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Gravitational Favorites Critical Phenomena in gravitational collapse

A numerical experiment...

• Consider scalar field

�ϕ ≡ gab∇a∇bϕ = 0

coupled to Einstein’s equations

• Initial data

ϕ = η exp(−R2/R2
0)

• try out different η...
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Have critical value η∗ so that

η < η∗ α→ 1 end up with flat space

η > η∗ α→ 0 end up with black hole

Black-hole threshold
0.3 < η∗ < 0.4
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• Let’s say scalar field

�ϕ ≡ gab∇a∇bϕ = 0

coupled to Einstein’s equations

• Initial data

ϕ = η exp(−R2/R2
0)

• try out different η...

0 1 2 3 4 5 6 7 8
t

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

α
η =0.39

η =0.31

Have critical value η∗ so that

η < η∗ α→ 1 end up with flat space

η > η∗ α→ 0 end up with black hole

Black-hole threshold
0.3 < η∗ < 0.31

Thomas Baumgarte, Bowdoin College 5



Gravitational Favorites Critical Phenomena in gravitational collapse

A numerical experiment...

• Let’s say scalar field

�ϕ ≡ gab∇a∇bϕ = 0

coupled to Einstein’s equations

• Initial data
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• try out different η...
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Gravitational Favorites Critical Phenomena in gravitational collapse

A numerical experiment...

• Let’s say scalar field

�ϕ ≡ gab∇a∇bϕ = 0

coupled to Einstein’s equations

• Initial data

ϕ = η exp(−R2/R2
0)

• try out different η...
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Gravitational Favorites Critical Phenomena in gravitational collapse

A numerical experiment...

• Let’s say scalar field

�ϕ ≡ gab∇a∇bϕ = 0

coupled to Einstein’s equations

• Initial data

ϕ = η exp(−R2/R2
0)

• try out different η...
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Gravitational Favorites Critical Phenomena in gravitational collapse

A numerical experiment...

• Let’s say scalar field

�ϕ ≡ gab∇a∇bϕ = 0

coupled to Einstein’s equations

• Initial data

ϕ = η exp(−R2/R2
0)

• try out different η...
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A numerical experiment...

• Let’s say scalar field

�ϕ ≡ gab∇a∇bϕ = 0

coupled to Einstein’s equations
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Gravitational Favorites Critical Phenomena in gravitational collapse

A numerical experiment...

• Let’s say scalar field

�ϕ ≡ gab∇a∇bϕ = 0

coupled to Einstein’s equations

• Initial data

ϕ = η exp(−R2/R2
0)

• try out different η...
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Gravitational Favorites Critical Phenomena in gravitational collapse

A numerical experiment...

• Let’s say scalar field

�ϕ ≡ gab∇a∇bϕ = 0

coupled to Einstein’s equations

• Initial data

ϕ = η exp(−R2/R2
0)

• try out different η...
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Black-hole threshold
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Gravitational Favorites Critical Phenomena in gravitational collapse

A numerical experiment...

• Let’s say scalar field

�ϕ ≡ gab∇a∇bϕ = 0

coupled to Einstein’s equations

• Initial data

ϕ = η exp(−R2/R2
0)

• try out different η...
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Black-hole threshold

0.303375994 < η∗ < 0.303375995
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A numerical experiment...

• Let’s say scalar field
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Gravitational Favorites Critical Phenomena in gravitational collapse

A numerical experiment...

• Let’s say scalar field

�ϕ ≡ gab∇a∇bϕ = 0

coupled to Einstein’s equations

• Initial data

ϕ = η exp(−R2/R2
0)

• try out different η...
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Black-hole threshold

0.3033759947 < η∗ < 0.3033759948
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Gravitational Favorites Critical Phenomena in gravitational collapse

A numerical experiment...

• Let’s say scalar field

�ϕ ≡ gab∇a∇bϕ = 0

coupled to Einstein’s equations

• Initial data

ϕ = η exp(−R2/R2
0)

• try out different η...
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Have critical value η∗ so that

η < η∗ α→ 1 end up with flat space

η > η∗ α→ 0 end up with black hole

Black-hole threshold

0.30337599472 < η∗ < 0.30337599473
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Gravitational Favorites Critical Phenomena in gravitational collapse

A numerical experiment...

• Let’s say scalar field

�ϕ ≡ gab∇a∇bϕ = 0

coupled to Einstein’s equations

• Initial data
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Gravitational Favorites Critical Phenomena in gravitational collapse

A numerical experiment...

