[II. QFT in Curved Space-time



Semiclassical Einstein Egs.

e Semiclassical theory of Quantum Gravity

1

Ry (9) = 59w R(9) = Mgy = 87G (¢ | T (9) | ¥)

matter fields are quantized (in some appropriate state | ) ) but
gravitational field is kept classical

e This is valid in the limit that the length and time scales of the
physical processes > Planck length and time

(Gh/cg)1/2 ~107*cm  and (Gh/c5)1/2 ~ 1075

e In practise, solve the semiclasssical eqs. perturbatively:

R (9) — 2¢l)R(g')) — AgS) = 87G () | T (g) | ¥)

2
1 1

quantum-corrected metric background metric



Renormalization

e However, (¢ | 1 | ) suffers from ultraviolet divergences since
it’s quadratic in g , which is an operator-valued distribution

¢ S0 we need to renormalize: <¢ | TW \ ¢> — <¢ \ Tuv \ ¢>ren
RSET

* Energy now creates s-t curvature via Einstein eqs., so we cannot
renormalize by simply subtracting infinities like we did in flat s-t

o First point-split ¢22 (x) — QB(I )qg(il?/), then remove the divergences in a
physically meaningful way and afterwards take the coincidence limit:

| Ty (@) | @)ren = Tim (| Ty (2,2) | $) = T2 (2, ')

T ' —X T

it’s conserved and is causal only depends on the
geometry Juv



Scalar Field

* Consider a globally hyperbolic s-t (M, g,,,,) -> Cauchy surfaces 3,
labelled by a parameter t

* Free scalar field ¢ satisfies the Klein-Gordon eq.: [[¢ — m2¢ =2
|

g"’'v,V,



Scalar Product

(b1, ) = i é A5 (60,3 — d20,u87)

- defines a scalar product (and an inner prod. when restricted to “pos.
freq.” slns.)

- is independent of the Cauchy surface if @; are slns. of the Klein-
Gordon eq.



Quantization Procedure: like in Flat S-t

(1) Choose a set {u;(z),u; (x),Vi} of slns. of field eq. that is

complete and orthonormal:
) t it may be a Dirac- 0

(’UJZ,UJ) = (SZ] = — (’UJZ ,’UJ;) ) (uz, ) - O
(2) Then any sln. of the field eq. may be expanded as

Zazuz )+ aiui(z), ai=(u, @), a; =—(u;,o)

AN

(3) Quan’uze by promoting to ops. a; — a;, a;‘ — &z, O — @

A

and impose comm. rlns. {az, ]} [0,

(4) Define a vacuum by ¢, [0) = 0,Vi excited states by (&f{ ) | 0) etc

Choice of vacuum depends (via @;) on choice of complete set of slns. Us



IV. Black Holes

(a) Hawking Radiation, etc



Eternal Schwarzschild Space-time

e The unique sln. of Einstein egs. in vacuum describing the spacetime
outside a spherically-symmetric body of mass M is Schwarzschild :

OM oM\
ds® = — (1 > dt* + (1 > dr? + r? (d6’2 + sin” ngpz)
r r
Event horizonat r =2M

Curvature Singularity at 7 =20

e Killing vectors: slike 0., (axisymmetry) and tlike 9, (stationarity)



Null Coordinates

e Null coords.: U=T—T«, V=1+ 7y

r. =r+2M In

‘2;4 1‘6(—0@,0@) for r e (2M,oc0)

Radially in/outgoing null geodesics are at u,v=const.

e Kruskal coords. to cover beyond EH: U = —e™ "%, V = e""

1 surface gravity=force done at infinity to hold unit
~ 4M  mass above EH

Similar transformations to cover whole s-t U, V € (—00, 00)

K

e Compactify s-tvia U = arctanU, V = arctanV € (—n/2,7/2)



Penrose Diagram
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Maximally extended Schwarzschild s-t

F: black hole, P: white hole

U is an affine parameter along H
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- 1 =const accelerated)

- - - - - - - - - - - ¢
L/ \./ ./ ./ \./ \./ \./ \./ \./ ./ ./ \./

flat/Rindler —

Schw. Flat s-t
Static obs. <% Rindler obs.
Free-fall obs. &“> Inertial obs.




