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[ Disclaimer: QFT a la “theoretical physics” (not “mathematical physics”)]



[. Brief Recap of Classical Field Theory



General Relativity h=ec=1

o [ ine-element & metric of a curved s-t:

ds* = g, dx"dz" g = det(guv)

e Finstein-Hilbert action:

1
SGR[QW/] — T e /Qd433‘ vV —(d (R -+ 2A)
T I T Cosmological const.
region of s-t Ricci scalar

¢ FEinstein-Hilbert action with matter action:

S[Qﬁ, g,ul/] — SGR[g;u/] =T Sm[gba g,UJ/]



Action principle:

0S5
5g;u/

— 0 >

Stress-energy tensor:

Too : energy density

10 : momentum density

Einstein field egs.:
!
Rw/ o §g,u,z/R o Agw/
2 08

Ly =
/=g ogm

(v =0,1,2,3;

T;; : (normal & shear) stress

=8nG1,;

j=1,2,3)



Matter: Scalar Field

For a real (minimally-coupled) scalar field of mass m:

Sm[qb;g,u,l/] — /Qd433 \/jg

0Sm /ogH”

1 1% 1 2 12
_§g'u (/b;,ugb;u — §m 0
| N ———

Ly, : Lagrangian density

1 1

> Ty = Giubiw — S 9uwd bia — 576" g

2 2

It's conserved: V,T"" =0

6Sm/d¢p =0
» Klein-Gordon eq.:

b —m? =0

— g'ul/v,uvy




Scalar Field in Flat Spacetime

e Klein-Gordon eq. for a massive real scalar classical field in flat s-t:

d—mip =0 :—3752—%62

e Apply spatial Fourier transform in Cartesian coords.

de ot
Th d (1) = kT (7 ¢
€ modaes ¢k( ) /R3 (27_[_)3/2 € Qb(’]f, )

satisfy the eq. for the simple harmonic oscillator:

o
dt?

- widp =0

oscillator frequency: Wi = \/ k2 +m



The general sln. may be expressed via the inverse Fourier transform as

PlL) = / 4>k ap up(x) + a;—:» ul"—;(x)
R3 A e, s’

so that ¢(z) € R

Fourier coefficients

e—iwk t—|—’LZf
U E(x) = 2 are mode slns. which are positive frequency
Vv 1673wy, wrt 9, :
Orup = —iwg Uz
V

0



In particular, the Hamiltonian is that for a set of harm. oscs.:

H= [ d°F Ty = 1/ d°7 ((252 +(Vg)? + m2¢2>
2 R3

R'S

L = Wk K K
—/Rgd ]{7 7 [ ECLE—FCLECLE}
S
it's the Hamiltonian of the harm. osc.

The field may be viewed as an infinite set of decoupled simple harm.
0scs., one for each E



II. QFT in Flat Space-time

(a) Formalism



Canonical Quantization

e We’ve just seen: a real scalar field may be viewed as an infinite
collection of decoupled simple harm. oscs., one for each f

e In order to quantize the field (in the Heisenberg picture) we
quantize the harm. oscs.:

2 A 1 . . » s .
ap — aj:annihilation ops. ap — a.:creation ops.

. T,Lu/ (/L') _ T/l,l/ (’1?) mode slns.

(formally)

e The Minkowski vacuum state is defined via a; | M) = 0, vk € R?



Commutation Relations

Commutation rlns. for harm. osc.: [&, aﬂ — 1

which are equivalent to: q(t),p(t)] = Ti Vit

So, here for the scalar field: {CAL;;’: CALT—;} =146® (E - E/)

A ﬂ‘/

which are equivalent to: {Qg(fa t), ﬁ(f/, ?f)} —T1i6® (¥ —2) WVt
Tequal—‘cime commutation rins.

0L,
¢

where canonical field momentum 1I(z) =



Inner Product

Define  (d1,62) =i [ a7 (01000 — 0u0roi]

- it is a scalar product (it's conjugate-symmetric & linear in 2nd
argument)

-if @1 & @2 areslns. of K-G eq, then it is independent of ¢

=

e The Minkowski modes U ,;'(CU ) are orthonormal:

ur uz) =03 (k—k') =— (u,ul,
(g, ug) Y

(uE,u2,> =0

the pos. freq. modes the negat. norm modes
have positive norm have negative norm

So (, ) is an inner prod. when restricted to the pos. freq. modes Uj



Quantization Procedure

(1) Choose a set {u;(x),u; (x),Vi} of slns. of field eq. that is
complete and orthonormal:

*

(’UJZ,UJ) = (SZ] = — (’UJZ ,’UJ;) ) (uz, ) - O
(2) Then any sln. of the field eq. may be expanded as

Zazuz )+ aiui(z), ai=(u, @), a; =—(u;,o)

A

(3) Quantlze by promoting to ops. a; — a;, a; — CAL,:-r, O — @

and impose comm. rins. {&z‘, &H = 10,5

t

it may be a Dirac-0

(4) Define a vacuum by a,;(0) = 0,Vi excited states by (&I ) | 0) etc

Choice of vacuum depends (via @;) on choice of complete set of slns. Ui !



