Quantum Black Holes

Marc Casals

Insitut für Theoretische Physik, Universität Leipzig

Outline

- I. Brief Recap of Classical Field Theory
- II. QFT in Flat s-t
 - (a) Formalism
 - (b) Unruh Effect
- III. QFT in Curved s-t
- IV. Black Holes
 - (a) Hawking Radiation, etc
 - (b) Rotation, etc

[Disclaimer: QFT à la "theoretical physics" (not "mathematical physics")]

I. Brief Recap of Classical Field Theory

• Line-element & metric of a curved s-t:

$$ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} \qquad \qquad g \equiv det(g_{\mu\nu})$$

• Einstein-Hilbert action:

$$S_{GR}[g_{\mu\nu}] = \frac{1}{16\pi G} \int_{\Omega} d^4x \, \sqrt{-g} \, (R+2\Lambda)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
 Cosmological const. region of s-t Ricci scalar

• Einstein-Hilbert action with matter action:

$$S[\phi, g_{\mu\nu}] = S_{GR}[g_{\mu\nu}] + S_m[\phi, g_{\mu\nu}]$$

Action principle:

$$\frac{\delta S}{\delta a^{\mu\nu}} = 0 \longrightarrow$$

Einstein field eqs.:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R - \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Stress-energy tensor:
$$T_{\mu\nu} \equiv \frac{2}{\sqrt{-g}} \frac{\delta S_m}{\delta g^{\mu\nu}}$$

 T_{00} : energy density

 T_{0i} : momentum density

$$(\mu, \nu = 0, 1, 2, 3; \quad j = 1, 2, 3)$$

 T_{ij} : (normal & shear) stress

Matter: Scalar Field

For a real (minimally-coupled) scalar field of mass m:

$$S_m[\phi; g_{\mu\nu}] = \int_{\Omega} d^4x \sqrt{-g} \left[\underbrace{-\frac{1}{2} g^{\mu\nu} \phi_{;\mu} \phi_{;\nu} - \frac{1}{2} m^2 \phi^2}_{} \right]$$

 \mathcal{L}_m : Lagrangian density

$$\xrightarrow{\delta S_m/\delta g^{\mu\nu}} T_{\mu\nu} = \phi_{;\mu}\phi_{;\nu} - \frac{1}{2}g_{\mu\nu}\phi^{;\alpha}\phi_{;\alpha} - \frac{1}{2}m^2\phi^2 g_{\mu\nu}$$

It's conserved: $\nabla_{\nu}T^{\mu\nu}=0$

$$\delta S_m/\delta\phi=0$$

$$\Box \equiv g^{\mu\nu} \nabla_{\mu} \nabla_{\nu}$$

Scalar Field in Flat Spacetime

• Klein-Gordon eq. for a massive real scalar classical field in flat s-t:

$$\Box \phi - m^2 \phi = 0 \qquad \qquad \Box = -\partial_t^2 + \vec{\nabla}^2$$

Apply spatial Fourier transform in Cartesian coords.

The modes
$$\phi_{\vec{k}}(t) \equiv \int_{\mathbb{R}^3} \frac{d^3\vec{x}}{(2\pi)^{3/2}} \ e^{-i\vec{k}\vec{x}} \phi(\vec{x},t)$$

satisfy the eq. for the simple harmonic oscillator:

$$\frac{d^2\phi_{\vec{k}}}{dt^2} + \omega_k^2 \phi_{\vec{k}} = 0$$

oscillator frequency:
$$\omega_k \equiv \sqrt{k^2 + m^2}$$
 $k \equiv ||\vec{k}||$

The general sln. may be expressed via the inverse Fourier transform as

$$\phi(x) = \int_{\mathbb{R}^3} d^3 \vec{k} \quad \left(a_{\vec{k}} \ u_{\vec{k}}(x) + \underbrace{a_{\vec{k}}^* \ u_{\vec{k}}^*(x)}_{\text{so that } \phi(x) \in \mathbb{R}} \right)$$

