

Friedrich-Schiller-Universität Jena

Physik-Combo 2021

Constraints on the nuclear equation of state from binary neutron star mergers

Matteo Breschi matteo.breschi@uni-jena.de

In collaboration with R. Gamba, V. Nedora, S. Bernuzzi *et al*.

Binary neutron star mergers

- Single event that requires a **multi-disciplinary description**
- Different messengers carry **complementary information**

Numerical relativity

Equation of state

- Nuclear interactions between NS components determine the properties of matter, encoded in the **equation of state** (EOS)
- Observable transients carry information about the matter properties that are direct signatures of the nuclear forces inside the NS

Observations

- LIGO-Virgo interferometers detected a GW trigger corresponding to an **inspiralling BNS** [1]
- Fermi and INTEGRAL detected a **GRB** coming from a coincident sky region
- Optical and radio observatories identified an **EM counterpart** in a nearby galaxy, NGC 4993

Multimessenger astronomy with compact binary mergers

[1] LVC et al., <u>10.3847/2041-8213/aa91c9</u> (2017)

GW170817

400 LIGO - Virgo

- We analyze **GW170817** with different template models
- Tidal inference is strongly informed by **high-frequency contribution** [2]

[2] R. Gamba et al., <u>10.1103/PhysRevD.103.124015</u> (2020)
[3] LVC, <u>10.1103/PhysRevLett.121.161101</u> (2018)

AT2017gfo

- KNe are quasi-thermal emission driven by *r*-process nucleosynthesis in a neutron-rich environment
- The luminosity peak moved from the **UV band** to the **IR band** after ~5 day [4]
- We perform kN model selection observing that **multi-component anisotropic ejecta** are favored [5]
 - Fast equatorial component (*blue*)
 - Polar wind due to matter reprocessed by *weak interactions*
 - Slow component (*red*)
- Anisotropic models improve the late-time characterization

[4] V.A. Villar et al., <u>10.3847/2041-8213/aa9c84</u> (2017) [5] M. Breschi et al., <u>10.1093/mnras/stab1287</u> (2021) AB mag

EOS inference

• Using NR-calibrated formulae ($M = 1.188 M_{\odot}$) [6], we can map the ejecta properties into the binary parameters,

kN observation
$$\xrightarrow{\text{PE}} p(m_{\text{ej}}, v | \boldsymbol{d}_{\text{kn}}) \xrightarrow{\text{NR}} p(q, \tilde{\Lambda} | \boldsymbol{d}_{\text{kn}})$$

[6] V. Nedora et al., <u>arXiv:2011.11110</u> (2020)

GW Postmerger

[7] M. Breschi et al., <u>10.1103/PhysRevD.100.104029</u> (2019)
[8] A. Prakash et al., <u>arXiv:2106.07885</u> [astro-ph.HE] (2021)

Next-generation detections

20

0

3

 $\log \mathcal{B}$

1 ×

×

×

SLy

DD2

×××

Thr. SNR

Injected

- Injection study with next-generation detector (Einstein Telescope) with design sensitivities [9]
 - PM BNS signals are confidently detected for sources located at ~150 Mpc (SNR 7)

[9] M. Breschi et al., <u>10.1103/PhysRevD.104.042001</u> (2021)

- PM data provide high-density constraints, employing inspiral information[10]
- Full-spectrum BNS observation is expected to reduce of ~60% the current uncertainties on the nuclear EOS
- EOS inference allows us to estimate the **maximum NS mass** with an accuracy > 10%

^[10] M. Breschi et al., (in preparation) (2021)

Outlook

- Current data gives informative results constraining $R_{1.4M\odot}$ to 12.2 ± 0.5 km (1 σ level)
- NR-informed formulae allow us to combine GW+KN inferences
- Next-generation PM data will provide information on the high-density EOS properties
- Resources are available on the web
 - **bajes** pipeline, <u>https://github.com/matteobreschi/bajes</u>
 - CoRe database, http://www.computational-relativity.org

Thanks!

Back-up slides

Bayesian model

• Starting from the **Bayes' theorem**

• GW likelihood taken as Gaussian in the Fourier domain

$$\log p(\boldsymbol{d}|\boldsymbol{\theta}) \propto -\frac{1}{2} \int \frac{|\tilde{d}(f) - \tilde{h}(f;\boldsymbol{\theta})|^2}{S_n(f)} \,\mathrm{d}f$$

• **kN likelihood** taken as Gaussian in the bolometric magnitudes

$$\log p(\boldsymbol{d}|\boldsymbol{\theta}) \propto -\frac{1}{2} \sum_{b} \int \frac{\left[d_{b}(t) - \ell_{b}(t;\boldsymbol{\theta})\right]^{2}}{\sigma_{b}^{2}(t)} \,\mathrm{d}t$$

Sampling

- In a realistic scenario, the likelihood is non-trivial
 - Statistical computational methods improve the exploration of the **parameter space**

- Markov-chain Monte Carlo
 - Computational thermalization process
 - Reproduce the targeted probability

- Nested sampling [*]
 - Reconstruct isoprobability contours
 - Bayesian technique for model selection

^[*] J. Skilling, <u>doi:10.1214/06-BA127</u> (2006)

About GW170817

- Chirp mass constrained around around 1.188 Mo
- Mild spin contributions lacksquare
- Source located at ~40 Mpc lacksquare
- Discrepancies in tidal parameter lacksquarewith different approximants
- Tidal parameter is informed at lacksquarehigh-frequency regimes

 10^{3}

- H1/L1 V1

> K1ET

 10^{-3}

 $I_{ ilde{\Lambda} ilde{\Lambda}}^{-10}(f) \left[\mathrm{Hz}^{-1}
ight]_{-1}$

kN lightcurve

• For a fixed profile, a single ejecta shell is characterized by three parameters: **mass**, **velocity** and **gray opacity**

$$\boldsymbol{\theta}_{\rm ej} = \{m, v, \kappa\} \times N_{\rm components}$$

- The **photosphere radius** R_{ph} and the **effective temperature** T_{eff} are estimated for every shell
- Then, the **bolometric flux** is computed as

$$F_{\nu}(\mathbf{n},t) = \int_{\mathbf{n}_{\Omega} \cdot \mathbf{n} > 0} \left(\frac{R_{\rm ph}(\Omega,t)}{D_L} \right)^2 B_{\nu}(T_{\rm eff}(\Omega,t)) \, \mathbf{n} \cdot \mathrm{d}\mathbf{\Omega}$$

• Finally, the contributions of each shell are gathered together in order to compute the total magnitudes for each photometric band

NR information

- Numerical relativity (NR) information allows observable quantities to be mapped into progenitor parameters through calibrated formulae
 - Ejecta: dynamical masses, velocities, opacities and disk masses [*]
 - **Postmerger**: characteristic frequencies, amplitudes and times [#]
 - Accuracy of the fits is intrinsically related with NR errors

[*] V. Nedora et al., arXiv:2011.11110 (2020)
[#] M. Breschi et al., 10.1103/PhysRevD.100.104029 (2019)

GWTC-1

• We re-analyze the BBH mergers presented in GWTC-1 [*] using the effective-one-body model TEOBResumS [#]

[*] LVC, <u>10.1103/PhysRevX.9.031040</u> (2019) [#] A. Nagar *et al.*, <u>10.1103/PhysRevD.98.104052</u> (2018)