• Let’s say scalar field

�ϕ ≡ gab∇a∇bϕ = 0

coupled to Einstein’s equations

• Initial data

ϕ = η exp(−R2/R2
0)
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Gravitational Favorites Critical Phenomena in gravitational collapse

A numerical experiment...

• Let’s say scalar field

�ϕ ≡ gab∇a∇bϕ = 0

coupled to Einstein’s equations

• Initial data

ϕ = η exp(−R2/R2
0)

• try out different η...
6.5825 6.5850 6.5875 6.5900 6.5925

t
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0.3

0.4

α

η =0.3033759947299

η =0.3033759947291

Have critical value η∗ so that

η < η∗ α→ 1 end up with flat space

η > η∗ α→ 0 end up with black hole

Black-hole threshold

0.3033759947297 < η∗ < 0.3033759947298
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Gravitational Favorites Critical Phenomena in gravitational collapse

Critical Solution

• Let’s look at ϕ for η ≈ η∗ at r = 0
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Gravitational Favorites Critical Phenomena in gravitational collapse

Critical Solution

• Let’s look at ϕ for η ≈ η∗ at r = 0

• plot as function of proper time τ

=⇒ oscillations “accumulate” at
“accumulation” time

τ∗ ≈ 1.5698
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Gravitational Favorites Critical Phenomena in gravitational collapse

Critical Solution

• Let’s look at ϕ for η ≈ η∗ at r = 0

• plot as function of proper time τ

=⇒ oscillations “accumulate” at
“accumulation” time

τ∗ ≈ 1.5698

• plot as function of

T ≡ − log(τ∗ − τ )

• “Choptuik spacetime”
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Gravitational Favorites A few details

A few details

• Solve Einstein’s equations
Gab = 8πTab

• Choose matter model. . .
◦ . . . scalar field

equation of motion:
gab∇a∇bϕ = 0

stress-energy tensor:

Tab = ∇aϕ∇bϕ−
1

2
gab∇cϕ∇cϕ

◦ . . . ultra-relativistic fluid (special case: radiation fluid: κ = 1/3)

P = κρ

equation of motion: relativistic equations of hydrodynamics
stress-energy tensor:

Tab = (ρ + P )uaub + Pgab

Thomas Baumgarte, Bowdoin College 7



Gravitational Favorites Radiation fluids

Radiation fluids

• radiation fluid

P = ρ/3

• initial data

ρ(R) ∝ η exp(−R2/R2
0)

• find similar behavior, with

η∗ ≈ 1.01838

[Evans & Coleman, 1994]
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Gravitational Favorites Radiation fluids

Can we form arbitrarily small black holes??

Consider black-hole mass M as η → η∗
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Gravitational Favorites Critical Phenomena...

Critical Phenomena...

Magnetic field close to critical tem-
perature:

[Ashcroft & Mermin, Solid State
Physics, 1976]

Critical Phenomena:

• appear close to phase transitions

• result in scaling laws
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Gravitational Favorites Critical Phenomena...

Critical Phenomena in Gravitational Collapse

Consider initial matter distribution
parametrized by η (say density) and
evolve...

Then critical parameter η∗ separates
◦ supercritical data: form black hole
◦ subcritical data: don’t

Close to η∗ observe critical phenomena:

• black hole formed from supercritical data
has mass

M ' |η − η∗|γM

where γM is universal
[Choptuik, 1998]

• spacetime approaches self-similar critical solution

[Choptuik, 1993]

Thomas Baumgarte, Bowdoin College 11



Gravitational Favorites Self-similarity

Self-similarity

• Solution contracts without changing
shape. . .

Thomas Baumgarte, Bowdoin College 12



Gravitational Favorites Self-similarity

Self-similarity

• Solution contracts without changing
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Gravitational Favorites Self-similarity

Self-similarity

• Solution contracts without changing
shape. . .
• . . . towards accumulation event at τ = τ∗
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Gravitational Favorites Self-similarity

Self-similarity

• Solution contracts without changing
shape. . .
• . . . towards accumulation event at τ = τ∗
• radius R proportional to τ∗ − τ ,

R ' (τ∗ − τ )

=⇒ dimensionless quantities are functions of

ξ ≡ R

τ∗ − τ
only, i.e.

Z = Z∗(ξ)
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Gravitational Favorites Self-similarity

Self-similarity

• Solution contracts without changing
shape. . .
• . . . towards accumulation event at τ = τ∗
• radius R proportional to τ∗ − τ ,

R ' (τ∗ − τ )

=⇒ dimensionless quantities are functions of

ξ ≡ R

τ∗ − τ
only, i.e.