Fourier coefficients

$$u_{\vec{k}}(x) \equiv \frac{e^{-i\omega_k t + i\vec{k}\vec{x}}}{\sqrt{16\pi^3\omega_k}} \quad \text{are mode slns. which are positive frequency} \\ \quad \text{wrt } \partial_t:$$

$$\partial_t u_{\vec{k}} = -i \, \omega_k \, u_{\vec{k}}$$

In particular, the Hamiltonian is that for a set of harm. oscs.:

$$H = \int_{\mathbb{R}^3} d^3 \vec{x} \ T_{00} = \frac{1}{2} \int_{\mathbb{R}^3} d^3 \vec{x} \ \left(\dot{\phi}^2 + (\vec{\nabla} \phi)^2 + m^2 \phi^2 \right)$$
$$= \int_{\mathbb{R}^3} d^3 \vec{k} \ \frac{\omega_k}{2} \left[a_{\vec{k}}^* a_{\vec{k}} + a_{\vec{k}} a_{\vec{k}}^* \right]$$

it's the Hamiltonian of the harm. osc.

The field may be viewed as an infinite set of decoupled simple harm. oscs., one for each \vec{k}

II. QFT in Flat Space-time(a) Formalism

Canonical Quantization

- We've just seen: a real scalar field may be viewed as an infinite collection of decoupled simple harm. oscs., one for each \vec{k}
- In order to quantize the field (in the Heisenberg picture) we quantize the harm. oscs.:

$$a_{\vec{k}} \to \hat{a}_{\vec{k}}$$
: annihilation ops. $a_{\vec{k}}^* \to \hat{a}_{\vec{k}}^\dagger$: creation ops.
$$\Longrightarrow \phi(x) \to \hat{\phi}(x) = \int_{\mathbb{R}^3} d^3 \vec{k} \; \left(\hat{a}_{\vec{k}} \; u_{\vec{k}}(x) + \hat{a}_{\vec{k}}^\dagger \; u_{\vec{k}}^*(x) \right)$$

$$\Longrightarrow T_{\mu\nu}(x) \to \hat{T}_{\mu\nu}(x) \qquad \text{mode slns.}$$
(formally)

• The Minkowski vacuum state is defined via $\hat{a}_{\vec{k}} \mid M \rangle = 0, \ \forall \vec{k} \in \mathbb{R}^3$

Commutation Relations

Commutation rlns. for harm. osc.:
$$\left[\hat{a}, \hat{a}^{\dagger}\right] = \hat{\mathbb{I}}$$

which are equivalent to:
$$[\hat{q}(t), \hat{p}(t)] = \hat{\mathbb{I}}i \quad \forall t$$

So, here for the scalar field:
$$\left[\hat{a}_{\vec{k}},\hat{a}_{\vec{k'}}^{\dagger}\right] = \hat{\mathbb{I}} \,\delta^{(3)} \left(\vec{k} - \vec{k'}\right)$$

which are equivalent to:
$$\left[\hat{\phi}(\vec{x},t),\hat{\Pi}(\vec{x}',t)\right] = \hat{\mathbb{I}}\ i\ \delta^{(3)}(\vec{x}-\vec{x}') \quad \forall t$$

equal-time commutation rlns.

where canonical field momentum
$$\Pi(x) \equiv \frac{\partial \mathcal{L}_m}{\partial \dot{\phi}}$$

Inner Product

• Define
$$(\phi_1, \phi_2) \equiv i \int_{\mathbb{R}^3, t=t_0} d^3 \vec{x} \, [\phi_1^* \partial_t \phi_2 - \phi_2 \partial_t \phi_1^*]$$

- it is a scalar product (it's conjugate-symmetric & linear in 2nd argument)
- if $\phi_1 \& \phi_2$ are slns. of K-G eq, then it is independent of t_0
- The Minkowski modes $u_{\vec{k}}(x)$ are orthonormal:

So (,) is an inner prod. when restricted to the pos. freq. modes $\,u_{ec{k}}$

Quantization Procedure

(1) Choose a set $\{u_i(x), u_i^*(x), \forall i\}$ of slns. of field eq. that is complete and orthonormal:

$$(u_i, u_j) = \delta_{ij} = -(u_i^*, u_j^*), \quad (u_i, u_j^*) = 0$$

(2) Then any sln. of the field eq. may be expanded as

$$\phi(x) = \sum_{i} a_i u_i(x) + a_i^* u_i^*(x) , \quad a_i = (u_i, \phi) , \quad a_i^* = -(u_i^*, \phi)$$

(3) Quantize by promoting to ops. $a_i \to \hat{a}_i$, $a_i^* \to \hat{a}_i^{\dagger}$, $\phi \to \hat{\phi}$

and impose comm. rlns.
$$\left[\hat{a}_i,\hat{a}_j^\dagger\right]=\hat{\mathbb{I}}\,\delta_{ij}$$
 it may be a Dirac- δ

(4) Define a vacuum by $\hat{a}_i | 0 \rangle = 0, \forall i$ excited states by $(\hat{a}_i^{\dagger})^n | 0 \rangle$ etc

Choice of vacuum depends (via \hat{a}_i) on choice of complete set of slns. u_i !

QFT Divergences

$$\hat{\phi}$$
 is an operator-valued distribution - See $\left[\hat{a}_{ec{k}},\hat{a}_{ec{k'}}^{\dagger}\right]=\hat{\mathbb{I}}\ \delta^{(3)}\left(ec{k}-ec{k'}
ight)$

Strictly, one should integrate it against a test-function f(x) in order to get a well-defined operator:

$$\hat{\phi}(f) \equiv \int d^4x \ f(x)\hat{\phi}(x)$$

So products like $\hat{\phi}^2(x)$ in $\hat{T}_{\mu\nu}(x)$ are not well-defined and plague the QFT with divergences

An example of these divergences is in the zero-point energy density:

$$\int_{\mathbb{R}^3} d^3 \vec{k} \, \frac{\omega_k}{2} \left[\hat{a}_{\vec{k}}^{\dagger} \hat{a}_{\vec{k}} + \hat{a}_{\vec{k}} \hat{a}_{\vec{k}}^{\dagger} \right]$$

 $\langle M \mid \hat{H} \mid M \rangle$ per unit volume ~

$$\frac{1}{2} \int_{\mathbb{R}^3} \frac{d^3 \vec{k}}{(2\pi)^3} \omega_k = \frac{1}{4\pi^2} \int_0^\infty dk \ k^2 \sqrt{k^2 + m^2}$$

has ultra-violet divergence since there is an infinite amount of harm. oscs., each with *non*zero zero-point energy $\frac{\omega_k}{2}$

Normal Ordering

- We remove these divergences in a "physically meaningful" way via a 'renormalization' procedure
- In *flat* s-t, we measure energies only as differences wrt a vacuum energy -> renormalize by subtracting a vacuum energy and experiments indicate that such vacuum is the Minkowski vacuum:

$$\langle \psi \mid : \hat{\phi}(x)^2 : \mid \psi \rangle = \langle \psi \mid \hat{\phi}(x)^2 \mid \psi \rangle - \langle M \mid \hat{\phi}(x)^2 \mid M \rangle$$

$$\langle M \mid : \hat{H} : \mid M \rangle = 0$$

This is equivalent to normal ordering: place all annihilation ops. to the right of the creation ops.

$$\hat{H} = \int_{\mathbb{R}^3} d^3\vec{k} \, \frac{\omega_k}{2} \left[\hat{a}_{\vec{k}}^{\dagger} \hat{a}_{\vec{k}} + \hat{a}_{\vec{k}} \hat{a}_{\vec{k}}^{\dagger} \right] \longrightarrow : \hat{H} := \int_{\mathbb{R}^3} d^3\vec{k} \, \omega_k \hat{a}_{\vec{k}}^{\dagger} \hat{a}_{\vec{k}}$$

Bogolyubov Transformations

Consider two complete and orthonormal sets of slns. of the field eqs.: $\{u_i(x), u_i^*(x), \forall i\}$ and $\{v_i(x), v_i^*(x), \forall i\}$

