Modelling Gravitational Waves

Sarp Akçay¹

¹FSU Jena

15 March 2019

Outline

Part I

- Linearized general relativity and gravitational waves
- Quadrupole formula
 Part II
- Newtonian inspiral: the chirp
- Post-Newtonian theory Part III
- Perturbation theory Part IV
- Effective-one-body theory
- Synergies

Gravitational waves: Einstein 1916

Summary:

- Perturbations of spacetime with speed = c, sourced by accelerating masses (non-spherical).
- Wave equation: $\Box \bar{h}_{\mu\nu} = 0.$
- Plane-wave solution: $\bar{h}_{\mu\nu} = \Re \left[A_{\mu\nu} e^{\pm i\omega(t-z/c)} \right]$
- Only 2 DoF ⇒ 2 polarizations (transverse)

Gravitational waves: linearized gravity I

Assume:

 \exists a global inertial coordinate system in which

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \quad \text{with} \quad |h_{\mu\nu}| \ll 1$$

• $\eta_{\mu\nu} = \text{diag}[-1, 1, 1, 1]$ is the flat background metric.

- Gravitational field generated by the source $T_{\mu\nu}$ does not back-react on itself: $\partial_{\mu}T^{\mu\nu} = 0$.
- $h_{\mu\nu}$ is Lorentz covariant

$$g_{\mu'\nu'} = \frac{\partial x^{\mu}}{\partial x^{\mu'}} \frac{\partial x^{\nu}}{\partial x^{\nu'}} g_{\mu\nu} = \underbrace{\eta_{\mu'\nu'}}_{=\eta_{\mu\nu}} + \underbrace{\Lambda^{\mu}_{\ \mu'}\Lambda^{\nu}_{\ \nu'}h_{\mu\nu}}_{(0,2) \text{ tensor}}$$

• Gauge transformations: $x^{\mu} \to x'^{\mu} = x^{\mu} + \xi^{\mu}$ with $|\partial_{\mu}\xi_{\nu}| \lesssim |h_{\mu\nu}|$

$$h_{\mu\nu} \to h_{\mu\nu} - \partial_{\mu}\xi_{\nu} - \partial_{\nu}\xi_{\mu}$$

 $h \to h - \mathcal{L}_{\xi}\eta$

Gravitational waves: linearized gravity II

Solve the vacuum ($r \gg M$) Einstein field equation to $\mathcal{O}(|h_{\mu\nu}|)$:

- Zeroth-order (background) terms: $G^0_{\mu\nu}[\eta] = 0 \Rightarrow 0 = 0$
- First-order terms: $G^1_{\mu\nu}[h] = 0$
- Rewrite in terms of trace-reversed metric $\bar{h}_{\mu\nu} \equiv h_{\mu\nu} \frac{1}{2}\eta_{\mu\nu}h$
- Pick a gauge: $x^{\mu} \rightarrow x'^{\mu} = x^{\mu} + \xi^{\mu}$ implies

$$\partial^{\nu}\bar{h}_{\mu\nu} \to (\partial^{\nu}\bar{h}_{\mu\nu})' = \partial^{\nu}\bar{h}_{\mu\nu} - \Box\xi_{\mu}$$

Let ξ_{μ} be such that it solves $\Box \xi_{\mu} = f_{\mu} \Longrightarrow \overline{(\partial^{\nu} \bar{h}_{\mu\nu})' = 0}$ (Lorenz)¹ $[f_{\mu} \equiv \partial^{\nu} \bar{h}_{\mu\nu}, \ \xi_{\mu} = \int d^{4}y \, G(x-y) f_{\mu}(x) \ (\Box \text{ is invertible})]$

When the dust settles we get a wave equation!

$$\Box \bar{h}_{\mu\nu} = 0 \qquad (\text{sourced version:} -16\pi T_{\mu\nu})$$

Plane-wave solutions $\bar{h}_{\mu\nu} = \Re \left[A_{\mu\nu} e^{ik_{\mu}x^{\mu}} \right]$, where $k^{\mu} = (\omega/c, \vec{k})^{T}$.

¹Also known as Hilbert gauge or Lorentz gauge (see Maggiore pg. 8, footnote 4)

Gravitational waves: DoF and TT gauge

- $A_{\mu\nu}$ is the **polarization** tensor.
 - $\{\bar{h}_{\mu\nu}, A_{\mu\nu}\}$: 4 × 4, symmetric $\Rightarrow \frac{4\times 5}{2} = 10$ d.o.f.
 - Lorenz gauge: $\partial_{\mu}\bar{h}^{\mu\nu} = A_{\mu\nu}k^{\nu} = 0 \Rightarrow 10 4 = 6 \text{ d.o.f.}$
 - Residual gauge freedom: consider $x^{\mu} \to x''^{\mu} = x^{\mu} + \chi^{\mu} : \Box \chi^{\mu} = 0$ Then, $\partial^{\nu} \bar{h}_{\mu\nu} = 0 \to \partial^{\nu} \bar{h}_{\mu\nu} - \Box \chi_{\mu} = 0$ and $\Box (\bar{h}_{\mu\nu} - \chi_{\mu\nu}) = 0$, where $\chi_{\mu\nu} = \partial_{\mu}\chi_{\nu} + \partial_{\nu}\chi_{\mu} - \eta_{\mu\nu}\partial_{\alpha}\chi^{\alpha}$ χ^{μ} : 4 conditions $\Rightarrow 6 - 4 = 2$ d.o.f.

Pick χ^{μ} such that

 $\begin{cases} h_{0\mu} = 0, & \text{transverse}^2 \\ h^{\mu}_{\ \mu} = h^i_{\ i} = 0, & \text{traceless} \end{cases} \text{TT gauge is a vacuum gauge!}$

W/o loss of generality: $k^{\mu} = (k, 0, 0, k)^T$ then

 $A_{11} = -A_{22} \neq 0$ and $A_{12} = A_{21} \neq 0$

 \Rightarrow 2 POLARIZATIONS: $h_+ \equiv A_{11}, h_{\times} \equiv A_{12}$

Consistent with ± 2 helicities of a massless spin 2 boson.

²See Maggiore pg. 8 as to why we list 5, not 4 conditions.

Gravitational waves: effects on test masses

Geodesic deviation

Two geodesics separated by ξ^{μ} : $\frac{d^2\xi^i}{d\tau^2} = -R^i_{\ 0j0}\xi^j\left(\frac{dx^0}{d\tau}\right)^2$

$$\ddot{\xi^{i}} = \frac{1}{2}\ddot{h}_{ij}^{\mathsf{TT}}\xi^{j} \qquad (\text{relative acceleration})$$

GW along z:
$$h_{ij}^{\mathsf{TT}} = \begin{pmatrix} h_+ & 0\\ 0 & -h_+ \end{pmatrix} \sin \left(\omega \left(t - \frac{z}{c} \right) \right)$$

Under the GW: $(x_0, y_0) \rightarrow (x_0 + \delta x(t), y_0 + \delta y(t))$

$$(\delta \ddot{x}, \delta \ddot{y})^T = \frac{h_+}{2} (-x_0, y_0)^T \omega^2 \sin \omega t$$
$$(\delta x(t), \delta y(t))^T = \frac{h_+}{2} (x_0, -y_0)^T \sin \omega t$$

Likewise, $(\delta x(t), \delta y(t))^T = \frac{h_{\times}}{2} (y_0, x_0)^T \sin \omega t$

Gravitational waves: effects on test masses

Geodesic deviation

Two geodesics separated by ξ^{μ} : $\frac{d^2\xi^i}{d\tau^2} = -R^i_{\ 0j0}\xi^j\left(\frac{dx^0}{d\tau}\right)^2$

$$\ddot{\xi^{i}} = \frac{1}{2}\ddot{h}_{ij}^{\mathsf{TT}}\xi^{j} \qquad (\text{relative acceleration})$$

GW along z:
$$h_{ij}^{\mathsf{TT}} = \begin{pmatrix} h_+ & 0\\ 0 & -h_+ \end{pmatrix} \sin \left(\omega \left(t - \frac{z}{c} \right) \right)$$

Under the GW: $(x_0, y_0) \rightarrow (x_0 + \delta x(t), y_0 + \delta y(t))$

$$(\delta \ddot{x}, \delta \ddot{y})^T = \frac{h_+}{2} (-x_0, y_0)^T \omega^2 \sin \omega t$$
$$(\delta x(t), \delta y(t))^T = \frac{h_+}{2} (x_0, -y_0)^T \sin \omega t$$

Likewise, $(\delta x(t), \delta y(t))^T = \frac{h_{\times}}{2} (y_0, x_0)^T \sin \omega t$

Making gravitational waves

Sourced linearized field equation: $\Box \bar{h}_{\mu\nu} = -16\pi \frac{G}{c^4}T_{\mu\nu}$. Formal solution in terms of retarded Green's function:

$$\bar{h}_{\mu\nu}(t,\mathbf{x}) = 4\frac{G}{c^4} \int \frac{T_{\mu\nu}(t_R,\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} d^3x', \quad \text{with} \quad t_R \equiv t - \frac{|\mathbf{x} - \mathbf{x}'|}{c}$$

(i) Large-distance $(r \gg M) \Longrightarrow |\mathbf{x} - \mathbf{x}'| \simeq r - \mathbf{x}' \cdot \mathbf{n}, \ \mathbf{n} \equiv \mathbf{x}/r, r \equiv \sqrt{x_i x^i}$ (ii) Slow-motion $(\lambda \gg |\mathbf{x}'|) \Longrightarrow \omega \frac{|\mathbf{x}'|}{c} \ll 1$ then

$$\bar{h}_{\mu\nu}(t, \mathbf{x}) = \frac{4G}{c^4 r} \int T_{\mu\nu}(t - \frac{r}{c}, \mathbf{x}') \, d^3 x' + \mathcal{O}(r^{-2}) \tag{you do}$$