Z = Z∗(ξ)
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Gravitational Favorites Self-similarity

Numerical example

Now choose

η ' η∗

and look for self-similarity
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Gravitational Favorites Self-similarity

Numerical example

Now choose

η ' η∗

and look for self-similarity

• instead of ρ, consider

Ω ≡ 4πR2ρ
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Gravitational Favorites Self-similarity

Numerical example

Now choose

η ' η∗

and look for self-similarity

• instead of ρ, consider

Ω ≡ 4πR2ρ

• plot as function of

ξ ≡ R

τ∗ − τ
with τ∗ = 2.624

=⇒ self-similarity evident
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Gravitational Favorites Self-similarity

Self-similarity

• Solution contracts without changing
shape. . .
• . . . towards accumulation event at τ = τ∗
• radius R proportional to τ∗ − τ ,

R ' (τ∗ − τ )

=⇒ dimensionless quantities are functions of

ξ ≡ R

τ∗ − τ
only, i.e.

Z = Z∗(ξ)

=⇒ no preferred global length scale

What sets scale of forming black holes?

Thomas Baumgarte, Bowdoin College 18



Gravitational Favorites Three phases of evolution

Three phases of evolution

• Phase I:
from initial data to something close to critical solution
(how close? depends on degree of fine-tuning)

• Phase II:
critical solution plus perturbation
(until perturbation becomes nonlinear)

• Phase III:
collapse to black hole or disperse

=⇒ length scale set by size of self-similar solution at transition from Phase II to III

Thomas Baumgarte, Bowdoin College 19



Gravitational Favorites Phase II: Perturbations of Critical Solutions

Phase II: Perturbations of Critical Solutions

• Consider perturbations ζ of critical solution
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Phase II: Perturbations of Critical Solutions

• Consider perturbations ζ of critical solution
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Gravitational Favorites Phase II: Perturbations of Critical Solutions

Phase II: Perturbations of Critical Solutions

• Consider perturbations ζ of critical solution

• assume that only one mode is unstable
=⇒ grows at rate λ in T = − log(τ∗ − τ )

ζ ∝ exp(λT ) = (τ∗ − τ )−λ
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Gravitational Favorites Phase II: Perturbations of Critical Solutions

Phase II: Perturbations of Critical Solutions

• Consider perturbations ζ of critical solution

• assume that only one mode is unstable
=⇒ grows at rate λ in T = − log(τ∗ − τ )

ζ ∝ exp(λT ) = (τ∗ − τ )−λ

• to leading order also proportional to η − η∗
ζ ∝ (η − η∗)(τ∗ − τ )−λ
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Gravitational Favorites Phase II: Perturbations of Critical Solutions

Phase II: Perturbations of Critical Solutions

• Consider perturbations ζ of critical solution

• assume that only one mode is unstable
=⇒ grows at rate λ in T = − log(τ∗ − τ )

ζ ∝ exp(λT ) = (τ∗ − τ )−λ

• to leading order also proportional to η − η∗
ζ ∝ (η − η∗)(τ∗ − τ )−λ

Mode becomes nonlinear when ζ = const
=⇒ determines length scale

R ∝ (τ∗ − τ ) ∝ (η − η∗)1/λ
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Gravitational Favorites Phase II: Perturbations of Critical Solutions

Phase II: Perturbations of Critical Solutions

• Consider perturbations ζ of critical solution

• assume that only one mode is unstable
=⇒ grows at rate λ in T = − log(τ∗ − τ )

ζ ∝ exp(λT ) = (τ∗ − τ )−λ

• to leading order also proportional to η − η∗
ζ ∝ (η − η∗)(τ∗ − τ )−λ

Mode becomes nonlinear when ζ = const
=⇒ determines length scale

R ∝ (τ∗ − τ ) ∝ (η − η∗)1/λ

=⇒ scaling laws, e.g.

M ∝ (η − η∗)γ

with γ = 1/λ
[Koike et.al., 1995; Maison 1995]
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1/λ = 0.3558 γ = 0.356
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Gravitational Favorites Brief History

Brief History

• Original discovery:
◦ scalar fields
◦ numerical simulations in spherical symmetry
[Choptuik 1993]

• Other matter models:
◦ vacuum (gravitational waves) [Abrahams & Evans, 1993]
◦ radiation fluids [Evans & Coleman, 1994]
◦ etc...

