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Gravitational Favorites Critical Phenomena in gravitational collapse

Critical Phenomena in gravitational collapse

VOLUME 70, NUMBER | PHYSICAL REVIEW LETTERS 4 JANUARY 1993

Universality and Scaling in Gravitational Collapse of a Massless Scalar Field

Matthew W. Choptuik
Center for Relativity, University of Tezas at Austin, Austin, Texas 78712-1081
(Received 22 September 1992)

I summarize results from a numerical study of spherically symmetric collapse of a massless scalar
field. I consider families of solutions, S[p], with the property that a critical parameter value, p*,
separates solutions containing black holes from those which do not. I present evidence in support
of conjectures that (1) the strong-field evolution in the p — p* limit is universal and generates
structure on arbitrarily small spatiotemporal scales and (2) the masses of black holes which form
satisfy a power law Mpy o |p — p*|”, where « & 0.37 is a universal exponent.
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Gravitational Favorites Critical Phenomena in gravitational collapse

e Consider scalar field

1.2 ‘ ‘
Oy = ¢*V,Vyp =0 Lol n=0.1 |
coupled to Einstein’'s equations s
e [nitial data 0.6}
3
2/ P2
p = nexp(—R"/Ry) 04
) M
. 0.0}
e try out different 7)... 1 =0.6
T 2 3 4 5 6 7 8

Have critical value 7, so that

N < N« a— 1 end up with flat space

1N > Ny a — 0 end up with black hole

Black-hole threshold
0.3 <n, <0.4

Ut

Thomas Baumgarte, Bowdoin College



Gravitational Favorites Critical Phenomena in gravitational collapse

e Let's say scalar field

O = g"VoVyp =0 Ll

coupled to Einstein’s equations 05l y =031
e Initial data 0.6F

3
o = nexp(—R*/Ry) 04
A

. 0.0}

e try out different 7)... 1 =0.39

0.2 ‘
o 1 2 3 4 5 6 7
t

Have critical value 7, so that

N < N« a— 1 end up with flat space

1N > Ny a — 0 end up with black hole

Black-hole threshold
0.3 <n, <0.31

Ut
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Gravitational Favorites Critical Phenomena in gravitational collapse

A numerical experiment...

e Let's say scalar field

Ui = g"VVip =0

coupled to Einstein's equations

e Initial data

p =nexp(—R*/Ry)

e try out different 7)...

Have critical value 7, so that

N < N« a— 1 end up with flat space

1N > Ny a — 0 end up with black hole

Black-hole threshold
0.303 < 1, < 0.304

Ut
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Gravitational Favorites Critical Phenomena in gravitational collapse

A numerical experiment...

e Let's say scalar field 1.2
_ab
DQO = ga VGVI)QO =0 1.0+
coupled to Einstein’s equations 0.81 7 =0.3031
. R
e Initial data 3
0 s 0.4 7
p =nexp(—R"/Ry)
0.2 |
_ B | B
0.0 n =0.3039
- —0.2 - -
e try out different 7)... 0 9 A 6

Have critical value 7, so that

N < 7« a— 1 end up with flat space

1N > 1Ny a — 0 end up with black hole

Black-hole threshold
0.3033 < n, < 0.3034

Ut
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Gravitational Favorites

Critical Phenomena in gravitational collapse

e Let's say scalar field
O = g*°VaVsp =0

coupled to Einstein's equations

e Initial data

p = nexp(—R*/Ry)

e try out different 7)...

Have critical value 7, so that
N <7

n > M«
Black-hole threshold

a— 1

a — ()

1.2

1.0
0.89
0.6
0.4
0.21
0.0

—0.2

n =0.30331 /
‘\
\

N

n =0.30339

2 4 6

end up with flat space

end up with black hole

0.30337 < m, < 0.30338
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Gravitational Favorites Critical Phenomena in gravitational collapse

e Let's say scalar field 19
__ _ab |
o = g"V,Vyp =0 1.0 |
coupled to Einstein's equations 0.84  m=0.303371 “‘
.. 0.6 I
e Initial data 3 | |
2 1 2 04 | |
o = nexp(~RY/R}) N B
: 7, \ 4// ‘ 
_ [
0.0 n =0.303379
- —0.2 - - -
e try out different 7)... ; 3 2 :

Have critical value 7, so that

N < 7« a— 1 end up with flat space

1N > 1Ny a — 0 end up with black hole

Black-hole threshold
0.303375 < n, < 0.303376

Ut
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Gravitational Favorites Critical Phenomena in gravitational collapse

A numerical experiment...

e Let's say scalar field

b n =0.303371
Lo = ga V.V =0 0.8 1 '
coupled to Einstein’s equations 0.6,
e Initial data S 041
p =nexp(—R*/Ry) 1ol
Z Y JL

0.01 5 =0.303379
5.8 6.0 6.2 6.4 6.6

e try out different 7)...