Conservation law: $\partial_{\mu}T^{\mu\nu} = 0 \Longrightarrow \partial_{t}^{2}T_{00} = \partial_{k}\partial_{l}T_{kl}$ (you do) $\Longrightarrow \frac{d^{2}}{dt^{2}}\int T_{00}x^{i}x^{j}d^{3}x = 2\int T_{ij}d^{3}x$ (you do)

Slow-motion: $T_{00} \simeq \rho c^2$ so $4 \int T_{ij} d^3 x' = 2 \frac{d^2}{dt^2} \int \rho x'^i x'^j d^3 x' \equiv 2 \partial_t^2 I_{ij}$. Thus

$$\bar{h}_{ij}(t,\mathbf{x}) = \frac{2G}{c^4r}\ddot{I}_{ij}(t-\frac{r}{c})$$

Quadrupole formula

Given any symmetric tensor S_{ij} , we can project out its TT part via

 $\sim TT$

$$S_{ij}^{-1} = \Lambda_{ij,kl} S_{kl},$$
where $\Lambda_{ij,kl} \equiv P_{ik}P_{jl} - \frac{1}{2}P_{ij}P_{kl}, \quad P_{ij} = \delta_{ij} - n_in_j \text{ and } n_i = k_i/k.$
Define $Q_{ij} \equiv I_{ij} - \frac{1}{3}\delta_{ij}I_{kk} \Longrightarrow \Lambda_{ij,kl}I^{lk} = \Lambda_{ij,kl}Q^{kl}$ (you do)
Thus

$$h_{ij}^{TT}(t, \mathbf{x}) = \frac{1}{r} \frac{2G}{c^4} \Lambda_{ij,kl} \ddot{Q}_{kl}(t - \frac{r}{c})$$

Classic example: Binary in circular orbit $\rho = m_1 \delta^3(\mathbf{x} - \mathbf{x}_1) + m_2 \delta^3(\mathbf{x} - \mathbf{x}_2)$ CM frame: $M = m_1 + m_2, \mu = m_1 m_2/M, \mathbf{R} \equiv |\mathbf{x}_1 - \mathbf{x}_2|, \Omega = (GM/R^3)^{1/2}$

$$h_{+}(t,\theta,\phi) = \frac{1}{r} \frac{G}{c^{4}} \mu R^{2} (2\Omega)^{2} \left(\frac{1+\cos^{2}\theta}{2}\right) \cos(2\Omega t_{R}+\phi),$$

$$h_{\times}(t,\theta,\phi) = \frac{1}{r} \frac{G}{c^{4}} \mu R^{2} (2\Omega)^{2} \cos\theta \sin(2\Omega t_{R}+\phi) \qquad (\text{you do})$$

[See Maggiore Sec. 3.3 and problem 3.2]

Energy carried by gravitational waves I

Remark:³ No definition of local energy density in GR (can't separate background from dynamics). **However**

- Notion of energy exists for an isolated system, far away.
- Energy must be quadratic in $|h_{\mu\nu}|$, come from a stress-energy tensor Focus on small deviations from flat spacetime: $g = \eta + h^{(1)} + h^{(2)}$

<u>Vacuum</u> field equation: $G^{(0)}[\eta] = 0$ (background, trivial) then

$$0 = \underbrace{G^{(1)}[h^{(1)}]}_{=0, \text{ linear term}} + \underbrace{G^{(2)}[h^{(1)}]}_{\text{nonzero}} + \underbrace{G^{(1)}[h^{(2)}]}_{h^{(2)}:=-2^{\text{nd}}\text{term}}$$
Define $t_{\mu\nu} \equiv -\frac{1}{8\pi}G^{(2)}_{\mu\nu}[h^{(1)}]$ (i) symmetric, (ii) $\partial_{\mu}t^{\mu\nu} = 0$, (iii) $\sim |h_{\mu\nu}|^2$.
NOT (*) gauge invariant, (**) unique, (* * *) a tensor in full GR.
BUT $E \equiv \int_{\Sigma} d^3x t_{00}$ (GW energy) is *unique* and gauge invariant
 $\Delta E = -\int_{S} t_{i0} dS^i$ is the total radiated energy in GWs!
³See Carroll Ch. 7.6, Wald pg. 84-86, MTW Chs. 35.7, 35.13, and Schutz pg. 239

Sarp Akçay (FSU Jena)

Modelling GWs

Energy carried by gravitational waves II

Using a suitable average ("shortwave formalism" Isaacson 1968⁴)

$$t_{\mu\nu} = \frac{c^4}{32\pi G} \left\langle \partial_\mu h_{ij}^{TT} \, \partial_\nu h_{TT}^{ij} \right\rangle$$

 $\begin{array}{l} \partial_{\mu}t^{\mu\nu}=0\Longrightarrow 0=\int_{\Sigma}(\partial_{0}t^{00}+\partial_{i}t^{0i})=-\dot{E}+\oint_{\partial\Sigma}t^{0i}n_{i}=-\dot{E}+\oint_{S^{2}}t^{0r}n_{r}\\ \text{Thus,}\quad \dot{E}\propto\oint_{S^{2}}r^{2}\langle\partial^{0}h_{ij}^{TT}\partial_{r}h_{TT}^{ij}\rangle=-(r^{2}/c)\oint_{S^{2}}\langle\partial_{t}h_{ij}^{TT}\partial_{t}h_{TT}^{ij}\rangle\\ \text{Using}\quad h_{ij}^{TT}h_{TT}^{ij}=h_{ij}h^{ij}-2h_{i}^{j}h^{ik}n_{j}n_{k}+\frac{1}{2}h^{ij}h^{kl}n_{i}n_{j}n_{k}n_{l}\quad \text{in }\oint_{S^{2}}d\Omega\\ \text{Famous Einstein quadrupole formula}\end{array}$

$$\frac{dE}{dt} = \frac{G}{5c^5} \left\langle \ddot{Q}_{ij} \ddot{Q}^{ij} \right\rangle \tag{1}$$

Radiated orbital angular momentum(See Maggiore Ch. 3.3.3)

$$\frac{dL^{i}}{dt} = \frac{2G}{15c^{5}} \epsilon^{ijk} \left\langle \ddot{Q}_{jl} \ddot{Q}_{kl} \right\rangle$$

¹ Also see Wheeler 1964, Brill & Hartle 1964, Choquet-Bruhat 1969, and MacCallum & Taub 1973.

Sarp Akçay (FSU Jena)

Modelling GWs

Compact Binary Inspirals I

Newtonian inspiral driven by quadrupole GWs Binary systems: 2 points masses in a circular orbit $(Q^{ij} = \mu x^i x^j)$

f: GW frequency
$$\implies \omega \equiv 2\pi f = 2\Omega$$
.
Chirp mass $M_c \equiv \mu^{3/5} M^{2/5} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$

Kepler's third law: $\Omega^2 = GMr^{-3} = \omega^2/4$

$$\dot{E} = \frac{32}{5} \frac{c^5}{G} \left(\frac{GM_c \, \omega}{2c^3} \right)^{10/3} \qquad ({\rm you}$$

Assumption: Quasi-circular orbits: $e \ll 1$ and $\frac{|\dot{r}|}{r\Omega} < 10^{-3}$ Key idea: energy balance between \dot{E} and \dot{E}_b (binding energy)

where
$$E_b = -\frac{Gm_1m_2}{2r} = -\left(\frac{G^2M_c\omega^2}{32}\right)^{1/3}$$

 $\dot{E}(f) = -\dot{E}_b(f) \Longrightarrow \overbrace{f = \frac{96}{5}\pi^{8/3}\frac{(GM_c)^{5/3}}{c^5}f^{11/3}}^{f 11/3}$
 $\overbrace{f \propto f^{11/3}}^{11/3}$ (2)

Sarp Akçay (FSU Jena)

do)

Compact Binary Inspirals II

Introduce inspiral time, i.e, time to coalescence (merger)

$$au_{\rm insp}(f) \simeq 16.72 \,{\rm minutes} \, \left(\frac{1.219 M_{\odot}}{M_c}\right)^{5/3} \, \left(\frac{10\,{\rm Hz}}{f}\right)^{8/3} \eqno(3)$$

Number of GW cycles to coalescence: $\int \frac{f}{f} df \sim f^{-5/3}$

$$\mathcal{N}_{\rm cyc}(f) \approx 1.605 \times 10^4 \, \left(\frac{1.219 M_{\odot}}{M_c}\right)^{5/3} \left(\frac{10 \, {\rm Hz}}{f}\right)^{5/3}$$
 (4)

Binary separation

$$\frac{\dot{r}}{r} \sim \frac{\dot{f}}{f} \Longrightarrow r(\tau) = r_i \left(\frac{\tau}{\tau_i}\right)^{1/4}$$

 $r_i \left(\frac{\tau}{\tau_i}\right)^{1/4}$ $(\vec{z})^{1/4}$ $(\vec{z})^{2111}$