Then

$$\hat{\phi}(x) = \sum_{i} \hat{a}_{i} u_{i}(x) + \hat{a}_{i}^{\dagger} u_{i}^{*}(x) = \sum_{r} \hat{b}_{r} v_{r}(x) + \hat{b}_{r}^{\dagger} v_{r}^{*}(x)$$

and, since $\{u_i(x), u_i^*(x), \forall i\}$ form a complete set,

$$v_r(x) = \sum_i \alpha_{ri} \ u_i(x) + \beta_{ri} \ u_i^*(x) \longleftarrow \text{Bogolyubov transf.}$$

Bogolyubov coeffs.: $\alpha_{ri}, \beta_{ri} \in \mathbb{C}$

Vacuum States

• The relationship between the creation/annihilation ops. is then

$$b_r = (v_r, \phi) \longrightarrow \dots \longrightarrow \hat{b}_r = \sum_i \alpha_{ri}^* \hat{a}_i - \beta_{ri}^* a_i^{\dagger}$$

• Different choices of complete sets yield different quantum 'vacuum' states of the matter field:

$$\hat{a}_i |0\rangle_u = 0, \quad \forall i \quad \text{and} \quad \hat{b}_r |0\rangle_v = 0, \quad \forall r$$

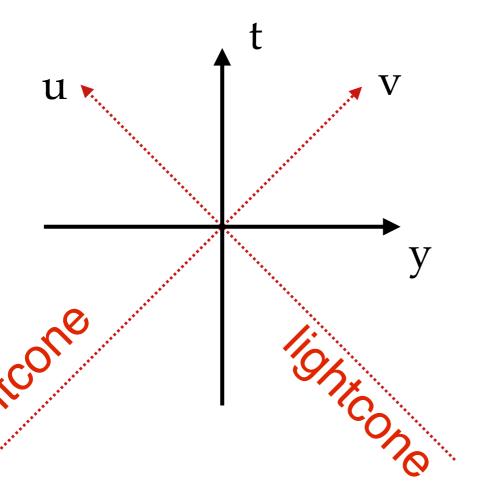
• The number of quantum v-particles of mode 'type r' in the u-vac. is

$$_{u}\langle 0 \mid \hat{b}_{r}^{\dagger}\hat{b}_{r} \mid 0\rangle_{u} = \cdots = \sum_{i} |\beta_{ri}|^{2}$$

The two vac. are equivalent iff $\beta_{ri} = 0, \forall r, i$

(i.e., no mixing between pos. and negat. freq. modes)