Scalar Field

Klein-Gordon eq., [J¢) = (), in Schwarzschild background separates
by variables:

Gral. sln.: ¢(x) :/ dwz Z anPA (T

=0 m=-—¢

A= {l,m,w}

Field modes: @A (:C) — Ny, Ry, (7“)Y£m(9, gp)e_m
A

|

normalization const. spherical harmonics




Radial eq.: 2nd order linear ODE -> choose 2 lin. indep. slns.

d? o . 2M N\ [ £(£+ 1) | 2M
dr? m r r? S o3

}RM
’ N—  —_—_—_—_—_—_—_—_—_.—_———

Vers




Field Modes

‘in,R” modes

o Minkowski modes in
~ flat s-t, so correspond to
Minkowski vac. in Jp

0, T~ Hp
MR =0 R~ D e e T
r (€ y L~ JR
Ve € L Zze—iwv, T~ 7_[}-;



“up,R” modes

R
A () =

Ve € L

_. u —_—
€ e ] €L HR
0, x~Jp

R
Bie v, @~ T

up —wuv -~ +

A,e , T~H,



‘in & up,L” modes




Boulware State

A

e On the max. extended Schwarzschild s-t, { infup,L/R ¢ C.C., VA} is:

in/up,L/R in/up,L/R
- orthonormal: ( j\n/uP / , j\rn}/uP / ):5A,A,

- complete
¢(£U) p— Z/ dw {&j\n, j\’na + &Xpa Xpa e &j\n,R¢j\n,R
¢m 0

e Boulware state is defined via

a Pl | BY =0 =a""" | BY, VA

?
w > 0



Boulware state is defined using modes that are pos. freq. wrt 0,

at¢j\n/uP’L/R — W j\n/up,L/R’ w > 0

—> it’s seen as empty by static obs. (ie, at 7,0, ¢ = const)

Analogy:

Schw. Flat s-t

Static obs. <~ Rindler obs.

defined using {¢,7,}, ... definedusing {7,¢},
which diverges on which diverges on horizons

| B) ¢~ | R)  (RSET irregular on horizons)




Gravitationally-collapsing Star

Astrophysical BH's are not eternal, they are formed from
gravitational collapse of a star

singularity

Hawking’75 showed that modes

g T . | -
/ 7/,\77,,]? 2 e—zwv at jR

behave like e “rV

ie, they are pos. freq. modes
wrt O;;, as they leave the star
[He showed this leads to the
emission of quantum radiation
by the BH, as we next see]




Unruh State

e We model BH evaporation in eternal BH s-t by using modes that are

pos. freq. wrt Oy on H instead of using ¢,\" H

e Eg, we could directly use e~ "“*Y but in order to obtain

Bogolyubov coeffs. Unruh’76 instead used the modes:

A \/2sinh (rw/k)

Similar rln. as between Rindler & Minkowski modes in flat s-t!
Remember:

Tw/(2K) .
€ { XP,R+€—Ww/m XP,L }

R
U,E_

w/(2a) B e T
T \/2 :inh (7w /) [¢§<€ //?Lk}

they define | M) they define | &)



e Similarly define gbf{_P modes with L <> R in gb/[{P

e On the maximally extended Schwarzschild s-t,

{ j\n’L/R, XP/UP & c.c., VA ; form a set that is:

- orthonormal

- complete:

Aan wn, L AUP UP ~tn, R in, R ~UP ,UP
Z/ dw AgbA oy N ) S Sy )

e Unruh state is defined via

a oy =a¥P Uy =8 |U)y =0, VA

+ h.c.}



Hartle-Hawking State

e We can also define the IN version of the UP modes as:

gb ¢I N defined like 9%~ & Cb/({P with @A

¢ On the maximally extended Schwarzschild s-t,

{ UP/IN/IN/UP

A & c.c. VA} form a set that is:

- orthonormal

- complete:

Z/ dwaA A

oyt

e Hartle-Hawking state is defined via

ay' | H)=ay" | H) =

aiN | H) =

UP ., ~IN N , ~UP ,UP
A apn PA N
oYY | HY =0, VA

up,R/L R ¢zn ,R/L



e [t can be shown that, Vw, ¢/Z{P & Qb./({ Y are pos. freq. wrt Jyy on Hp

on & gbi—N are pos. freq. wrt 9y on H

e Hartle-Hawking is defined using modes that are pos. freq. wrt affine
parameter / on 71 and affine parameter V on 7—[; — it’s seen
as empty by free-falling obs. on 7—[}%

Analogy: Schw. Flat s-t

free-falling obs. (on H}iz ) € inertial obs.

defined using {U, '}, which defined using {t,y}, which

is regular everywhere is regular everywhere

UP -up and IN -inmodes <~  Rindler&Minkowski modes
relationship relationship

| H) <~~~ | M) (RSET regular everywhere)



Properties of Boulware State

e RSET (B |T", | B)yen

2
- goes to zero like (M_6> as 1 — 00
(A

- diverges on 7—[?% in a free-falling frame (as expected)

* Boulware state:
- is the equivalent of the Rindler state in flat s-t

- models a cold star (no horizon and empty at infinity)



Properties of Unruh State
® RSET (U|T," |U)ren

- diverges at H~ (but this surface doesn’t exist for astrophysical BH)
-is regular at T

- has a flux of thermal Hawking radiation at 7 :

—1 —1 0 0
L 1 I 0 0

~Y 4,7.‘.,’/;2 O O 0 0 ] T%OO //Lyy_{t7,r797gp}
0 0 0 O




Unruh state models a BH that is evaporating via the emission of
Hawking radiation

M
T ~ 10_7W®K <IcwmB

dM 4
Stefan-Boltzman law: ~ area - 1y

dat

Lifetime of BH with M = Mg is ~ 10°* - (age of the Universe)



BH evaporation poses the BH information paradox:

even if initial state of the matter is pure, the final state of Hawking
radiation is thermal - in a mixed state

pure — mixed

- -
-/ : matter in Y (Y| — p

................ mixed state Ty ( /02) <1

But, according to Quantum Physics, the
evolution of a physical system is unitary:
if the initial state of a system is pure, then
it cannot evolve into a mixed state

¥ " :matter in

~
o

=
. |
A

T

pure state



Properties of Hartle-Hawking State
¢ RSET (H |T,” | H)yen

- has a bath of thermal radiation at ./ ;{E :

-1 0 0 0
a3 w3 0 1/3 0 0 e
o2 | e2ww/s _1 | 0 0 1/3 0 |’
o 0 0 1/3 v ={t,1,0, 0}

- is regular at 'H;_; (and everywhere else, as expected)

- is invariant under symmetries of BH s-t

e Hartle-Hawking state:

- is the equivalent of the Minkowski state in flat s-t

- models a BH in thermal (unstable) equilibrium with its own
radiation, so it’s the relevant state for the laws of BH mechanics



Laws of Black Hole Mechanics
|[Bardeen, Carter, Hawking 1973]

e Oth law (temp. T=const. in syst. in thermal equilibrium)

BH: K is const. throughout EH of stationary BH

° Istlaw (§E = T6S + PS§V)
BH:  6M — 8%5A + Q87 T < 1) (27)
mass T T Tang.mom. S+ A/4

ared  ang.vel.

e 2nd law (0.5 > 0 for isolated syst.)
BH (Hawking’s rea th.): 0A > 0 (if an -“null”- energy cond. is satisfied)

e 3rd law (1" = 0 not achievable in finite series of processes)

BH:x = 0 not achievable in finite time (if an energy cond. is satisfied)



IV. Black Holes

(b) Rotation, etc



Kerr Spacetime

Astrophysical BHs: Kerr BH with angular momentum J =: a M
and mass M

A Ry sin” 6
2 2 -2 2 2
ds® = -5 [dt — asin Hdgp} + —dr® + 2dO” A N

[(7“2 -+ a2) dp — adt} :