• Perturbative calculations
[Koike et.al., 1995; Maison, 1995; Mart́ın-Garćıa & Gundlach, 1999; ... ]

Thomas Baumgarte, Bowdoin College 26



Gravitational Favorites Brief History

Brief History

• Original discovery:
◦ scalar fields
◦ numerical simulations in spherical symmetry
[Choptuik 1993]

• Other matter models:
◦ vacuum (gravitational waves) [Abrahams & Evans, 1993]
◦ radiation fluids [Evans & Coleman, 1994]
◦ etc...

• Perturbative calculations
[Koike et.al., 1995; Maison, 1995; Mart́ın-Garćıa & Gundlach, 1999; ... ]

But, until recently, very few numerical studies in absence of spherical symmetry,
despite progress in 3D numerical relativity

Thomas Baumgarte, Bowdoin College 26



Gravitational Favorites Effects of asphericity in critical collapse

Effects of asphericity in critical collapse

• What is effect of aspherical perturbations? Are they stable or unstable?
[TWB & Montero, 2015; Celestino & TWB, 2018]

• What is role of angular momentum?
[TWB & Gundlach, 2016; Gundlach & TWB, 2016, 2018]

Thomas Baumgarte, Bowdoin College 27



Gravitational Favorites Effects of asphericity in critical collapse

Numerical code

• adopts BSSN formulation in reference-metric form
[Nakamura et.al., 1987; Shibata & Nakamura, 1995; TWB & Shapiro, 1998;
Brown, 2007]

• adopts spherical polar coordinates without symmetry assumptions
[TWB, Montero, Cordero-Carrión & Müller, 2013; Montero, TWB & Müller,
2014]

• “moving puncture gauge”: 1+log slicing and Gamma driver
[Bona et.al., 1995; Alcubierre et.al., 1999]

• uses logarithmic radial coordinate and regridding

Thomas Baumgarte, Bowdoin College 28



Gravitational Favorites Aspherical deformations of ultrarelativistic fluids

Aspherical deformations of ultrarelativistic fluids

Recall ultrarelativistic fluid P = κρ

Consider two-parameter family of initial data

• Gaussian density distribution centered on Rc

• parameterized by
◦ η: strength of data
◦ ε: eccentricity (proportional to ` = 2)

Thomas Baumgarte, Bowdoin College 29



Gravitational Favorites Aspherical deformations of ultrarelativistic fluids

Evolution

• for given value of κ choose ε, then fine-tune η to black-hole threshold

=⇒ confirm scaling laws

M ' (η − η∗)γ

ρ−1/2c ' (η∗ − η)γ

=⇒ measure critical exponents
• excellent agreement with pertur-
bative values
• at most little dependence on ε

10−10 10−8 10−6 10−4 10−2

|η − η∗|

10−2

10−1

100

M
,
ρ
−

1/
2

m
ax

ρ
−1/2
max

M

κ = 1/3, ε = 1.0
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Gravitational Favorites Aspherical deformations of ultrarelativistic fluids

Deviations from sphericity

• Measure dimensionless “density variable”

Ω ≡ 4πR2ρ

◦ in spherical symmetry, during self-similar phase Ω = Ω(ξ)
◦ Track

∆Ω ≡ Ωmax,ax − Ωmax,eq

as measure of asphericity

• Example:
◦ Radiation fluid, κ = 1/3
◦ ε = 1.0
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Gravitational Favorites Aspherical deformations of ultrarelativistic fluids

Pass the popcorn...
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Gravitational Favorites Fits

Fits

• Plot ∆Ω as function of τ
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Gravitational Favorites Fits

Fits

• Plot ∆Ω as function of τ
• instead, plot as function of

T ≡ − log(τ∗ − τ )
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Gravitational Favorites Fits

Fits

• Plot ∆Ω as function of τ
• instead, plot as function of

T ≡ − log(τ∗ − τ )

=⇒ damped oscillations of form

∆Ω ' eλT cos(ωT + φ)

[Gundlach, 2002]
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κ = 1/3
ε η∗ τ∗ γM γρ λ ω

perturbative 0.3558 -0.3846 3.6158
0 0.124087 6.449 0.357 0.357 – –
0.01 0.124087 6.449 0.355 0.356 -0.36 3.64
0.1 0.124098 6.450 0.357 0.356 -0.36 3.64
0.5 0.124444 6.460 0.356 0.357 -0.36 3.64
1.0 0.125544 6.496 0.356 0.357 -0.37 3.65
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Gravitational Favorites Fits