Have critical value 7, so that

N < 7« a— 1 end up with flat space

1N > 1Ny a — 0 end up with black hole

Black-hole threshold
0.303375 < n, < 0.303376
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Gravitational Favorites

Critical Phenomena in gravitational collapse

A numerical experiment...

e Let's say scalar field
O = g*°VaVsp =0

coupled to Einstein's equations

e Initial data

p = nexp(—R*/Ry)

e try out different 7)...

Have critical value 7, so that
N <7

n > M«
Black-hole threshold

a— 1

a — ()

0.8 1

0.6

0.2 1

0.0 1

n =0.3033751

g

n =0.3033759

5.8 6.0 6.2 6.4 6.6

end up with flat space

end up with black hole

0.3033759 < n, < 0.3033760
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Gravitational Favorites

Critical Phenomena in gravitational collapse

e Let's say scalar field
O = g*°VaVsp =0

coupled to Einstein's equations

e Initial data

p = nexp(—R*/Ry)

e try out different 7)...

Have critical value 7, so that
N <7

n > M«
Black-hole threshold

a— 1

a — ()

n =0.30337591
0.8 |
0.6-
S04
0.2- |
.01 5 =0.30337599
5.8 6.0 6.2 6.4 6.6

end up with flat space
end up with black hole

0.30337599 < n, < 0.30337600
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Gravitational Favorites Critical Phenomena in gravitational collapse

e Let's say scalar field
n =0.303375991

Qo = ¢%V,Vyp =0 0.8
coupled to Einstein's equations 0.6
e |nitial data S 044
o = nexp(—R?/Ry) .
/ /| j‘

0.01 ;) —0.303375999
5.8 6.0 6.2 6.4 6.6

e try out different ...

Have critical value n, so that

N < 7y a— 1 end up with flat space

1N > Ny a — 0 end up with black hole
Black-hole threshold

0.303375994 < n, < 0.303375995
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Gravitational Favorites

Critical Phenomena in gravitational collapse

A numerical experiment...

e Let's say scalar field
O = g*V, Vi =0

coupled to Einstein's equations

e |nitial data

p = nexp(—R*/R})

e try out different ...

Have critical value n, so that
M < 7N«

1N > 7«
Black-hole threshold

a— 1

a— 0

0.61

0.4 1

0.2

0.0

n =0.303375991

/

‘a\

n =0.303375999

6.45

6.50 6.55

t

end up with flat space

end up with black hole

0.303375994 < n, < 0.303375995
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e Let's say scalar field

b n =0.3033759941
o =gV, V=0 0.6
coupled to Einstein's equations
0.4 -
e [nitial data 3
2 P2 21/
p = nexp(—R"/Ry) 021, |
n =0.3033759949

e try out different 7)... 615 6.50 6.55 6.60

t

Have critical value n, so that

N < 7y a— 1 end up with flat space

1N > Ny a — 0 end up with black hole
Black-hole threshold

0.3033759947 < n, < 0.3033759948
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Gravitational Favorites

Critical Phenomena in gravitational collapse

e Let's say scalar field
O = g*V, Vi =0

coupled to Einstein's equations

e |nitial data

p = nexp(—R*/R})

e try out different ...

Have critical value n, so that
n < N a— 1

1N > 1) a— 0
Black-hole threshold

n =0.30337599471
0.61

0.41
0.21

0.0

n =0.30337599479

6.45 6.50
¢

end up with flat space

end up with black hole

0.30337599472 < n, < 0.30337599473
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Critical Phenomena in gravitational collapse

e Let's say scalar field
O = g*V, Vi =0

coupled to Einstein's equations

e |nitial data

p = nexp(—R*/R})

e try out different ...

Have critical value n, so that
M < 7N«

1N > 7«
Black-hole threshold

a— 1

a— 0

0.61
0.41
0.21

0.0

n =0.303375994721

n =0.303375994729

6.50 6.55

t

6.45

end up with flat space

end up with black hole

0.303375994729 < n, < 0.303375994730
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Critical Phenomena in gravitational collapse

A numerical experiment...

e Let's say scalar field
O = g*V, Vi =0

coupled to Einstein's equations

e |nitial data

p = nexp(—R*/R})

e try out different ...