3352

-1day t_{coal}

Gravitational waves from inspirals

Recall h_+, h_{\times} from the **circular binary** example $(r \to D, R \to r)$

$$h_{+}(t) = \frac{1}{D} \frac{G}{c^{4}} \mu r^{2} (2\Omega)^{2} \left(\frac{1+\cos^{2}\theta}{2}\right) \cos(2\Omega t_{R} + \phi),$$

$$\equiv h_{c}(t) \left(\frac{1+\cos^{2}\iota}{2}\right) \cos[\Phi(t)],$$

$$h_{\times}(t) = \frac{1}{D} \frac{G}{c^{4}} \mu r^{2} (2\Omega)^{2} \cos\theta \sin(2\Omega t_{R} + \phi)$$

$$\equiv h_{c}(t) \cos\iota \sin[\Phi(t)]$$

$$\boldsymbol{\iota} = \text{ orbital inclination} \\ \boldsymbol{h}_{c}(t) = \frac{4}{D} \left(\frac{GM_{c}}{c^{2}}\right)^{5/3} \left(\frac{\pi f(t)}{c}\right)^{2/3} \approx 7.5 \times 10^{-24} \left(\frac{100 \text{ Mpc}}{D}\right) \left(\frac{M_{c}}{1.219 M_{\odot}}\right)^{5/3} \left(\frac{f}{10 \text{ Hz}}\right)^{2/3} \\ \Phi(t) = \int_{t_{i}}^{t} dt' \omega(t') + \text{PN} \\ \frac{df}{dt} \sim f^{11/3} \sim \tau^{-11/8} \\ \frac{dh_{c}}{dt} \sim \frac{dh_{c}}{df} \dot{f} \sim f^{10/3} \sim \tau^{-5/4} \\ \overset{\text{so}}{=} \frac{1}{\sqrt{1000}} \frac{1000 \text{ Mpc}}{1000 \text{ Mpc}} + \frac{1000 \text{ Mpc}}{1000 \text{ Mpc}} \left(\frac{M_{c}}{1.219 M_{\odot}}\right)^{5/3} \left(\frac{f}{10 \text{ Hz}}\right)^{2/3} \\ \frac{df}{dt} \sim f^{11/3} \sim \tau^{-11/8} \\ \overset{\text{so}}{=} \frac{1000 \text{ Mpc}}{1000 \text{ Mpc}} + \frac{1000 \text{ Mpc}}{1000 \text{ Mpc}} + \frac{1000 \text{ Mpc}}{1000 \text{ Mpc}} + \frac{1000 \text{ Mpc}}{1000 \text{ Mpc}}\right)^{5/3} \left(\frac{f}{1000 \text{ Hz}}\right)^{2/3} \\ \frac{1000 \text{ Mpc}}{1000 \text{ Mpc}} + \frac{1000 \text{ Mpc}}{1000 \text{ Mpc}} + \frac{1000 \text{ Mpc}}{1000 \text{ Mpc}}\right)^{5/3} \left(\frac{f}{1000 \text{ Hz}}\right)^{2/3} \\ \frac{1000 \text{ Mpc}}{1000 \text{ Mpc}} + \frac{1000 \text{ Mpc}}{1000 \text{ Mpc}}\right)^{5/3} \left(\frac{f}{1000 \text{ Hz}}\right)^{5/3} \left(\frac{f}{1000 \text{ Hz}}\right)^{2/3} \\ \frac{1000 \text{ Mpc}}{1000 \text{ Mpc}} + \frac{1000 \text{ Mpc}}{1000 \text{ Mpc}}\right)^{5/3} \left(\frac{f}{1000 \text{ Hz}}\right)^{2/3}$$

Post-Newtonian theory

Note: $\Phi(t) = \int_{t_i}^t dt' \omega(t') + \mathsf{PN}$

- Einstein 1916
- Droste & de Sitter 1916, Droste & Lorentz 1917.

Key idea: Weak-field $(\frac{GM}{c^2r} \ll 1)/\text{slow-motion}$ $(\frac{v}{c} \ll 1)$ expansion Three zones

- Near zone: $d < r \ll \lambda$
- Intermediate zone: $d < r \ll \lambda$
- Far (wave) zone: $r \gg \lambda$

Nomenclature: LO is N, NLO is 1PN.

E.g., quadrupole formula: $\dot{E} \sim c^{-5}$ NLO correction ("1PN"): $\sim c^{-7}$

Refer to

- L. Blanchet, Living Reviews in Relativity, arXiv:1310.1528[gr-qc].
- Poisson & Will, Gravity.
- Maggiore Chapter 5, Straumann Chapter 5.

Post-Newtonian expansion

Define $\epsilon \equiv \frac{v}{c} \sim \left(\frac{GM}{c^2 r}\right)^{1/2}$ Expand the metric

$$g_{00} = -1 + {}^{(2)}g_{00} + {}^{(4)}g_{00} + \mathcal{O}(\epsilon^6),$$

$$g_{0i} = {}^{(3)}g_{0i} + \mathcal{O}(\epsilon^5),$$

$$g_{ij} = \delta_{ij} + {}^{(2)}g_{ij} + {}^{(4)}g_{ij} + \mathcal{O}(\epsilon^6).$$

Pick a gauge: $\partial_{\mu}(\sqrt{-g}g^{\mu\nu}) = 0$ (de Donder).

Expanded field equation ($\Box = -c^{-2}\partial_t^2 -
abla^2 pprox
abla^2$, Weinberg 1972, Ch. 9.1)

$$\begin{aligned} \nabla^2[{}^{(2)}g_{00}] &= -\frac{8\pi G}{c^4}{}^{(0)}T^{00} & (\text{OPN}), \\ \nabla^2[{}^{(2)}g_{ij}] &= -\frac{8\pi G}{c^4}\delta_{ij}{}^{(0)}T^{00} & (\text{1PN}), \\ \nabla^2[{}^{(3)}g_{0i}] &= -\frac{16\pi G}{c^4}{}^{(1)}T^{0i} & (\text{1PN}), \\ \nabla^2[{}^{(4)}g_{00}] &= \dots & (\text{1PN}) \end{aligned}$$

1PN equations

Introduce ${}^{(2)}g_{00} = -2\phi, \; {}^{(2)}g_{ij} = -2\delta_{ij}\phi, \; {}^{(3)}g_{0i} = \zeta_i$, we have

$$\phi = -\frac{G}{c^4} \int d^3x' \frac{{}^{(0)}T^{00}(t, \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|}, \quad \zeta_i = -\frac{4G}{c^4} \int d^3x' \frac{{}^{(1)}T^{0i}(t, \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|}$$

 $\begin{aligned} \mathsf{Gauge condition} &\Longrightarrow 4\partial_0 \phi + \nabla \cdot \zeta = 0. \\ \nabla^2 [{}^{(4)}g_{00}] = \dots \Longrightarrow \nabla^2 \psi = \partial_0^2 \phi + \frac{4\pi G}{c^4} \left[{}^{(2)}T^{00} + {}^{(2)}T^{ii} \right] \\ \begin{cases} g_{00} &= -1 + \frac{2V}{c^2} - \frac{2V^2}{c^4} + \mathcal{O}(c^{-6}), \\ g_{0i} &= -\frac{4}{c^3}V_i + \mathcal{O}(c^{-5}), \\ g_{ij} &= \delta_{ij} \left(1 + \frac{2V}{c^2} \right) + \mathcal{O}(c^{-4}). \end{aligned}$

where

$$V = \frac{G}{c^2} \int d^3x' \frac{1}{|\mathbf{x} - \mathbf{x}'|} \left[T^{00}(t_R, \mathbf{x}') + T^{ii}(t_R, \mathbf{x}') \right],$$
$$V_i = \frac{G}{c^2} \int d^3x' \frac{1}{|\mathbf{x} - \mathbf{x}'|} T^{0i}(t_R, \mathbf{x}')^5$$

⁵We "promoted" *t* to retarded time t_R . In near zone, $t \simeq t_R$. Additionally, $\sigma(t_R) = \sigma(t) - \frac{|\mathbf{x} - \mathbf{x}'|}{c} \partial_t \sigma + \mathcal{O}(c^{-2})$ Sarp Akcay (FSU Jena) Modelling GWs PHAROS School 18 / 57

1PN equations of motion I

N-body system (point particles)

$$T^{\mu\nu} = \underbrace{\frac{1}{\sqrt{-g}}}_{\text{PN expand}} \sum_{A} m_A \frac{d\tau_A}{dt} u_A^{\mu} u_A^{\nu} \delta^3(\mathbf{x} - \mathbf{x}_A(t))$$

$${}^{(0)}T^{00} = \sum_{A} m_{A}c^{2}\delta^{3}(\mathbf{x} - \mathbf{x}_{A}(t))$$
 (rest mass),

$${}^{(2)}T^{00} = \sum_{A} m_A \left(\frac{1}{2} v_A^2 + \phi c^2 \right) \delta^3(\mathbf{x} - \mathbf{x}_A(t))$$
(OPN E_{tot}),

$${}^{(1)}T^{0i} = c \sum_{A} m_A v_A^i \delta^3(\mathbf{x} - \mathbf{x}_A(t)), {}^{(2)}T^{ij} = \sum_{A} m_A v_A^i v_A^j \delta^3(\mathbf{x} - \mathbf{x}_A(t))$$
(1PN)

$$\begin{array}{c} {}^{(0,2)}T^{\mu\nu} \Longrightarrow {}^{(0,2,4)}g_{\mu\nu} \Longrightarrow \mathcal{L} = \underbrace{-g_{00} - 2g_{0i}\frac{v^{i}}{c} - g_{ij}\frac{v^{i}v^{j}}{c^{2}}}_{\mathcal{L}_{0} \ + \frac{1}{c^{2}}\mathcal{L}_{2}} \Longrightarrow \mathsf{EL} \ \mathsf{Eqs}^{6} \\ \mathbf{a} = -\frac{GM}{r^{2}}\hat{\mathbf{n}} - \frac{GM}{c^{2}r^{2}} \left[\left\{ (1+3\nu)v^{2} - \frac{3}{2}\nu\dot{r}^{2} - 2(2+\nu)\frac{GM}{r} \right\} \hat{\mathbf{n}} - 2(2-\nu)\dot{r}\mathbf{v} \right] \end{aligned}$$

where $\nu = m_1 m_2/M^2$, $\mathbf{r} = \mathbf{x}_1 - \mathbf{x}_2$, $\mathbf{v} = \dot{\mathbf{r}}$, $\mathbf{a} = \dot{\mathbf{v}}$, $\hat{\mathbf{n}} = \mathbf{r}/r$, $\dot{r} = \hat{\mathbf{n}} \cdot \mathbf{v}$ ⁶Einstein-Infeld-Hoffmann equations.