QFT Divergences

Qg is an operator-valued distribution - See {dl%’ IZ} — 7 53) (E E’)

Strictly, one should integrate it against a test-function f () in order
to get a well-defined operator:

o(f) = / Pz f(2)d(@)

So products like ¢2(z) in TLW (x)are not well-defined and plague
the QFT with divergences



An example of these divergences is in the zero-point energy density:

/dlZ“’—{
- >

[
(M | bai | M) per unit volume ~

1 3k 1 P
- = — | dk k2\/k2 + m?
2 / (27)3 % T 42 vV +m

A oA AT
ak+akaE

??‘1—’1‘

has ultra-violet divergence since there is an infinite amount of
harm. oscs., each with nonzero zero-point energy “k

2



Normal Ordering

e We remove these divergences in a “physically meaningful” way via
a ‘renormalization” procedure

* In flat s-t, we measure energies only as differences wrt a vacuum
energy -> renormalize by subtracting a vacuum energy and
experiments indicate that such vacuum is the Minkowski vacuum:

(W [: d(x)* | ) = (¢ | (2)* [ ) — (M | $(x)? | M)

(M |: H:| M) =0

This is equivalent to normal ordering: place all annihilation ops. to the
right of the creation ops.

H=[ & =*|alag +agal| —: H:= | d°k wpala,
L.~k kL R3 kK



Bogolyubov Transformations

Consider two complete and orthonormal sets of sIns. of the field

{ui(z), u; (), Vi} and {v;(x), v} (), Vi}

Then

Zazuz )+ a;u; ( Zb vl +bT ~(7)

and, since {uz( ), u; (x),Vi} form a Complete set,

Z Qg uz + B3 aL: ( ) <+— Bogolyubov transt.

Bogolyubov coeffs.: i, Oy € C



Vacuum States

e The relationship between the creation/annihilation ops. is then

bT:(vT7¢) - ... b"“:za:ii &’&_ :jz al'L
)

e Different choices of complete sets yield different quantum ‘“vacuum’
states of the matter field:

A

(;

0)y =0, Vi and  b,.|0), =0, Vr
e The number of quantum v-particles of mode ‘type r’ in the u-vac. is

u(0] 08, [ Oy =+ = " |Byil”

The two vac. are equivalent iff 3,; = 0, Vr, 1

(i.e., no mixing between pos. and negat. freq. modes)

[N.B.: For a rigorous approach: algebraic QFT]



II. QFT in Flat Space-time
(b) Unruh Effect



Flat Spacetime

Consider 2-D flat s-t. Line element:  ds? = —dt* + dy*

Inertial coords.: t,y € R t is the proper time of inertial observers

Null coords.: u=t—vy, v=t+y R

ds® = —dudv
R
u v, « V
—+ > null geodesics (light) are
X along u=const or v=const
S %0
& 8



Penrose Diagram

' U = arct V' = arct S ( )
= arctan = arctan
Compactify U, v ' 9

T=U+V,Y=V-U €(—m,n)

null geodesics are at 45°

it future timelike infinity

J g : future null infinity
( — X, Y = OO)

0% spacelike infinity

re past null infinity

(t = —00,y = 00)

v~ . past timelike infinity



Rindler Observers

e Rindler obs.: obs. with uniform acceleration a® = a“a,, = const
and proper time 7 . They have
inh h _
Hr) — sin (cm')7 y(r) = cosh(ar) . y2 422
a a
e Coordinate transf. to Rindler coords. {n,(} :
at = e“¢ sinh(a ay = e“¢ cosh(a
(an), ay (an) o s 0

— ds? = e**¢ (—dn2 + dCQ)

T conformal factor

Rindler obs. are at ( = const and measure proper time 7 = eo‘cn

e Range 17, ( € (—00,00) only cover Yy > |t|: the right Rindler
wedge. Similar transformations can be used to cover the whole s-t



L: left Rindler

R: right Rindler
wedge

( = —oo are Killing horizons (the Killing vect. 0y is null there)

-No eventsin L U F' can be observed by Rindler obs. in R
- No eventsin R |J ' can be observed by Rindler obs. in L
- L & R are causally disconnected



Wave Eq.