A=(r—ry)(r—r_) Y =1r?+a’cos’f

It has:
- an event horizon at radius 7 =74+ = M + \/]\42 —a

|

maximally-rotating (extremal) is for a = M

2

- an inner (Cauchy horizon)at r =r_ = M — \/M2 —a? € [O, 7“+]
- a curvature singularity at r = (

- two symmetries: stationarity ( 0; ) and axi-symmetry ( QO )



XE&—I—QQD

a

., = - angular velocit
+ r_2|_ _|_ a2 g VveloCl y
| QJ stationary
2> 0 ergQOreglon limit surface
O¢)>> 0 2
( t ) (at) — 0

(8;)° <0

x° =0

speed-of-light event-horizon y? = 0
surface r=ry4




Penrose Diagram

(Part of) max.
extended Kerr s-t



Bosons Fields

Fieldeq.: “[J"¢ = (0 separates by variables

Mode slns.: ¢ = Ra(r )eimgo_m A={l,m,wj

\ / —A={{,—m, —w}

They satisfy similar ODEs
as in Schwarzschild

in,L/R
A have positive norm Vw > ()

up,L /R ..
Ap / have positive norm Vv =y — m0 + >0



‘in,R’

1st law of BH mechanics:

SM = —5A+ Q.6
ST

Send ' ith oM — ~ t infinit
enda wave 1n wi 5J — m dt 1N my
W K
s —0M = —0A
W 7T

Areath.: 0A >0 if null-energy cond. is satisfied (ie, Ty k" k" > 0
for any future-directed null vector k)

= SM <0 for ww <0 = such awave extracts rotational energy
from the BH (superradiance)

A > | B

Superradiance is due to the existence of the ergosphere



Quantum States for Bosons

~in/up, L ‘ B> — 0= ~in/up,R ‘ B>

* Boulware a, a

Properties:

- irregular at H7 , regular elsewhere outside BH
-empty at Hy and Z,

- has Unruh-Starobinsky radiation at Z3, due to superradiant modes

NB: there is no state that’s empty at 7



 Hartle-Hawking

- Remember: in Schwarzschild, this state was regular everywhere,
satisfied the symmetries of the s-t, contained a thermal bath at
infinity, modelled a BH in thermal eq. with its own radiation (so it’s
the relevant one for laws of BHs and AdS/CFT correspondence)

- No such state exists for bosons in Kerr, due to superradiance
|Kay & Wald’91; Ottewill&Winstanley’00]

- Candelas, Chrzanowski & Howard’81 constructed a H-H-like
state where modes are thermalized wrt their ‘natural energy’ (ie,
‘in” modes wrt w and ‘up’ modes wrt () )



CCH is regular everywhere but does not satisfy symmetries of
space-time [Casals & Ottewill’05]

SL




e Unruh  a"™ " Uy =alP |U)=a{" |U) =0

Properties in Kerr similar to those in Schwarzschild:

-irregular at H , but regular elsewhere outside BH

-empty at Lp

K

- Hawking radiation at IE at temperature Ty = .
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CFT for Fermions

e Dirac fieldeq. " (0, —T'y) ¢ =0

| |

Dirac matrices Dirac 4—spinors

(Y77 = 29" o . .
pinor connection matrices

0yY" + Flzjh:fY,{ —I'yy"+947T, =0

The Dirac field eq. in Kerr separates by variables and decouples
for the different spinor components

® » . .
No superradiance ‘ Ain ‘ < ‘ Bin

Classical fermions do not satisfy the weak-
energy condition -> area th. does not apply




QFT for Fermions

e Suppose {pa,p_p,VA} isacomplete set of slns., then

b= anpa+byo_a

A

o JH = (ng{WO) YH @2 is a conserved current VMJ“ =0

which is used to construct an inner product: (P1,P2) = / JtdS
t—=const
*If (prp,Pia/) = O p all positive norm wrt inner product