1PN equations of motion II

Energy
$$E = \mu \varepsilon$$
, with $\mu = m_1 m_2 / M$
 $\varepsilon = \frac{1}{2} v^2 - \frac{GM}{r} + \frac{1}{c^2} \left[\frac{3}{8} (1 - 3\nu) v^4 + \frac{GM}{2r} \left\{ (3 + \nu) v^2 + \nu \dot{r}^2 + \frac{GM}{r} \right\} \right]$

(i)
$$\dot{E} = 0$$
, (ii) $\lim_{M/r \to 0} \mu \varepsilon = [(\gamma_1 - 1)m_1 + (\gamma_2 - 1)m_2]c^2$ (you do)

Setting $\mathbf{r}_{\mathsf{CM}} = 0$ we have 1PN-accurate positions ($\delta m \equiv m_1 - m_2$)

$$\mathbf{x}_{1} = \frac{m_{2}}{M}\mathbf{r} + \frac{\nu\delta m}{2c^{2}M^{2}}\left(v^{2} - \frac{GM}{r}\right)\mathbf{r} + \mathcal{O}(c^{-4}),$$
$$\mathbf{x}_{2} = -\frac{m_{1}}{M}\mathbf{r} + \frac{\nu\delta m}{2c^{2}M^{2}}\left(v^{2} - \frac{GM}{r}\right)\mathbf{r} + \mathcal{O}(c^{-4}),$$

1 PN EoM suffice to give us

• Mercury's perihelion precession: $\delta \varphi = \frac{6\pi GM}{c^2 p}$ (Einstein Nov 1915).

- Geodetic (de Sitter) and Lense-Thirring precessions due to the Earth (gravito-electromagnetism).
- Deflection of light around the Sun.

Going beyond 1PN

Two issues with the PN expansion

• At some PN order, divergences appear in the multipolar expansion of the Poisson integral

$$\underbrace{[\Delta^{-1}f](\mathbf{x})}_{\text{inversion of }\nabla^2 f(\mathbf{x})} \equiv -\frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{d^3 x'}{|\mathbf{x} - \mathbf{x}'|} f(\mathbf{x}')$$

of the form
$$\frac{1}{|\mathbf{x}-\mathbf{x}'|} = \frac{1}{r^\ell} + \frac{(\mathbf{x}\cdot\mathbf{x}')^\ell}{r^3} + \ldots \sim \frac{(\mathbf{x}'\cdot\hat{\mathbf{n}})^\ell}{r^{\ell+1}} \to \infty$$
 if $|\mathbf{x}'| \gg r$

• PN expansion can NOT use BC at $\infty,$ i.e., is ill-equipped to study the large-r region

$$\frac{1}{c}F_{\mu\nu}(t-r/c) = \frac{1}{r}F_{\mu\nu}(t) - \frac{1}{c}\dot{F}_{\mu\nu}(t) + \frac{r}{2c^2}\ddot{F}_{\mu\nu}(t) + \mathcal{O}(r^2) \to \infty \quad \text{as } r \to \infty$$

Mitigation:

Use PN in the near zone. Use post-Minkowski (PM) in the far zone then match using *Matched-asymptotic expansions* in the intermediate zone⁷.

⁷This is known as the Blanchet-Damour approach. See Phil. Trans. Roy. Soc. Lond. A320 (1986) 379-430.

Sarp Akçay (FSU Jena)

Modelling GWs

PHAROS School 21 / 57

The **Relaxed** Einstein equations

Define $h^{\mu\nu} \equiv \eta^{\mu\nu} - \sqrt{-g}g^{\mu\nu}$ $(=\bar{h}^{\mu\nu})$ de Donder gauge: $\partial_{\mu}h^{\mu\nu} = 0$ Stress-energy conservation⁸ $\partial_{\mu}\tau^{\mu\nu} = 0$ where $\tau^{\mu\nu} = -g\left[T^{\mu\nu} + \tau^{\mu\nu}_{LL}\right] + (\partial h)^2 - h\partial^2 h$

 $\tau_{\rm LL}^{\mu\nu}$ is the Landau-Lifshitz energy-momentum pseudotensor. The relaxed Einstein equations

$$\Box \mathbf{h}^{\mu\nu} = -\frac{16\pi G}{c^4} \tau^{\mu\nu}$$

Solution

$$\mathsf{h}^{\mu\nu}(t,\mathbf{x}) = \frac{4G}{c^4} \int \frac{d^3x'}{|\mathbf{x} - \mathbf{x}'|} \, \tau^{\mu\nu}(t - |\mathbf{x} - \mathbf{x}'|/c, \mathbf{x}')$$

⁸Note, this comes from gauge condition $\oplus \nabla_{\mu}T^{\mu\nu} = 0$.

The **post-Minkowskian** expansion outside the source Valid for $d < r < \infty$ where $d \sim$ orbital radius.

Expand in powers of G for $|\mathbf{h}_{\mu\nu}| \ll 1$, iterate the RRE

$$\begin{split} \mathbf{h}^{\mu\nu} &= \sum_{n=1}^{\infty} G^n \mathbf{h}_n^{\mu\nu}, \\ \Box \mathbf{h}_{n+1}^{\mu\nu} &= -\frac{16\pi G}{c^4} \, \tau^{\mu\nu}(h_n), \\ \mathbf{h}_{n+1}^{\mu\nu} &= \frac{4G}{c^4} \int \frac{d^3x'}{|\mathbf{x} - \mathbf{x}'|} \, \tau^{\mu\nu}(\mathbf{h}_n)(t - |\mathbf{x} - \mathbf{x}'|/c, \mathbf{x}') \end{split}$$

Motion from $\partial_{\mu}\tau^{\mu\nu}(h_n) = 0$. First iteration gives $h_1^{\mu\nu} = \bar{h}^{\mu\nu}$ since $\tau_0^{\mu\nu} = T^{\mu\nu}$. Higher iterations: $\Box h_n^{\mu\nu} = \Lambda_n^{\mu\nu} [h_1, h_2, \dots, h_{n-1}]^9$ Blanchet-Damour: iterate a finite multipole expansion of $h_1^{\mu\nu}$ for finite PN order (multipolar post-Minkowskian expansion).

⁹See Maggiore pg. 254 for details.

The multipolar post-Minkowskian expansion

Blanchet-Damour "regularization" of r = 0

Replace
$$(\Box_{\mathsf{ret}}^{-1}f)(t,\mathbf{x}) = -\frac{1}{4\pi} \int \frac{d^3x'}{|\mathbf{x} - \mathbf{x}'|} f(t - |\mathbf{x} - \mathbf{x}'|.\mathbf{x}')$$

with $\mathsf{FP}_{B=0}\left[\Box_{\mathsf{ret}}^{-1}\left(\tilde{r}^{B}f\right)\right](t,\mathbf{x}) = -\frac{1}{4\pi}\int \frac{d^{3}x'}{|\mathbf{x}-\mathbf{x}'|}\,\tilde{r}^{B}f(t-|\mathbf{x}-\mathbf{x}'|.\mathbf{x}')$

where $B \in \mathbb{C}$, $\Re(B) > k_{\max} - 3$, and $\tilde{r} \equiv r/r_0^{10}$ Thus, the solution at each PM order is given by

$$\mathbf{h}_{n}^{\mu\nu} = \underbrace{\mathsf{FP}_{B=0}\left[\Box_{\mathsf{ret}}^{-1}\left(\tilde{r}^{B}\Lambda_{n}^{\mu\nu}\right)\right]}_{\equiv \mathcal{FP}\Box_{\mathsf{ret}}^{-1}\Lambda_{n}^{\mu\nu} \text{ [particular solution]}} + \underbrace{v_{n}^{\mu\nu}}_{\mathsf{hom. sol.}}$$

Finite PN expansion

$$\begin{split} \bar{\mathbf{h}}^{\mu\nu} &\equiv \sum_{m=2}^{N} \frac{1}{c^m} {}^{(m)} \mathbf{h}^{\mu\nu}, \quad \bar{\tau}^{\mu\nu} \equiv \sum_{m=-2}^{N} \frac{1}{c^m} {}^{(m)} \tau^{\mu\nu}, \\ \bar{\mathbf{h}}^{\mu\nu} &= \frac{16\pi G}{c^4} \mathcal{FP} \Box_{\text{ret}}^{-1} \bar{\tau}^{\mu\nu} + \bar{\mathbf{h}}_{\text{hom}}^{\mu\nu} \end{split}$$

¹⁰See Blanchet LRR Sec. 2.3 and Maggiore Ch. 5.3.2 for details.

Match the solutions

• $d < r < \infty$ **PM** regime

• $0 < r < \mathcal{R}$ PN regime

For $v/c \ll 1$, $\mathcal{R} \gg d \Longrightarrow$ Matching region $d < r < \mathcal{R}$ (green band)

Re-Expand PN terms in d/r < 1 and **PM** terms in $\mathbf{v/c}$

Recall, we match multipole expansions (Blanchet LRR Sec. 4.4 for details) n-th PM term has the following PN expansion

$$\mathbf{h}_n^{00} = \mathcal{O}(c^{-2n}), \quad \mathbf{h}_n^{0i} = \mathcal{O}(c^{-(2n+1)}), \quad \mathbf{h}_n^{ij} = \mathcal{O}(c^{-2n}) \,.$$

E.g., 2PN order, i.e., $\mathcal{O}(c^{-4})$ correction to Newtonian metric $\Leftarrow h_1, h_2, h_3$ Equivalent formalism

by Will, Wiseman and Pati (DIRE)¹¹

$$\int_{\mathcal{C}} d^3x' = \int_{\mathcal{N}} d^3x' + \int_{\mathcal{W}} d^3x'$$

¹¹See Maggiore Ch. 5.4 for a brief intro and Poisson-Will for abundant details.