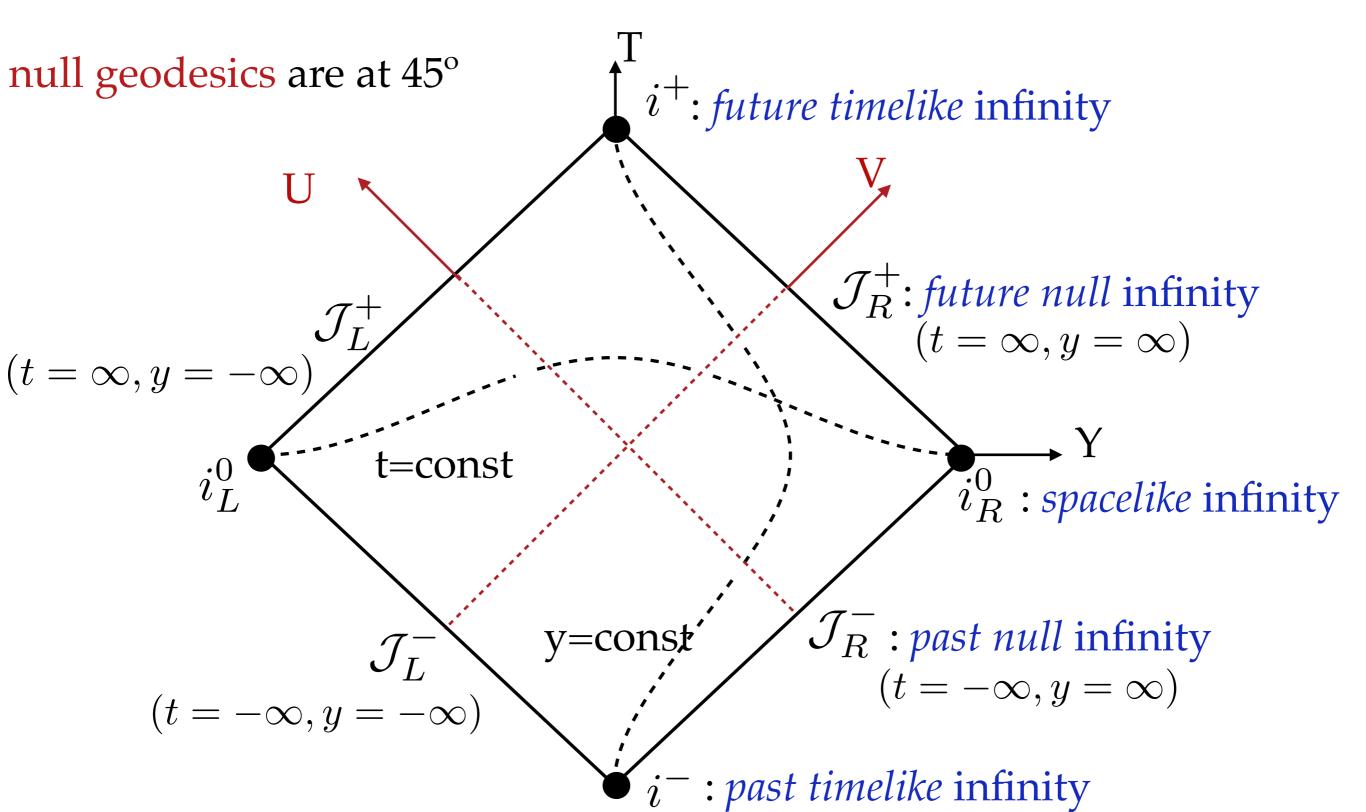
[N.B.: For a rigorous approach: algebraic QFT]


II. QFT in Flat Space-time(b) Unruh Effect

Flat Spacetime

Consider 2-D flat s-t. Line element: $ds^2 = -dt^2 + dy^2$

Inertial coords.: $t,y\in\mathbb{R}$ t is the proper time of inertial observers


Null coords:: $u \equiv t - y, \quad v \equiv t + y \in \mathbb{R}$ $ds^2 = -dudv$

null geodesics (light) are
along u=const or v=const

Penrose Diagram

Compactify
$$U \equiv \arctan u, \ V \equiv \arctan v \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