Have critical value n, so that
M < 7N«

1N > 7«
Black-hole threshold

a— 1
a— 0

0.41 1 =0.303375994721
0.3-
0.21
0.11
0.0-/
1 =0.303375994729
B 6.5825 6.5850 6.5875 6.5900  6.5925
(

end up with flat space

end up with black hole

0.303375994729 < n, < 0.303375994730
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Gravitational Favorites Critical Phenomena in gravitational collapse

A numerical experiment...

e Let's say scalar field

Do = 49, T = 0.41 1 =0.3033759947291
coupled to Einstein's equations 0.3° | |
e Initial data s 07 / |
o = nexp(—R*/ Rp) M / \ J(
. ~_
1 =0.3033759947299 y\/
e try out different ... TR 6.0%50  6.9875  6.5000  6.5025

t

Have critical value n, so that

N < 7y a— 1 end up with flat space

1N > Ny a — 0 end up with black hole
Black-hole threshold

0.3033759947297 < n, < 0.3033759947298
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Gravitational Favorites Critical Phenomena in gravitational collapse

Critical Solution

e Let's look at o forn =~ n, atr =0
0.6 1

0.4 7

0.2 1

—0.27

—0.41

—0.6 1
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Gravitational Favorites Critical Phenomena in gravitational collapse

Critical Solution

e Let's look at o forn =~ n, atr =0

0.6 1
e plot as function of proper time 7 0.4
) i " " 0.2 1
— oscillations “accumulate” at
“accumulation” time < 0.0 —
T. ~ 1.5698 —0.2-
—0.4 -
—0.61
0.0 0.5 1.0 1.5
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Critical Solution

e Let's look at o forn =~ n, atr =0

0.6 1
e plot as function of proper time 7 0.4
: : " " 0.21
— oscillations “accumulate” at
“accumulation” time < 0.01
T« =~ 1.5698 —0.21
e plot as function of —0.41
T =—log(ry — 7) —0.61 | | | | |
) | o 0.0 25 50 75 100
e "Choptuik spacetime T
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Gravitational Favorites

A few details

e Solve Einstein's equations

Gab = 87TTab
e Choose matter model. ..
o ...scalar field
equation of motion:
gabvavbgp = ()
stress-energy tensor:
1
Top = Vap Ve — égabchpchO

o ... ultra-relativistic fluid (special case: radiation fluid: x = 1/3)

P =kp

equation of motion: relativistic equations of hydrodynamics
stress-energy tensor:
T, = (,O + P)uaub + Pgup

Thomas Baumgarte, Bowdoin College
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Radiation fluids

e radiation fluid

1.0
P=p/3 0.17F
0.l 016}
e initial data 0.15¢
0.14} |
2/ P2 | 0.13} |
p(R) o< nexp(—R"/Ry) Ol Y
. . . . 100 105 11.0 115 — 1 =1.018377
e find similar behavior, with S ol o =1.018378 |
N ~ 1.01838
0.2}
[Evans & Coleman, 1994] \‘
0.0} b
0 5 10 15 20 %
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Gravitational Favorites Radiation fluids

Can we form arbitrarily small black holes??

Consider black-hole mass M as n — 7,

0.12

O

O

0.10
0.08¢ |

0.06 |

0.04} § 1
O
O
S

0.02¢

0.00 1.618 1.620 1.622 1.624 1.626 1.628 1.030

Ui
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Gravitational Favorites Radiation fluids

Can we form arbitrarily small black holes??

Consider black-hole mass M as n — 7,

0.12

O

O

0.10
0.08¢ |

0.06 |

0.04} § |
O
O
S

0.02¢

0.00 1.618 1.620 1.622 1.624 1.626 1.628 1.030

Ui

Looks familiar???
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Gravitational Favorites Radiation fluids

Can we form arbitrarily small black holes??

Consider black-hole mass M as n — 7,

o C
0.12} o ]
(@)
O
0.10} o ]
(@)
O -~
0.08} o 1 £
= 5
0.06] © : §
£
0.04} § :
O
O
0.02} :
:
0.00L— ‘

1018 1020 1022 1024 1.026 1028 1030
7

Looks familiar???
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Critical Phenomena...