More PN!

We solved the wave-zone issues, but what about near zone? Blanchet et al. $\bar{h} = \bar{h}(t, \mathbf{x}), \bar{\tau} = \bar{\tau}(t, \mathbf{x})$ [NO retardation]

 $\bar{\mathbf{h}}^{\mu\nu} = \frac{16\pi G}{c^4} \Box_{\text{inst}}^{-1} \bar{\tau}^{\mu\nu} + \underbrace{\bar{\mathbf{h}}_{\text{hom}}^{\mu\nu,RR}}_{\text{dissipative}}$ where $\Box_{\text{inst}}^{-1}[\bar{\tau}] \equiv \sum_{k=0}^{\infty} \left(\frac{\partial}{c\partial t}\right)^{2k} \Delta^{-k-1}[\bar{\tau}]$

Regularization of point-particle infinities: Hadamard and/or dimensional

$$\begin{split} \mathcal{F} &= \frac{32c^5}{5G}\nu^2 x^5 \left\{ 1 + \left(-\frac{1247}{336} - \frac{35}{12}\nu \right) x + 4\pi x^{3/2} \right. \\ &+ \left(-\frac{44711}{9072} + \frac{9271}{504}\nu + \frac{65}{18}\nu^2 \right) x^2 + \left(-\frac{8191}{672} - \frac{583}{24}\nu \right) \pi x^{5/2} \\ &+ \left[\frac{6643739519}{69854400} + \frac{16}{3}\pi^2 - \frac{1712}{105}\gamma_{\rm E} - \frac{856}{105}\ln(16x) \right. \\ &+ \left(-\frac{134543}{7776} + \frac{41}{48}\pi^2 \right) \nu - \frac{94403}{3024}\nu^2 - \frac{775}{324}\nu^3 \right] x^3 \\ &+ \left(-\frac{16285}{504} + \frac{214745}{1728}\nu + \frac{193385}{3024}\nu^2 \right) \pi x^{7/2} + \mathcal{O}\left(\frac{1}{c^8} \right) \right\}. \end{split}$$

More PN!

We solved the wave-zone issues, but what about near zone? Blanchet et al. $\bar{h} = \bar{h}(t, \mathbf{x}), \bar{\tau} = \bar{\tau}(t, \mathbf{x})$ [NO retardation]

where $\Box_{inst}^{-1}[\bar{\tau}] \equiv \sum_{k=0}^{\infty} \left(\frac{\partial}{c\partial t}\right)^{2k} \Delta^{-k-1}[\bar{\tau}]$

Regularization of **point-particle infinities**: Hadamard and/or dimensional

 $\bar{\mathbf{h}}^{\mu\nu} = \frac{16\pi G}{c^4} \Box_{\text{inst}}^{-1} \bar{\tau}^{\mu\nu} + \bar{\mathbf{h}}_{\text{hom}}^{\mu\nu,RR}$

$$\begin{split} \phi &= -\frac{x^{-5/2}}{32\nu} \bigg\{ 1 + \bigg(\frac{3715}{1008} + \frac{55}{12} \nu \bigg) x - 10\pi x^{3/2} \\ &+ \bigg(\frac{15293365}{1016064} + \frac{27145}{1008} \nu + \frac{3085}{144} \nu^2 \bigg) x^2 + \bigg(\frac{38645}{1344} - \frac{65}{16} \nu \bigg) \pi x^{5/2} \ln \bigg(\frac{x}{x_0} \bigg) \\ &+ \bigg[\frac{12348611926451}{18776862720} - \frac{160}{3} \pi^2 - \frac{1712}{21} \gamma_{\rm E} - \frac{856}{21} \ln(16 x) \\ &+ \bigg(-\frac{15737765635}{12192768} + \frac{2255}{48} \pi^2 \bigg) \nu + \frac{76055}{6912} \nu^2 - \frac{127825}{5184} \nu^3 \bigg] x^3 \\ &+ \bigg(\frac{77096675}{2032128} + \frac{378515}{12096} \nu - \frac{74045}{6048} \nu^2 \bigg) \pi x^{7/2} + \mathcal{O}\left(\frac{1}{c^8} \right) \bigg\}, \end{split}$$

More PN!

We solved the wave-zone issues, but what about near zone? Blanchet et al. $\bar{h} = \bar{h}(t, \mathbf{x}), \bar{\tau} = \bar{\tau}(t, \mathbf{x})$ [NO retardation]

 $\bar{\mathbf{h}}^{\mu\nu} = \frac{16\pi G}{c^4} \Box_{\text{inst}}^{-1} \bar{\tau}^{\mu\nu} + \bar{\mathbf{h}}^{\mu\nu,RR}_{\text{hom}}$ dissipative where $\Box_{inst}^{-1}[\bar{\tau}] \equiv \sum_{k=0}^{\infty} \left(\frac{\partial}{c\partial t}\right)^{2k} \Delta^{-k-1}[\bar{\tau}]$ **Regularization** of **point-particle** $\mathcal{P} = \frac{1}{r^2} \left\{ \frac{v^2}{2} - \frac{Gm}{2r} \right\}$ $\mathbf{x}_{1} = \left| \frac{m_{2}}{M} + \nu \frac{\delta m}{M} \mathcal{P} \right| + \nu \frac{\delta m}{M} \mathcal{Q} \mathbf{v} + \frac{1}{c^{4}} \left\{ \frac{3v^{4}}{8} - \frac{3\nu^{4}}{2} + \frac{Gm}{r} \left(-\frac{r^{2}}{8} + \frac{3r^{2}\nu}{4} + \frac{19v^{2}}{8} + \frac{3\nu v^{2}}{2} \right) + \frac{G^{2}m^{2}}{r^{2}} \left(\frac{7}{4} - \frac{\nu}{2} \right) \right\}$ $\mathbf{x}_2 = \left[-rac{m_1}{M} +
u rac{\delta m}{M} \mathcal{P}
ight] +
u rac{\delta m}{M} \mathcal{Q} \mathbf{v}^{-+rac{1}{c^6} \left\{rac{5 \, v^6}{16} - rac{11
u \, v^6}{4} + 6 \,
u^2 \, v^6}
ight.$ $+\frac{Gm}{r}\left(\frac{\dot{r}^4}{16}-\frac{5\dot{r}^4}{8}\nu+\frac{21\dot{r}^4}{16}\nu^2-\frac{5\dot{r}^2}{16}\nu^2+\frac{21\dot{r}^2}{16}\nu^2\right)$ $+\mathcal{O}(c^{-7})$ $-\frac{11\dot{r}^2\nu^2v^2}{2}+\frac{53v^4}{16}-7\nu v^4-\frac{15\nu^2v^4}{2}\right)$ $+\frac{G^2m^2}{r^2}\left(-\frac{7\dot{r}^2}{2}+\frac{73\dot{r}^2\nu}{8}+4\dot{r}^2\nu^2+\frac{101v^2}{12}-\frac{33\nu v^2}{8}+3\nu^2 v^2\right)$ $\mathcal{Q} = \frac{1}{a^4} \left\{ -\frac{7\,Gm\,\dot{r}}{4} \right\} + \frac{1}{c^5} \left\{ \frac{4\,Gm\,v^2}{5} - \frac{8\,G^2m^2}{5\,r} \right\} \qquad \qquad + \frac{G^3m^3}{r^3} \left(-\frac{14351}{1260} + \frac{\nu}{8} - \frac{\nu^2}{2} + \frac{22}{3}\ln\left(\frac{r}{x''}\right) \right) \right\},$ $+\frac{1}{c^{6}}\left\{Gm\,\dot{r}\left(\frac{5\,\dot{r}^{2}}{12}-\frac{19\,\dot{r}^{2}\,\nu}{24}-\frac{15\,v^{2}}{8}+\frac{21\,\nu\,v^{2}}{4}\right)+\frac{G^{2}m^{2}\,\dot{r}}{r}\left(-\frac{235}{24}-\frac{21\,\nu}{4}\right)\right\}$

Perturbation Theory

Perspective: two-body problem in general relativity

PN approach: weak-field (large separation), arbitrary mass ratio

Perturbation Theory in strong field

Specifically around black holes

Consider a black hole solution (Schwarzschild, Kerr, etc.)

Vacuum so $\mathcal{L}[\mathring{g}_{\mu\nu}] \Longrightarrow$ geodesic EoM, i.e., test masses $(m_1 \to 0)$ What happens if we slowly turn m_1 on?

Let $q \equiv \frac{m_1}{m_2} \ll 1$ be the new expansion parameter Linear expansion in $h_{\mu\nu}$ about background metric $\mathring{g}_{\mu\nu}$: $|h_{\mu\nu}| \sim q \ll 1$

$$g_{\mu\nu} = \mathring{g}_{\mu\nu} + h_{\mu\nu} \Longrightarrow g^{\mu\nu} = \mathring{g}^{\mu\nu} - h^{\mu\nu}$$

Source of the perturbation $T^{\mu
u}[g] = T^{\mu
u}[\mathring{g}] + \dots$

Perturbation Theory in strong field

Specifically around black holes

Consider a black hole solution (Schwarzschild, Kerr, etc.)