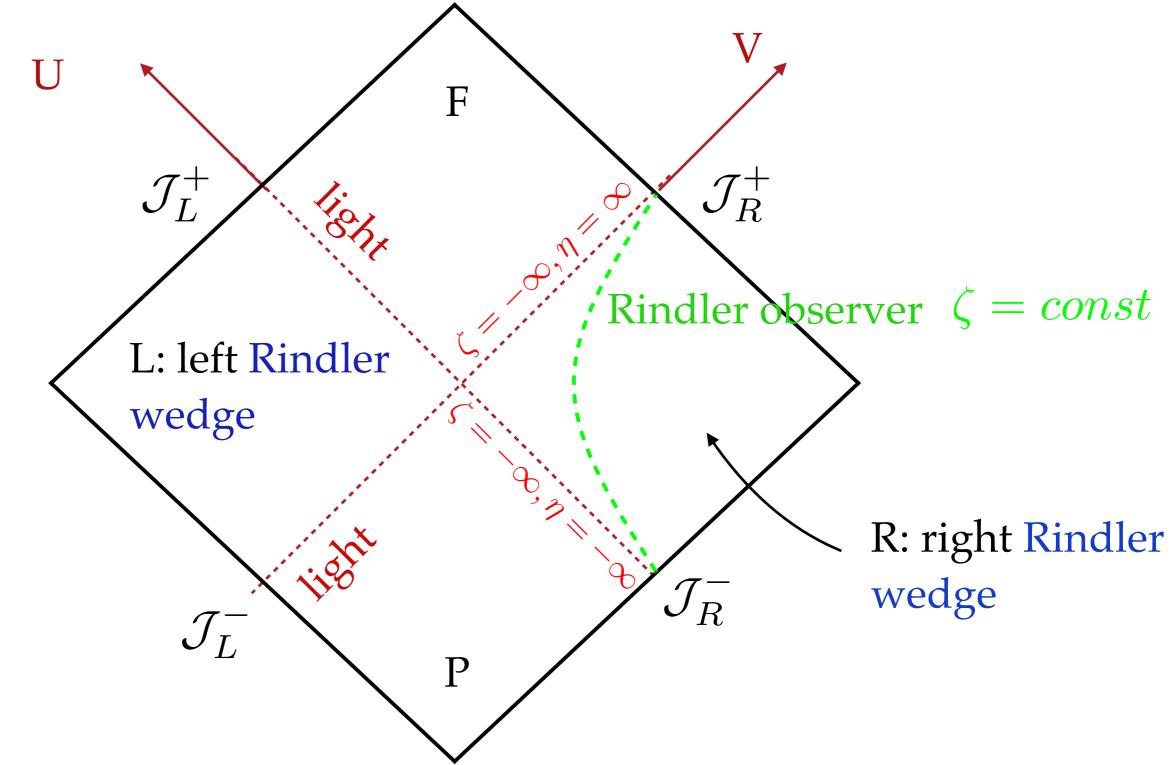
 $T \equiv U + V, \ Y \equiv V - U \in (-\pi, \pi)$

Rindler Observers

• Rindler obs.: obs. with uniform acceleration $~a^2\equiv a^\alpha a_\alpha=const$ and proper time τ . They have

$$t(\tau) = \frac{\sinh(a\tau)}{a}, \quad y(\tau) = \frac{\cosh(a\tau)}{a} \longrightarrow y^2 - t^2 = a^{-2}$$

• Coordinate transf. to Rindler coords. $\{\eta, \zeta\}$:


$$\alpha t = e^{\alpha \zeta} \sinh(\alpha \eta), \ \alpha y = e^{\alpha \zeta} \cosh(\alpha \eta)$$

$$\rightarrow ds^2 = e^{2\alpha \zeta} \left(-d\eta^2 + d\zeta^2 \right)$$

$$\uparrow \text{conformal factor}$$

Rindler obs. are at $\zeta = const$ and measure proper time $\tau = e^{\alpha\zeta}\eta$

• Range $\eta, \zeta \in (-\infty, \infty)$ only cover y > |t|: the right Rindler wedge. Similar transformations can be used to cover the whole s-t

- $\zeta = -\infty$ are Killing horizons (the Killing vect. ∂_{η} is null there)
 - No events in $L \cup F$ can be observed by Rindler obs. in R
 - No events in $R \cup F$ can be observed by Rindler obs. in L
 - L & R are causally disconnected

Wave Eq.

K-G eq. for a scalar field in the inertial frame: $\left(-\partial_t^2 + \partial_y^2\right)\phi = 0$

$$\phi_k = \frac{e^{-i\omega t + iky}}{\sqrt{4\pi\omega}} = \frac{1}{\sqrt{4\pi\omega}} \begin{cases} e^{-i\omega u}, & k > 0 \\ e^{-i\omega v}, & k < 0 \end{cases}$$

These modes:

$$\forall k \in \mathbb{R}, \quad \omega \equiv |k| > 0$$

- are pos. freq. wrt ∂_t : $\partial_t \phi_k = -i\omega \phi_k$

$$(\phi_k, \phi_{k'}) = \delta(k - k') \quad \text{(pos. norm)}$$

- together with their c.c., form a complete set in the whole s-t:

$$\hat{\phi} = \int_{\mathbb{R}} dk \left(\hat{a}_k \phi_k + \hat{a}_k^{\dagger} \phi_k^* \right)$$