Magnetic field close to critical tem-
perature:

L]
110 .
L ]
= e
°
90 — °
L]
—_ = L ]
o
I
s L h
o
2 o
E 50 — v
= L
30 —
°
2 L ]
10— *
o
e e EaE il e e e o e
(a) 52 54 56 58 60 62 64 66 68 T(K)

[Ashcroft & Mermin, Solid State
Physics, 1976]

Critical Phenomena:

e appear close to phase transitions

e result in scaling laws

Thomas Baumgarte, Bowdoin College

Thermodynamic Properties at the Onset of Magnetic Ordering 699

in the absence of applied fields, the field at the nucleus (and hence the resonance
frequency) being entirely due to the ordered moments. Thus nuclear magnetic reso-
nance can be used, for example, to measure the macroscopically inaccessible net
magnetization of each antiferromagnetic sublattice (see, for example, Figure 33.4).

THERMODYNAMIC PROPERTIES AT THE ONSET OF
MAGNETIC ORDERING

The critical temperature T, above which magnetic ordering vanishes is known as
the Curie temperature in ferromagnets (or ferrimagnets) and the Néel temperature
(often written Ty) in antiferromagnets. As the critical temperature is approached
from below, the spontaneous magnetization (or, in antiferromagnets, the sublattice
magnetization) drops continuously to zero. The observed magnetization just below
T, is well described by a power law. '

M(T) ~ (T, — T), (33.1)

where B is typically between 0.33 and 0.37 (see Figure 33.4).

10



Gravitational Favorites Critical Phenomena...

Consider  initial  matter  distribution
parametrized by 7 (say density) and
' I ! | ! I o]
evolve... 0.376 o°
7,5 = 0. o
0 | B A
Then critical parameter 7, separates Oo°°
o supercritical data: form black hole = 0"
.. : = o°
o subcritical data: don't p= o T
-3.0 o° - -
0 L] OO §m i Oooc ]
Close to 7, observe critical phenomena: I o° = € al
o ] ] ]
oOO QSO
e black hole formed from supercritical data —5.0 =2 ' ]
—260 -220  —180  —14.0
has mass x
|ﬂ|¢)0—¢0

M == |n — ™ |
[Choptuik, 1998]

where v, is universal

e spacetime approaches self-similar critical solution
[Choptuik, 1993]

Thomas Baumgarte, Bowdoin College 11



Gravitational Favorites Self-similarity

e Solution contracts without changing
shape. . .

Thomas Baumgarte, Bowdoin College 12



Gravitational Favorites Self-similarity

Self-similarity

e Solution contracts without changing
shape. ..
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Gravitational Favorites Self-similarity

Self-similarity

e Solution contracts without changing
shape. ..
e .. .towards accumulation event at 7 = 7,

Thomas Baumgarte, Bowdoin College 14



Gravitational Favorites Self-similarity

Self-similarity

e Solution contracts without changing
shape. . .

e ...towards accumulation event at 7 = T,
e radius R proportional to 7, — T,

R~ (1.—71)
— dimensionless quantities are functions of
R
f=——
. Te — T
only, i.e.
7Z = Z,(§)
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Gravitational Favorites Self-similarity

Self-similarity

e Solution contracts without changing
shape. . .

e ...towards accumulation event at 7 = T,
e radius R proportional to 7, — T,

R~ (1.—71)
— dimensionless quantities are functions of
R
f=——
. Te — T
only, i.e.
7Z = Z,(§)

Thomas Baumgarte, Bowdoin College 16



Gravitational Favorites

Self-similarity

Now choose

1= 7«

and look for self-similarity

Thomas Baumgarte, Bowdoin College

Numerical example

1071

0.00  0.02

0.04

0.06
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Gravitational Favorites Self-similarity
Numerical example
Now choose
T =Tk 0.35 —
and look for self-similarity 0.301 \
. . 0.25} I A
e instead of p, consider AN N
_ 0.20f |
Q=41 R%p _ ; .
0150 | 1 | — r=2.377
2 N EEEEE T = 2.429
OIOp 12 N | e T =2.479
0.05} |/ --- 1=2.527 !
/l - T = 2.572
0.00 L=

Thomas Baumgarte, Bowdoin College

0.00  0.02  0.04 0.06

008 010 0.2 014 0.16
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Gravitational Favorites Self-similarity
Now choose
= 7k 0.35 ‘ ‘ ‘
T — 17 —-7=0.24
and look for self-similarity 0.30l T o =0.2470
----- ™ —1=0.195
' ' 025k /N | 7 —7=0.145 ||
e instead of p, consider e~ 0097
Q =47R*p 0-201 — 7 —7=0052]
e plot as function of 0101
R 0.10}
£ =
Te — T 0.05}
with 7, = 2.624 -
0. 0.2 0.4 0.6 0.8 1.0 1.2 1.4
—> self-similarity evident
Thomas Baumgarte, Bowdoin College 17



Gravitational Favorites Self-similarity

Self-similarity

e Solution contracts without changing
shape. . .

e ...towards accumulation event at 7 = T,
e radius R proportional to 7, — T,

R~ (1.—71)
— dimensionless quantities are functions of
R
f=——
. Te — T
only, i.e.
7Z = Z,(§)

—> no preferred global length scale

What sets scale of forming black holes?