Vacuum so $\mathcal{L}[\mathring{g}_{\mu\nu}] \Longrightarrow$ geodesic EoM, i.e., test masses $(m_1 \to 0)$ What happens if we slowly turn m_1 on?

Let $q \equiv \frac{m_1}{m_2} \ll 1$ be the new expansion parameter Linear expansion in $h_{\mu\nu}$ about background metric $\mathring{g}_{\mu\nu}$: $|h_{\mu\nu}| \sim q \ll 1$

$$g_{\mu\nu} = \mathring{g}_{\mu\nu} + h_{\mu\nu} \Longrightarrow g^{\mu\nu} = \mathring{g}^{\mu\nu} - h^{\mu\nu}$$

Source of the perturbation $T^{\mu
u}[g] = T^{\mu
u}[\mathring{g}] + \dots$

- LO term of the field equation: $\check{G}_{\mu\nu}[\mathring{g}] = 0$
- NLO term of the field equation (geodesic)

$$\mathring{G}_{\mu\nu}[h] = 8\pi T^{\mu\nu}[\mathring{g}]$$

(post-geodesic)

• Supplement with a certain gauge condition.

Perturbation theory in Schwarzschild

Regge-Wheeler-Zerilli equations

Background set to Schwarzschild metric

$$g_{\mu
u} = \mathsf{diag}[-f, f^{-1}, r^2, r^2 \sin^2 \theta], \quad f = 1 - rac{2m_2}{r}$$

Decompose $h_{\mu\nu}$ into even (Y)/odd (X)-parity tensor harmonics¹²

$$\begin{split} h_{ab} &= \sum_{\ell m} h_{ab}^{\ell m} Y^{\ell m}, \\ h_{aB} &= \sum_{\ell m} (j_a^{\ell m} Y_B^{\ell m} + h_a^{\ell m} X_B^{\ell m}), \\ h_{AB} &= r^2 \sum_{\ell m} (K^{\ell m} \Omega_{AB} Y^{\ell m} + G^{\ell m} Y_{AB}^{\ell m} + h_2^{\ell m} X_{AB}^{\ell m}) \end{split}$$

with a, b = t, r and $A, B = \theta, \phi$ and $h, j, K, G, h_2 =$ funcs.(t,r). Regge-Wheeler gauge

$$j_a^{\ell m} = G^{\ell m} = 0$$
 (even parity), $h_2^{\ell m} = 0$ (odd parity)

¹²See Martel & Poisson gr-qc/0502028 for details.

Sarp Akçay (FSU Jena)

0

Perturbation theory in Schwarzschild

Regge-Wheeler-Zerilli equations

Master equations

$$V_e = \frac{f}{k^2} \left[[(\ell-1)(\ell+2)]^2 \left(\frac{\ell(\ell+1)}{r^2} + \frac{6m_2}{r^3} \right) + \frac{36m_2^2}{r^4} \left(\ell - 1)(\ell+2) + \frac{2m_2}{r} \right) \right],$$

$$V_o = f \left[\frac{\ell(\ell+1)}{r^2} + \frac{6m_2}{r^3} \right], \qquad k = (\ell-1)(\ell+2) + \frac{6m_2}{r}$$

$$\begin{split} \Psi_e &= \frac{2T}{\ell(\ell+1)} \left[K + \frac{2J}{k} (fh_{rr} - r\partial_r K) \right], \\ \Psi_o &= \frac{2r}{(\ell-1)(\ell+2)} \left(\partial_r h_t - \partial_t h_r - \frac{2}{r} h_t \right). \end{split}$$

Source: point-particle of mass m_1 along a timelike geodesic

$$T^{\mu\nu} = \frac{1}{\sqrt{-\mathring{g}}} m_1 \frac{d\tau}{dt} \mathring{u}^{\mu} \mathring{u}^{\nu} \delta^3(\mathbf{x} - \mathbf{z}(t))$$
$$S_{e,o} \sim \underbrace{\{\partial_a^0, \partial_a\}}_{\text{bit } \delta^3} \int T^{\mu\nu} \left\{ \bar{Y}^{\ell m}_{\mu\nu}, \bar{X}^{\ell m}_{\mu\nu} \right\} d\Omega$$

PHAROS School

33 / 57

Perturbation theory in Schwarzschild

Regge-Wheeler-Zerilli equations Martel & Poisson give us everything (for circular geodesics)

$$\begin{split} h_{+} &= \frac{1}{r} \sum_{\ell m} \Psi_{e}^{\ell m} D_{\theta,\ell}^{2} Y^{\ell m} - \Psi_{o}^{\ell m} D_{\theta} Y^{\ell m}, \\ h_{\times} &= \frac{1}{r} \sum_{\ell m} \Psi_{e}^{\ell m} \frac{im}{\sin \theta} D_{\theta} Y^{\ell m} - \Psi_{o}^{\ell m} D_{\theta,\ell}^{2} Y^{\ell m}, \\ \dot{E}_{\infty,H} &= \frac{1}{64\pi} \sum_{\ell m} \frac{(\ell+2)!}{(\ell-2)!} \left\langle |\dot{\Psi}_{e}^{\ell m}|^{2} + |\dot{\Psi}_{o}^{\ell m}|^{2} \right\rangle_{t \to \infty, r_{*} \to \pm \infty} \end{split}$$

 $\langle \ldots \rangle$ is an orbital average.

Homogeneous solutions can be obtained analytically or numerically. Fluxes are straightforward, but NOT evaluating $h_{\mu\nu}$ at $\mathbf{x} = \mathbf{z}$. Sources $S_{e,o} \sim F\delta'(r - r_0) + G\delta(r - r_0)$ very singular!

We will talk more about regularizing δ -function sources later.

Quasinormal excitations of black holes

We saw previously that $\dot{E}_{H} \neq 0 \implies$ BH absorbs the energy What happens?

 \implies **Damped** normal-mode oscillations: the BH rings!

A problem of scattering spin-2 bosons off BHs

- <u>Vishveshwara 1970</u>: scattering GWs off Sch. horizon: damped sinusoids
- Davis-Ruffini-Press-Price 1971: radial infall of m onto Sch. BH g(M) $(m \ll M)$, solve Zerilli equation
- <u>Press 1971</u>: Symmetric initial pert. Numerical RWZ, $\ell >> 1, M \gtrsim \frac{\lambda}{2\pi} >> \frac{M}{\ell}$ "the black hole vibrates around **spherical symmetry** in a quasi-normal mode" $\omega \approx 27^{-1/2} \frac{\ell}{M}$

Eigenmodes of **dissipative** systems!

Quasinormal excitations of black holes

We saw previously that $\dot{E}_{H} \neq 0 \implies BH$ absorbs the energy What happens?

 \implies **Damped** normal-mode oscillations: the BH rings!

A problem of scattering spin-2 bosons off BHs

- <u>Vishveshwara 1970</u>: scattering GWs off Sch. horizon: damped sinusoids
- Davis-Ruffini-Press-Price 1971: radial infall of m onto Sch. BH g(M) $(m \ll M)$, solve Zerilli equation
- <u>Press 1971</u>: Symmetric initial pert. Numerical RWZ, $\ell >> 1, M \gtrsim \frac{\lambda}{2\pi} >> \frac{M}{\ell}$ "the black hole vibrates around **spherical symmetry** in a quasi-normal mode" $\omega \approx 27^{-1/2} \frac{\ell}{M}$

Eigenmodes of dissipative systems!

Quasinormal modes

One method: WKB treatment of wave scattering on the peak of the potential barrier (parabolic cylinder functions)¹³ $_{0}$ $_{1/2}$

$$(M\omega_n)^2 = V_{\ell}(r_p) - i\left(n + \frac{1}{2}\right) \left[-2\frac{d^2 V_{\ell}}{dr_*^2}\right]_{r_*=r_*}^{\prime}$$

E.g., $(\ell = 2, n = 0)$: $\Re(M\omega) = 0.37$ vs. $\Re(M\omega) = 0.32$ (Davis et al. 1971) For $M = 10M_{\odot}$, $f \approx 1.2$ kHz and damping time ≈ 0.55 ms GW strain:

37 / 57

Quasinormal modes

Laplace transform the field: $\Psi(\omega, r) = \int_0^\infty \Psi(t, r) e^{i\omega t} dt$ (s = -i ω) The master equation becomes

$$\frac{d^2\Psi}{dr_*^2} + (\omega^2 - V)\Psi = I(\omega, r)$$

with outer/inner **homog. sols.** Ψ^{\pm} with BC

$$\begin{split} &\lim_{r\to\infty} \Psi^- \sim A_{\rm in}(\omega) e^{-i\omega r_*} + A_{\rm out}(\omega) e^{i\omega r_*} \\ &\lim_{r\to\infty} \Psi^+ \sim e^{i\omega r_*} \end{split}$$

and Wronskian $W = 2i\omega A_{in}(\omega)$ Inhomogenous solution:

$$\Psi(\omega, r) = \Psi^{+} \int_{-\infty}^{r_{*}} \frac{I(\omega, r)\Psi^{-}}{W} dr'_{*} + \Psi^{-} \int_{r_{*}}^{\infty} \frac{I(\omega, r)\Psi^{+}}{W} dr'_{*}$$

Inverse Laplace transform:

$$\Psi(t,r) = \frac{1}{2\pi} \oint_{-\infty+ic}^{\infty+ic} \Psi(\omega,r) e^{-i\omega t} d\omega$$

Poles, i.e., $A_{\rm in}(\omega)=0$ are the QNM frequencies.