K-G eq. in the Rindler frame: $(-\partial_n^2 + \partial_\ell^2) \phi = 0$

$$\left(-\partial_{\eta}^{2} + \partial_{\zeta}^{2}\right)\phi = 0$$

$$\phi_{\bar{k}}^{R} = \frac{e^{-i\bar{\omega}\eta + i\bar{k}\zeta}}{\sqrt{4\pi\bar{\omega}}} = \frac{1}{\sqrt{4\pi\bar{\omega}}} \begin{cases} (-\alpha u)^{i\bar{k}/\alpha}, & \bar{k} > 0 \\ (\alpha v)^{i\bar{k}/\alpha}, & \bar{k} < 0 \end{cases} \quad \text{in R}$$

$$ar{\phi}_{ar{k}}^R=0$$
 in L

 $\forall \bar{k} \in \mathbb{R}, \quad \bar{\omega} \equiv |\bar{k}| > 0$

These modes:

- are pos. freq. modes wrt ~ ∂_η : ~ $\partial_\eta \bar{\phi}_{\bar{k}}^R = -i\bar{\omega}\bar{\phi}_{\bar{k}}^R$ $(\bar{\phi}_{\bar{k}}^R, \bar{\phi}_{\bar{k}'}^R) = \delta(\bar{k} - \bar{k}')$

- with their c.c., form a complete set in R only -> define the mode slns.:

$$\bar{\phi}_{\bar{k}}^{L} = \frac{1}{\sqrt{4\pi\bar{\omega}}} \begin{cases} (-\alpha v)^{i\bar{k}/\alpha}, & \bar{k} > 0\\ (\alpha u)^{i\bar{k}/\alpha}, & \bar{k} < 0 \end{cases} \quad \text{in L}$$

$$\bar{\phi}_{\bar{k}}^{L} = 0 \quad \text{in R}$$

Quantum States

• The two sets of modes together form a complete set in the whole s-t:

$$\hat{\phi} = \int_{\mathbb{R}} d\bar{k} \left(\hat{b}_{\bar{k}}^R \bar{\phi}_{\bar{k}}^R + \hat{b}_{\bar{k}}^L \bar{\phi}_{\bar{k}}^L + \text{h.c.} \right)$$

• Vacuum states:

- Minkowski vacuum: $\hat{a}_k \mid M \rangle = 0, \ \forall k \in \mathbb{R}$

- Rindler vacuum: $\hat{b}_{\bar{k}}^R \mid R \rangle = \hat{b}_{\bar{k}}^L \mid R \rangle = 0, \ \forall \bar{k} \in \mathbb{R}$

• How many Rindler particles does the Minkowski vacuum contain? (Unruh'76)

• The pos. freq. (wrt ∂_t) Minkowski modes

$$\phi_k = \frac{1}{\sqrt{4\pi\omega}} \begin{cases} e^{-i\omega u}, & k > 0 \\ e^{-i\omega v}, & k < 0 \end{cases}$$

and any linear combinations of them (ie, trivial Bogolyubov transf. $\beta_{kk'}=0$ are analytic and bounded in the lower half of the complex u- and v-planes

But this property is not satisfied if any negat. freq. mode ϕ_k^* is included -> characterization of Minkowski pos.freq. modes: they are analytic and bounded in the lower u- and v-planes

• Rindler modes for $\bar{k}>0$: $\phi_{\bar{k}}^R \propto \begin{cases} (-\alpha u)^{i\bar{k}/\alpha}, & u<0 \text{ (eg, in R)} \\ 0, & u>0 \text{ (eg, in L)} \end{cases}$ are not analytic in the lower u-plane