Fits

• Plot ∆Ω as function of τ
• instead, plot as function of

T ≡ − log(τ∗ − τ )

=⇒ damped oscillations of form

∆Ω ' eλT cos(ωT + φ)

[Gundlach, 2002]
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Gravitational Favorites Fits

Fits

• Plot ∆Ω as function of τ
• instead, plot as function of

T ≡ − log(τ∗ − τ )

=⇒ damped oscillations of form

∆Ω ' eλT cos(ωT + φ)

[Gundlach, 2002]
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=⇒modes become unstable for κ & 0.49

=⇒ expect break-down of scaling at small scales

Thomas Baumgarte, Bowdoin College 37



Gravitational Favorites Critical Collapse with Rotation

Critical Collapse with Rotation

Critical collapse with rotation leads to rotating black hole:

• Kerr black hole [Kerr, 1963]

• characterized by mass M and angular momentum J with

J

M 2
< 1

=⇒ how does J behave as M → 0 in critical collapse??

=⇒ what is role of angular momentum in critical collapse??

[Choptuik et.al., 2004]
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Gravitational Favorites Critical Collapse with Rotation

Critical Collapse with Rotation: Perturbative Results

Angular momentum scales with

J ' |η − η∗|γJ

Combine with M ' |η − η∗|γM to find

J

M 2
'M (γJ−2γM )/γM

For perfect fluid
P = κρ radiation fluid: κ = 1/3

with 1/9 < κ . 0.49 expect

γJ =
5 (1 + 3κ)

3 (1 + κ)
γM radiation fluid: γJ = 2.5 γM

[Gundlach, 1998; 2002]

=⇒ For κ > 1/9 have γJ > 2 γM and hence expect

J

M 2
→ 0 as M → 0

=⇒ explore numerically...
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Gravitational Favorites Critical Collapse with Rotation

Initial Data

• Gaussian density distribution ρ,
parameterized by:
◦ amplitude η
◦ spin velocity Ω

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Ω

1.02

1.03

1.04

1.05

η

N A

B

C

D

E

F

supercritical

subcritical

=⇒ explore sequences through two-dimensional parameter space:
◦ locate critical curve
◦ study scaling close to criticality
◦ generalize power-law behavior “globally”
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Gravitational Favorites Critical Collapse with Rotation

Rotating Data

Sequences for
• constant η
• constant Ω
Rotation provides centrifugal support
=⇒ critical curve:

η∗ ' η∗0 + 0.36 Ω2
∗

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Ω

1.02

1.03

1.04

1.05

η

N A

B

C

D

E

F

supercritical

subcritical

[TWB & Gundlach, 2016]

10−2

10−1

M

Seq. D
Seq. F

10−5 10−4 10−3 10−2

|p− p∗|

10−5

10−4

10−3

10−2

J

For all sequences

γM ' γρ ' 0.36

γJ ' 0.87 ' 2.43 γM

• independent of Ω and “direction”
across critical curve
• critical black hole is non-spinning
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Gravitational Favorites Scaling laws

Scaling laws

Include rotational ` = 1 term in perturbative treatment

=⇒ derive extended scaling laws

M '
(
η − η∗0 −KΩ2

)γM
and

J ' Ω
(
η − η∗0 −KΩ2

)γJ
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Gravitational Favorites Scaling laws

Extended power-law relations

• Extended scaling laws for M and J

M '
(
η − η∗0 −KΩ2

)γM
J ' Ω

(
η − η∗0 −KΩ2

)γJ
• for example, consider “horizontal” η = const sequences

• normalize by maximum values

M(η,Ω)

Mmax(η)
' (1− x2)γM

J(η,Ω)

Jmax(η)
' x

C
(1− x2)γJ

where x = Ω/Ω∗(η)

=⇒ excellent agreement

[TWB & Gundlach, 2016]
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Gravitational Favorites Scaling laws

Predictions for mass and angular momentum

M J

[Gundlach & TWB, 2016]
... the unreasonable effectiveness of perturbation theory ...
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Gravitational Favorites Summary

Summary

Numerical simulations of critical collapse in the absence of spherical symmetry

• use code that adopts spherical polar coordinates

• study effects of
◦ aspherical deformations
◦ rotation

• find excellent agreement with perturbation theory

• aspherical modes are stable in regime 1/9 < κ . 0.49 only
=⇒ scaling-laws to smallest scales in this regime only
=⇒ includes radiation fluid, κ = 1/3
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Gravitational Favorites Summary

Summary

Numerical simulations of critical collapse in the absence of spherical symmetry
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