ Ξ ∆ Σ∗ Ξ∗ Ωπ η′ ω0
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© 2012 Andreas Kronfeld/Fermi Natl Accelerator Lab.

Figure : Hadron masses from lattice QCD: experimental vs. lattice QCD results
(MILC, PACS-CS, BMW, QCDSF und RBC&UKQCD). From [Kronfeld 1203.1204].
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Hadron masses splitting from the lattice
Lattice QCD works also when adding QED effects!

Figure : Borsanyi et al., Science 347 (2015) 1452.
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Extracting physics from LQCD calculations

Typical observables

Plaquette or other Wilson loops

Chiral condensates

Hadronic properties
(e.g., masses, decay constants, form factors, structure functions. . . )

Fundamental parameters of QCD (strong coupling, quark masses)

. . .

Will illustrate calculation of

1 Wilson loop: quark confinement

2 2-point functions: Hadron masses

3 3-point functions: Hadron structure
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Hadron structure functions

Form factors: Spatial distribu-
tion of charge and magnetization

Partondistribution: Distribution
of momentum and spin Generalized parton distribution (GPDs): cor-

related distribution of momentum, spin, charge

Goal: Determination of non-pertubative functions directly from QCD

Form factors possible from lattice QCD

GPDs, PDFs: only moments accessible so far (Ji’13: quasi-PDFs possible)
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Pion form factor
Experiment vs. Lattice
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Moments of Parton Distributions (PDFs)

Nucleon parton distribution function

Important for phenomenology

Known for large range of x = [0, 1]
(long. mom. fraction)

Good knowledge for u and d

For other quarks not as good

Lattice QCD

Moments of nucleon PDF

〈xn〉(q) =

∫ 1

0

dx xn [q(x) + q̄(x)]

New: indirect access to q(x) itself
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Spin structure of the Nucleon

Naive Parton model

Nucleon spin = sum of valence quark spins

1

2
=

1

2

∆Σ=1︷ ︸︸ ︷
(∆uv + ∆dv ) where ∆uv =

4

3
,∆dv = −1

3

“Spin puzzle/crisis”: Eµ-Collaboration (1989) found: ∆Σ ≈ 0.120

Modern view

Valence quarks contribute only a fraction

Significant contribution also from gluons and sea quarks

Also important: Orbital angular momentum L of quarks and gluons

Total spin:
1

2
=

1

2

(
∆u + ∆ū + ∆d + ∆d̄ + ∆s + ∆s̄

)︸ ︷︷ ︸
∆Σ

+Lq + ∆g + Lg

Individual contributions can be calculated using lattice QCD
Bali et al., PRL108 (2012) 222001 ∆s + ∆s̄ = −0.020(10)(4)

∆Σ = ∆u + ∆ū + ∆d + ∆d̄ + ∆s + ∆s̄ = 0.45(4)(9)
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Spin structure of the Nucleon

Naive Parton model

Nucleon spin = sum of valence quark spins

1

2
=

1

2

∆Σ=1︷ ︸︸ ︷
(∆uv + ∆dv ) where ∆uv =

4

3
,∆dv = −1

3

“Spin puzzle/crisis”: Eµ-Collaboration (1989) found: ∆Σ ≈ 0.120

Modern view

Valence quarks contribute only a fraction

Significant contribution also from gluons and sea quarks

Also important: Orbital angular momentum L of quarks and gluons

Total spin:
1

2
=

1

2

(
∆u + ∆ū + ∆d + ∆d̄ + ∆s + ∆s̄

)︸ ︷︷ ︸
∆Σ

+Lq + ∆g + Lg

Moments of GPDs deliver total quark momentum

1

2
=

1

2
∆Σ + Lq + ∆g + Lg
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Extracting physics from LQCD calculations

Typical observables

Plaquette or other Wilson loops

Chiral condensates

Hadronic properties
(e.g., masses, decay constants, form factors, structure functions. . . )

Fundamental parameters of QCD (strong coupling, quark masses)

. . .

Will illustrate calculation of

1 Wilson loop: quark confinement

2 2-point functions: Hadron masses

3 3-point functions: Hadron structure
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Quantum Chromodynamic LQCD = 1
4F

2[A, g ]− ψ̄ (γµDµ[A, g ]−m)ψ

Regularisierung & Renormierung
QCD parameters g and m = diag(mu,md , . . .) are scale- and scheme-dependent

Strong coupling

Not a constant, depends on scale µ and
renormalization scheme S

µ2 ∂g(µ2)

∂µ2
= βS [g(µ2)]

gS (µ)
(µ→∞)−−−−−→ 0 “asymptotic freedom”

Precise value essential
(QCD phenomenology)

Convention: α
Nf =5

MS
(MZ )

αs = g 2/4π

pp –> jets (NLO)

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2012

Lattice QCD (NNLO)

Z pole fit (N3LO)

τ decays (N3LO)

Access Experiment (indirect), Lattice QCD (direct)
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Strong coupling from QCD phenomenology and lattice QCD

Bethke (2015)
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Wrapping up

Lattice QCD

Provides numerical access to many quantities of strong interaction physics

Systematically improvable, becomes QCD in the respective limits

Needs usage of supercomputers and parallel programming

Success nicely demonstrates correctness of QCD

— Thank you for your attention! —
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