K-G eq. for a scalar field in the inertial frame: (—(9,52 T 35) ¢=0—

Ok =

e—iwt—l—iky B 1 e—iwu7 >0
Varw Varw |e ™, k<0

VkeR, w=lk|>0

These modes:

- are pos. freq. wrt O¢:  0rdp, = —Iwdi

|

(K, Prr) = 0(k — k/) (pos. norm)

- together with their c.c., form a complete set in the whole s-t:

A

o= | ar (anor+alo;)



K-G eq. in the Rindler frame: (—82 oF (92) ¢ =

1 ¢/
pr_ 1 Jmaw™e k>0 R
& VAaATw Virw | (av)™/e, k<0

S =0 inL VkeR, w=|kl>0
These modes:

- are pos. freq. modes wrt @n: aMEER = —W él%R

l

(5 01s) = (k= )
- with their c.c., form a complete set in R only -> define the mode sIns.:

s L J(zav)™e k>0
koo VAamTw (Oéu)ik/aa k<0

¢or =0 inR

in L



Quantum States

e The two sets of modes together form a complete set in the whole s-t:

A

b = / dk (13,%,{?" + bl ok + h.c.>
R

¢ Vacuum states:
- Minkowski vacuum: ax | M) =0, Vk € R

- Rindler vacuum: 135 | R) = (A),% |R) =0, Vk e R

e How many Rindler particles does the Minkowski vacuum
contain? (Unruh’76)



g, B
g, Tz ()

1
e

and any linear combinations of them (ie, trivial Bogolyubov transf.

e The pos. freq. (wrt 9;) Minkowski modes {

Okkr = 0 are analytic and bounded in the lower half of the complex

u- and v-planes

But this property is not satisfied if any negat. freq. mode ¢;. is
included -> characterization of Minkowski pos.freq. modes: they are
analytic and bounded in the lower u- and v-planes

(—ow)*/* 4 <0 (eg, in R)
0, u >0 (eg, in L)
are not analytic in the lower u-plane

e Rindler modes for k > 0: Qﬁf X {



e But it can be shown that the new modes

1yt = oy e~ TW/a _}
© /2sinh (rw/a) " "

Vk € R

are analytic and bounded in the lower half of the u- and v-planes

e For k£ > ( they are concentrated in R, so also construct
o~ 7@/ (20) o o
ui,;j = {WE,; + e”“/a¢ﬂ

\/2sinh (mw/a)

Vk € R

which are also anal}_ftic and bounded in the lower half of the u- and
v-planes, and, for k > 0, they are concentrated in L

S0 uER and ué are pos. freq. Minkowski modes



* We can expand ¢ = / dk (a fu,!f’ T &fuf + h.c.)
R

Then a7 | M)=ar | M) =0, Vk e R

e We have explicitly constructed the Bogolyubov transf.:

l = (¢, 97)

~ 1 B B ;

bR _ { o/ (20) R —ﬂ'w/(ZOz)AL_}
\/2 sinh (7w /) ‘ : ‘ "’

e Thus, the num. of Rindler particles contained in Minkowski vac. is

1
e2rw/a

/\"‘/\
(M| b by | M) =

This is a thermal Planck spectrum of Rindler particles with

temperature 7, — =
QWkB




Unruh Effect

If the field ¢ is in the Minkowski vacuum ‘ M>
- an inertial observer detects no particles

- a Rindler observer detects a thermal bath of (Rindler) particles

at the Unruh temperature
g T = e T,

!

conformal factor

This Unruh effect is not currently measurable, eg,

for T=1K < Tcymp ~ 3K weneed a~ 10%"m/s?

currently unachievable



e The Rindler vacuum is seen as empty by Rindler observers

e It can be shown that the ‘renormalized’ (R |: Tuv | R)
diverges at the Killing horizons (in the regular inertial frame)

Therefore, the Rindler vacuum is an unphysical state

What semiclassical effects do we get if the space-time 1s curved?...






Hilbert Space

The Minkowski vacuum state is defined via ar | M) =0, Vk € R3

» Hq = {&;% M), vk - Rg} is the 1-particle Hilbert sp.

>

The Hilbert sp. of the QFT (Fock space) is

H:C@H1@(H1 ®7‘l1)sym@(7'[1 ® H+ ®H1)Sym@...