Quasinormal modes

 C_n QN excitation coefficients, B_n QN excitation factors B_n depend only on the **background geometry**! ($\Psi^{\pm} \oplus V$) **Leaver 1985-86:** method of continued fractions Infinitely many ω_n for each ℓ **Monodromy** for $|\omega| \gg 1$ case (Bender & Orszag) $\operatorname{Re}(\omega_n) \to \text{constant as } n \to \infty$,

Algebraically special solutions: $\operatorname{Re}(\omega_n) = 0$

Back to perturbation theory

Lorenz gauge

PT in Regge-Wheeler gauge: $\mathring{g} \rightarrow \mathring{g} + h \implies \dot{E}_{\infty,H}(h)$ Dissipative force: $F_{\mu}^{\text{diss}} = \dot{E}_H + \dot{E}_{\infty}$

 \implies adiabatic inspiral: pushes m_1 off the geodesic orbit

Radiation-[back]reaction force \implies gravitational self-force (GSF)

This force also has a conservative part (2)

- $\implies \mathcal{O}(q)$ corrections to:
 - Redshift
 - ISCO radius/frequency
 - de Sitter (geodetic) precession
 - Perihelion retreat

NEED to compute $h_{\mu\nu}$ **LOCALLY** at the particle, not at ∞ .

Lorenz gauge is best suited: particle $\sim \delta^3({f x}-{f z})$

(Recall RWZ source $\sim \delta^3(\mathbf{x} - \mathbf{z}) + \partial_i \delta^3(\mathbf{x} - \mathbf{z})$)

Isotropic singularity, rigorous regularization procedure (1990s to 2000s)

Perturbation theory in Lorenz gauge Return to $\bar{h}_{\mu\nu} = h_{\mu\nu} - \frac{1}{2} \mathring{g}_{\mu\nu} h$ and $\mathring{\nabla}_{\mu} \bar{h}^{\mu\nu} = 0$ Field equation $\Box \bar{h}_{\mu\nu} + 2 \mathring{R}^{\alpha}{}^{\beta}{}_{\mu\nu} \bar{h}_{\alpha\beta} = -16\pi T_{\mu\nu},$ $T^{\mu\nu} = \frac{1}{\sqrt{-a}} \frac{m_1}{\dot{n}^t} \dot{u}^\mu \dot{u}^\nu \delta^3(\mathbf{x} - \mathbf{z})$ **GSF**: $F^{\mu} = m_1 \mathring{\nabla}^{\mu\alpha\beta} \bar{h}^{\text{ret}}_{\alpha\beta}$ (ensures $F_{\mu} \mathring{u}^{\mu} = 0$) Mino-Sasaki-Tanaka-Quinn-Wald (1996): (i) $r \ll m_2$ (near zone), expand (ii) $r \gg m_1$ (far zone), expand (iii) $m_1 \ll r \ll m_2$ (buffer zone), match $z(\tau)$ Sx $\bar{h}^{\text{ret}} = \bar{h}^{\text{dir}} + \bar{h}^{\text{tail}}$ $\bar{h}_{\mu\nu}^{\text{dir}} = \frac{4m_1\hat{u}_\mu\hat{u}_\nu}{4m_1\hat{u}_\mu\hat{u}_\nu} + \mathcal{O}(\delta x^2)$ **Detweiler-Whiting** 2003 $\bar{h} = \bar{h}^R + \bar{h}^S \ (\bar{h}^S_{10} = \bar{h}^{\text{dir}}_{10})$ $F^{\mu} = m_1 \mathring{\nabla}^{\mu \alpha \beta} \bar{h}_{\alpha \beta}^{\mathsf{tail}} = m_1 \mathring{\nabla}^{\mu \alpha \beta} \bar{h}_{\alpha \beta}^{R}$ Barack 0908 1664

Lorenz-gauge GSF

Mode-sum method¹⁴

10 field equations - **4** gauge = $4 \oplus 2$ (even/odd parity) equations "Spread" the δ -function singularity over an infinite ℓ -mode sum

$$\bar{h}^S_{\mu\nu} = \sum_{\ell=0}^{\infty} \bar{h}^{S,\ell}_{\mu\nu}, \qquad \bar{h}^{S,\ell}_{\mu\nu} \sim \mathcal{O}(\epsilon^{-1}) \text{ locally}$$

Regularization: subtract $\bar{h}^{S,\ell}_{\mu\nu}$ at each ℓ mode $\Longrightarrow \sum_{\ell=0}^{\infty}$ converges!

$$\begin{split} & \bar{h}_{\mu\nu}^{\text{ret}} = \frac{m_1}{r} \sum_{\ell m} \sum_{i=1}^{10} \bar{h}^{(i)\ell m}(t,r) Y_{\mu\nu}^{(i)\ell m}(\theta,\phi) \\ & \text{Oslve } \left[\partial_{uv}^2 + V(r) \right] \bar{h}^{(i)\ell m} + \mathcal{M}_{(j)}^{(i)} \bar{h}^{(j)\ell m} = S^{(i)\ell m} \delta(r-r_0) \\ & \text{Segularize: } F_{\text{reg}}^{\mu\ell} = \sum_{\ell m} F^{\mu,\ell m} - (A^{\mu}L + B^{\mu} + C^{\mu}L^{-1}) \sim \mathcal{O}(L^{-2}) \\ & \text{Segularize: } F_{\text{reg}}^{\mu,\ell} \text{ converges as } \mathcal{O}(L^{-2}) \\ & \text{Or better, } L = \ell + 1/2) \\ & \text{NB: GSF is not gauge invariant! } \delta_{\xi} F^{\mu} \sim \frac{D\xi^{\mu}}{d\tau^2} + R(u,\xi,u)^{\mu} \\ & \text{SUT it is physical (ISCO shift, perihelion retreat, EMRIs, etc.)} \end{split}$$

EMRIs are a very important source for LISA!

¹⁴Other approaches: moving punctures, Hadamard expansion of the retarded Green's function

Perturbation theory in Kerr spacetime

Teukolsky equation (1973-1974)¹⁵

Perturbation theory using the Newman-Penrose formalism

Based on Weyl scalars $\Psi_i \sim -C(e_1, e_2, e_3, e_4)$

 e^{μ}_{a} is a null tetrad, Kinnersley tetrad: $e^{\mu}_{a} = \{\ell, n, m, \bar{m}\}^{\mu}$

In **Petrov Type D**, $\Psi_0 = \Psi_1 = \Psi_3 = \Psi_4 = 0$ Perturb: $\Psi_i = \Psi_i + \delta \Psi_i$ then drop the δ Linearly perturbed NP equations (nonvacuum: source $\sim m_1$):

$$R_{13[13|4]} + \text{Ricci} = 0, \quad R_{13[13|2]} + \text{Ricci} = 0^{16}$$

 Ψ_4 carries the GW information 2nd order PDE for $\Psi_0 \Longrightarrow$ 2nd order PDE for Ψ_4 (null rotations) \Longrightarrow Separable, 2nd order PDE in term of s: new Master equation!

$$\hat{T}_s \psi_s = \mathcal{T}_s$$

$$\psi_2 = \Psi_0, \psi_{-2} = \rho^{-4} \Psi_4$$

¹⁵See Teukolsky 2014 (1410.2130) Sec. 8 for a brief history. ¹⁶See Chandrasekhar Sec. 1.8.

$$\begin{split} & \left[\hat{T}_{s}\psi_{s}=\mathcal{T}_{s}\right] \\ \hat{T}_{s} \equiv \left[\frac{(r^{2}+a^{2})^{2}}{\Delta}-a^{2}\sin^{2}\theta\right]\frac{\partial^{2}}{\partial t^{2}}-2s\left[\frac{M(r^{2}-a^{2})}{\Delta}-r-ia\cos\theta\right]\frac{\partial}{\partial t}+\frac{4Mar}{\Delta}\frac{\partial^{2}}{\partial t\partial\phi} \\ & +\Delta^{-s}\frac{\partial}{\partial r}\left(\Delta^{s+1}\frac{\partial}{\partial r}\right)-\csc\theta\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial}{\partial \theta}\right)-2s\left[\frac{a(r-M)}{\Delta}+i\frac{\cos\theta}{\sin^{2}\theta}\right]\frac{\partial}{\partial \phi} \\ & +\left[\frac{a^{2}}{\Delta}-\csc^{2}\theta\right]\frac{\partial^{2}}{\partial\phi^{2}}+(s^{2}\cot^{2}\theta-s), \\ \mathcal{T}_{s}=4\pi(r^{2}+a^{2}\cos^{2}\theta)T_{s}, \\ \Delta=r^{2}-2Mr+a^{2}, \quad \rho=(r-ia\cos\theta)^{-1}, \\ \mathcal{T}_{-2}=2\rho^{-4}\left[\frac{(\mathbb{A}+3\gamma-\bar{\gamma}+4\mu+\bar{\mu})\left\{(\bar{\delta}-2\bar{\tau}+2\alpha)T_{24}-(\mathbb{A}+2\gamma-2\bar{\gamma}+\bar{\mu})T_{44}\right\}}{(\bar{\delta}-\bar{\tau}+\bar{\beta}+3\alpha+4\pi)\left\{(\mathbb{A}+2\gamma+2\bar{\mu})T_{24}-(\bar{\delta}-\bar{\tau}+2\bar{\beta}+2\alpha)T_{22}\right\}}\right] \\ & \mathbb{A}\equiv\left[\frac{r^{2}+a^{2}}{\Delta}\partial_{t},\partial_{r},0,\frac{a}{\Delta}\partial_{\phi}\right]^{T}, \quad \delta\equiv\frac{1}{\sqrt{2}(r+ia\cos\theta)}\left[ia\sin\theta\partial_{\theta},0,\partial_{\theta},i\csc\theta\partial_{\phi}\right]^{T} \\ \text{NB: for }T^{\mu\nu}\sim\delta^{3}(\mathbf{x}-\mathbf{z}), \Longrightarrow T_{s}\sim\delta(r-r_{0})+\delta'(r-r_{0})+\delta''(r-r_{0})\right] \end{split}$$