A AT _ ) _
then anticommutation rlns. {aAa aA’} — {bA> b /} = OA,A’

A

follow from {¢(fa t), ﬂ(f/a t)} — ]AIZ 5(3) (f — f/)



States in Kerr - Fermions [Casals, Dolan, Nolan,
Ottewill, Winstanley’12]

® Boulware: similar as for bosons. Eg, it has Unruh-Starobinsky
radiation (even if fermions have no classical superradiance) at Z3,

However, one may define:
AV |B) =0 Yw >0
a,'|B)=0 VYw>0 (for bosons: Vw > ()

Expected to be empty at 7=+



Boulware for Fermions a~091M

Ratio testin ¢ -sum

\U"-B
for particle number current <J T>

Properties: '-.
o | . ergosphere
- Empty at radial infinity .l
(as opposed to bosons)
< 0
- Divergence in ergosphere
but regular outside it 2|

:.-’;4— speed-of-
light surf




Hartle-Hawking for Fermions
a~ 0.91M

H-U"

remn

Ratio test in /-sum for <T99>

Properties: 4
° ergosphere
- It's well-defined and regular 2 l
inside SOL LV X

=
- Divergence on SOL due to large- =<

modes: £ -> thermal bath rotating -1
with horizon?

L R e .

speed-of-
light surf




observer g()l 4 LL.oss Of predlcablhty
inside BH #nd inside the BH

past Cl %

CH

Black

N~
hole




this is a timelike singularity,

CH
and so it’s visible to an

D, observer going into the BH

Unpredictability: the Cauchy

_I_
H Cosm (“initial”) Value Problem is

t well d
Horizon 1O WEL POSE




Strong Cosmic Censorship hypothesis

Strong Cosmic Censorship (SCC) Hypothesis by Penrose’72, essentially:
the maximal Cauchy development via Einstein's equations of generic
initial data is inextendible

So, if BHs that exist in Nature possess singularities in their inside, then
they’re not visible even to observers inside (i.e., they’re not timelike)



SCC could be upheld if the Cauchy horizon is “destroyed” by field
perturbations or semiclassical etfects

timelike /\ /% null sing.
sing.

observer can see singularity observer cannot see singularity
and crashes into it in the future



But it's a hypothesis - it needs to be verified!

Gajic’s talk: Classically, the CH of Kerr is extendible in C°

and conjecture that it’s not in C*

What about semiclassical effects on the CH?



Quantum backreaction on CH

evaluation
on CH

If <TU_U >ren # 0, then <T‘; Y ren diverges
-> curvature singularity & tidal deformation of observer crossing the CH:

<Tv—v >ren >0 -> contraction of observer

< expansion

At least for a spherical & charged BH,

<T_ > > () -> contraction of CH
ren

uu

< expansion



Fluxes at & = 0 of the CH [Zilberman, Casals, Ori & Ottewill’22]

23 -6

x 10 \U x 10

ar <Tvv>ren 10
—\U
<Tuu>ren

3 -

T
2 -

E both change sign A
1 -

a/M

O | | | | _._‘....‘....‘...4

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

<Tv_fu>ren # 0 -> CH becomes irregular



Fluxes on the CH for ¢ = 0.8 M [Zilberman, Casals, Ori & Ottewill’22]

- (To)ren
5r _
4 -
T
3=
g
2 -
gl 0 (°)
! B 41_ T | | | | |
10 20 30 50 60 70 80 90
-1 ><10'4



- Concept of

Summary

‘'vacuum’ is observer-dependent -> Unruh effect

- Quantum BHs emit Hawking radiation -> evaporation ->

information paradox

- Rotating BHs:

For bosons, t

nere’s no empty state at infinity (‘Boulware') nor a state

in thermal ec

uilibrium (“Hartle-Hawking’)

For fermions, there’s empty state at infinity but diverges in ergosphere

and there’s a

thermal state but diverges on speed-of-light surf.

Cauchy Horizon becomes irregular -> no loss of predictability

Vielen Dank!