• But it can be shown that the new modes

$$u_{\bar{k}}^{R} \equiv \frac{e^{\pi\bar{\omega}/(2\alpha)}}{\sqrt{2\sinh(\pi\bar{\omega}/\alpha)}} \left[\bar{\phi}_{\bar{k}}^{R} + e^{-\pi\bar{\omega}/\alpha} \bar{\phi}_{-\bar{k}}^{L^{*}} \right] \qquad \forall \bar{k} \in \mathbb{R}$$

are analytic and bounded in the lower half of the u- and v-planes

• For $\bar{k} > 0$ they are concentrated in R, so also construct

$$u_{\bar{k}}^{L} \equiv \frac{e^{-\pi\bar{\omega}/(2\alpha)}}{\sqrt{2\sinh\left(\pi\bar{\omega}/\alpha\right)}} \left[\bar{\phi}_{-\bar{k}}^{R^*} + e^{\pi\bar{\omega}/\alpha}\bar{\phi}_{\bar{k}}^{L}\right] \qquad \forall \bar{k} \in \mathbb{R}$$

which are also analytic and bounded in the lower half of the u- and v-planes, and, for $\bar{k} > 0$, they are concentrated in L

So $u_{\bar{k}}^R$ and $u_{\bar{k}}^L$ are pos. freq. Minkowski modes

• We can expand
$$\hat{\phi}=\int_{\mathbb{R}}dar{k}~\left(\hat{a}_{ar{k}}^Ru_{ar{k}}^R+\hat{a}_{ar{k}}^Lu_{ar{k}}^L+\mathrm{h.c.}\right)$$

Then
$$\hat{a}_{\bar{k}}^R \mid M \rangle = \hat{a}_{\bar{k}}^L \mid M \rangle = 0, \ \forall \bar{k} \in \mathbb{R}$$

• We have explicitly constructed the Bogolyubov transf.:

$$b_{\bar{k}}^{R} = (\phi, \bar{\phi}_{\bar{k}}^{R})$$

$$\hat{b}_{\bar{k}}^{R} = \frac{1}{\sqrt{2\sinh(\pi\bar{\omega}/\alpha)}} \left[e^{\pi\bar{\omega}/(2\alpha)} \hat{a}_{\bar{k}}^{R} + e^{-\pi\bar{\omega}/(2\alpha)} \hat{a}_{-\bar{k}}^{L\dagger} \right]$$

• Thus, the num. of Rindler particles contained in Minkowski vac. is

$$\langle M \mid \hat{b}_{\bar{k}}^{R^{\dagger}} \hat{b}_{\bar{k}}^{R} \mid M \rangle = \frac{1}{e^{2\pi\bar{\omega}/\alpha} - 1}$$

This is a thermal Planck spectrum of Rindler particles with temperature $T_0 = \frac{\alpha}{2\pi k_B}$

Unruh Effect

If the field $\hat{\phi}$ is in the *Minkowski vacuum* $\mid M_{\!\scriptscriptstyle b}
angle$

- an inertial observer detects no particles
- a Rindler observer detects a thermal bath of (Rindler) particles at the Unruh temperature $\frac{-\alpha \zeta_{T}}{2}$

$$T = e^{-\alpha \zeta} T_0$$
conformal factor

This Unruh effect is not currently measurable, eg,

for
$$T = 1K < T_{CMB} \approx 3K$$
 we need $a \sim 10^{20} m/s^2$

currently unachievable

• The Rindler vacuum is seen as empty by Rindler observers

• It can be shown that the 'renormalized' $\langle R \mid : \hat{T}_{\mu\nu} : \mid R \rangle$ diverges at the Killing horizons (in the regular inertial frame)

Therefore, the Rindler vacuum is an unphysical state

What semiclassical effects do we get if the space-time is curved?...

Hilbert Space

The Minkowski vacuum state is defined via $\hat{a}_{\vec{k}} \mid M \rangle = 0, \ \forall \vec{k} \in \mathbb{R}^3$

$$\longrightarrow$$
 $\mathcal{H}_1 \equiv \left\{ \hat{a}_{\vec{k}}^{\dagger} \mid M \rangle, \, \forall \vec{k} \in \mathbb{R}^3 \right\}$ is the 1-particle Hilbert sp.

→ ...

The Hilbert sp. of the QFT (Fock space) is

$$\mathcal{H} = \mathbb{C} \oplus \mathcal{H}_1 \oplus (\mathcal{H}_1 \otimes \mathcal{H}_1)_{sym} \oplus (\mathcal{H}_1 \otimes \mathcal{H}_1 \otimes \mathcal{H}_1)_{sym} \oplus \dots$$