Solving the Teukolsky equation

Flux computations since Teukolsky (frequency domain) Time domain: 1+1D (G. Khanna, A. Zenginoglu, S. Hughes) $2+1D \oplus MPD$ (E. Harms, Bernuzzi et al. [1510.05548])

Frequency domain

$$\psi_s = {}_s R(r)_s S(\theta) e^{i(m\phi - \omega t)}$$

Teukolsky equation separates!

$$\begin{split} \left[\Delta^{-s}\frac{d}{dr}\left(\Delta^{s+1}\frac{d}{dr}\right) + \frac{K^2 - 2is(r-M)K}{\Delta} + 4iswr - \lambda\right]_s R(r) &= -4\pi \mathcal{T}_{s\ell m\omega}, \\ K &= (r^2 + a^2)\omega - ma \\ {}_sS(\theta)e^{im\phi} \quad \text{are the spin-weighted spheroidal harmonics} \\ \lambda \text{ is the eigenvalue of the angular equation} \end{split}$$

The radial equation can be solved

- \bullet analytically: small ω expansions of hypergeometric and Coulomb functions
- numerically as a Sasaki-Nakamura equation
- numerically directly

Further Motivation

Effective One Body Theory EOB

Buonanno-Damour 1998-2000s

Key idea: Map PN binary motion to geodesic motion in an *effective* spacetime using ν as a deformation parameter.

Sarp Akçay (FSU Jena)

Modelling GWs

EOB dynamics

Newtonian 2-body problem:

$$H_N = \frac{\mathbf{p}_1^2}{2m_1} + \frac{\mathbf{p}_1^2}{2m_1} - \frac{Gm_1m_2}{r} = \frac{\mathbf{p}^2}{2\mu} - \frac{G\mu M}{r} + \frac{\mathbf{P}_{\mathsf{CM}}^2}{2M}$$

Augment to PN, CM frame (relative motion, $\mathbf{P}_{CM} = 0$)

$$H_{PN} = H_N + \frac{1}{c^2}H_{1PN} + \frac{1}{c^4}H_{2PN} + \dots$$

Effective metric

$$g_{\rm eff} = {\rm diag}[-A(r), \frac{D(r)}{A(r)}, S^2]$$

EOB dynamics: Hamiltonian theory

$$\begin{split} H_{\text{EOB}} &= \mu \hat{H}_{\text{EOB}} = \frac{\mu}{\nu} \sqrt{1 + 2\nu (\hat{H}_{\text{eff}} - 1)}, \\ \hat{H}_{\text{eff}} &= \sqrt{p_{r_*}^2 + A \left(1 + \frac{p_{\phi}^2}{r^2} + z_3 \frac{p_{r_*}^4}{r^2}\right)} + \hat{H}_{\text{spin}}, \\ A &= 1 - 2u + 2\nu u^3 + \nu a_4 u^4 + \mathcal{O}(u^5), \\ D &= \left[1 + 6\nu u^2 + 2\nu (26 - 3\nu) u^3\right]^{-1} + \mathcal{O}(u^4) \qquad [u \equiv \frac{GM}{c^2 r}] \end{split}$$

EOB EoM

Work in Damour-Jaranowski-Schäfer gauge

 \implies Simplified Hamilton's equations

$$\begin{split} \frac{dr}{dt} &\sim \frac{\partial \hat{H}_{\text{EOB}}}{\partial p_{r_*}}, \qquad \frac{dp_{r_*}}{dt} \sim -\frac{\partial \hat{H}_{\text{EOB}}}{\partial r}, \\ \frac{d\phi}{dt} &= \frac{\partial \hat{H}_{\text{EOB}}}{\partial p_{\phi}} \equiv \Omega, \\ \frac{dp_{\phi}}{dt} &= \mathcal{F}_{\phi} \qquad \text{[RR force]} \end{split}$$

NB: $\mathcal{F}_r = 0$ for convenience (not zero)¹⁷ $\mathcal{F}_{\phi} \Rightarrow$ inspiral (special factorization and resummation, [Damour-Nagar 2007])

$$\begin{split} \mathcal{F}_{\phi} &\sim \sum_{\ell m} |h_{\ell m}|^2, \\ h_{\ell m} &= \hat{h}_{\ell m}^{\text{Newt}} \hat{S}_{\text{eff}} \, \hat{h}_{\ell m}^{\text{tail}} \, f_{\ell m} \, \hat{h}_{\ell m}^{\text{NQC}} \end{split}$$

 $^{^{17}\}mathcal{F}_r$ has been derived by Bini-Damour [1210.2834], but no resumming strategy exists for it (Damour-Nagar [1406.6913]).

Our EOB: TEOBResumS

Nagar-Bernuzzi et al.

Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides and self-spin effects

Alessandro Nagar^{1,2,3}, Sebastiano Berunzui^{4,5,6}, Walter Del Pozz⁷, Ginmar Riemenschneidez^{2,8}, Sarp Akcay⁴, Gregorio Carullo⁷, Philipp Fleig⁶, Stanisłav Babak¹⁰, Ka Wa Tsany¹², Marta Colloom¹³, Francesco Messian^{14,15}, Geraint Pratten¹³, David Radice^{16,17}, Piere Rettegno^{2,6}, Michalis Agathos¹³, Edwarf Zuchon-Jones¹⁰, Mark Hannam¹¹, Sascha Hussi¹³, Tim Dietrich^{12,20}, Pablo Cerdi-Duran²¹, José J. Ford^{12,12}, Francesco Pamarle^{16,23}, Patrica Schmidt²⁴, and Thibault Damou⁴

Circular, **spin** [anti]<u>aligned</u> inspirals with tides enhanced by NR simulations.

Ingredients:

- Point-mass inspiral: (1,5)-Padé-resummed A(u).
- Spin-orbit, spin-spin in the dynamics and flux (low multipoles).
- Tides LR-pole factorized GSF series at $\mathcal{O}(q) \oplus \mathcal{O}(q^2)$ GSF-PN hybrid.
- Tides use quasi-universal fits of Yagi et al.
- Monopole-quadrupole¹⁸ coupling upto NLO in dynamics \oplus flux.
- Plunge and ringdown smoothly attached to the inspiral (phenomenological).
- "Unfaithfulness" to BBH $\lesssim 10^{-3},$ to BNS $< 10^{-2}.$
- FAST! post-adiabatic: 10 Hz inspiral in $\approx 0.5 \text{ sec!}$ AN-Rettegno [1805.03891].

¹⁸Poisson 1997

Advertisement: TEOBResumS

https://bitbucket.org/eob_ihes/teobresums/wiki/Home

Currently being evaluated by LVC for LAL.

Sarp Akçay (FSU Jena)

Modelling GWs

Synergies

Cross-cultural comparisons of "gauge-invariant" quantities **E.g.**, $\mathcal{O}(q)$ correction to ISCO radius.

$$\mathring{r}_{\mathsf{ISCO}} = 6m_2 \rightarrow \mathring{r}_{\mathsf{ISCO}} + q\Delta \hat{r}_{\mathsf{ISCO}}$$

Coordinates x^{μ} are gauge-dependent!

Frequency is gauge invariant

$$\Omega_{\rm ISCO} \rightarrow \Omega_{\rm ISCO} \left(1 + q \Delta \hat{\Omega}_{\rm ISCO} \right) \equiv \Omega_{\rm ISCO} + q C_{\Omega}$$

 $\begin{array}{ll} C_\Omega = 1.2512(4) & {\sf Barack-Sago} \; [1002.2386] \; ({\sf from \; GSF}) \\ = 1.2510(2) & {\sf Le \; Tiec \; et \; al. \; [1111.5609] \; ({\sf PN} \; \odot \; (2,3){\sf Pade}) \\ = 1.25101546(5) \; {\sf Akcay \; et \; al. \; [1209.0964] \; ({\sf from \; the \; redshift}) } \end{array}$

NOTE: BS result depends on GSF, but yields a gauge invariant quantity.

Synergies

Detweiler redshift

Detweiler [0804.3529]: PN - RW agreement redshift of a photon leaving m_1

Sago-Barack-Detweiler [0810.2530] Lorenz vs. RW gauge: $\Delta_{\rm rel} \lesssim 10^{-5}$

 $m_2/m = 2/9$

0.10

0.08

mΩ

Synergies

Perihelion retreat

 $\mathcal{O}(q)$ correction to Einstein perihelion shift (negative!)

Barack-Sago [1101.3331]

$p_0 e_0$	$q^{-1}\Delta\delta$	$q^{-1}\Delta\delta/\delta_0$
6.1 0.02	-146(2)	-20.7(2)
6.2 0.05	-57.0(2)	-11.71(5)
6.3 0.1	-41.9(1)	-10.23(3)
6.4 0.1	-19.71(5)	-6.12(2)

GSF-NR-PN synergy in Kerr

Reformulated into the invariant $K = \frac{\Omega_{\phi}}{\Omega_r}$ (BS-Damour [1008.0935])

GSF-NR-PN-EOB comparison Le Tiec et al. [1106.3278]

Synergies

de Sitter precession

 $\mathcal{O}(q)$ correction to geodetic precession

Dolan et al. [1312.0775]: circular orbits in Schwarchild

Akcay et al. [1608.04811]: eccentric orbits

The end

We have come a long way!

- 103.4 years of general relativity
- Two different analytical approaches to the two-body problem
- Both feed into EOB (so does numerical relativity)
- Massive challenges overcome in the last 100 years