Thomas Baumgarte, Bowdoin College 18



Gravitational Favorites Three phases of evolution

e Phase I:
from initial data to something close to critical solution
(how close? depends on degree of fine-tuning)

e Phase Il:

critical solution plus perturbation
(until perturbation becomes nonlinear)

e Phase lll:

collapse to black hole or disperse

—> length scale set by size of self-similar solution at transition from Phase |l to Ill

Thomas Baumgarte, Bowdoin College 19



Gravitational Favorites Phase Il: Perturbations of Critical Solutions

Phase |l: Perturbations of Critical Solutions

e Consider perturbations ( of critical solution

Thomas Baumgarte, Bowdoin College 20



Gravitational Favorites

Phase Il: Perturbations of Critical Solutions

T %

&=R/(t+ — T) =const

\

Thomas Baumgarte, Bowdoin College

Phase |l: Perturbations of Critical Solutions

e Consider perturbations ( of critical solution

21



Gravitational Favorites

Phase Il: Perturbations of Critical Solutions

Phase |l: Perturbations of Critical Solutions

Thomas Baumgarte, Bowdoin College

e Consider perturbations ( of critical solution

e assume that only one mode is unstable
—> grows at rate A in T = — log(7. — 7)

¢ < exp(AT) = (1, — 1)

22



Gravitational Favorites

Phase Il: Perturbations of Critical Solutions

Phase |l: Perturbations of Critical Solutions

Thomas Baumgarte, Bowdoin College

e Consider perturbations ( of critical solution

e assume that only one mode is unstable
—> grows at rate A in T = — log(7. — 7)

¢ < exp(AT) = (1, — 1)
e to leading order also proportional to n — 7,

G oc (n—n)(m— 1)~

23



Gravitational Favorites Phase Il: Perturbations of Critical Solutions

Phase |l: Perturbations of Critical Solutions

e Consider perturbations ( of critical solution

e assume that only one mode is unstable
—> grows at rate A in T = — log(7. — 7)

C x exp(AT) = (1 — 7‘)_A
e to leading order also proportional to n — 1,

(ox (n—n)(r—1)"

R

Mode becomes nonlinear when ¢ = const
—> determines length scale

Roc (1, — 7) o< ( — no)¥?

Thomas Baumgarte, Bowdoin College 24



Gravitational Favorites Phase Il: Perturbations of Critical Solutions

Phase |l: Perturbations of Critical Solutions

e Consider perturbations ( of critical solution

e assume that only one mode is unstable
—> grows at rate A in T = — log(7. — 7)

¢ < expA\T) = (1, — 1)~

e to leading order also proportional to n — 7,

(o< (n—n)(r— 1)

R

Mode becomes nonlinear when ( = const
—> determines length scale

R o (1o — 1) o (1 — 1)
—> scaling laws, e.g.

M x (77 o 77*)7 10710

7 — 14|

with v = 1/A
[Koike et.al., 1995; Maison 1995] 1/A = 0.3558 v = 0.356

Thomas Baumgarte, Bowdoin College 25



Gravitational Favorites Brief History

Brief History

e Original discovery:
o scalar fields
o numerical simulations in spherical symmetry

[Choptuik 1993]

e Other matter models:
o vacuum (gravitational waves) [Abrahams & Evans, 1993]

o radiation fluids [Evans & Coleman, 1994]
o etc...

e Perturbative calculations

[Koike et.al., 1995; Maison, 1995; Martin-Garcia & Gundlach, 1999; ... ]

Thomas Baumgarte, Bowdoin College 26



Gravitational Favorites Brief History

Brief History

e Original discovery:
o scalar fields
o numerical simulations in spherical symmetry

[Choptuik 1993]

e Other matter models:

o vacuum (gravitational waves) [Abrahams & Evans, 1993]
o radiation fluids [Evans & Coleman, 1994]
o etc...

e Perturbative calculations

[Koike et.al., 1995; Maison, 1995; Martin-Garcia & Gundlach, 1999; ... ]

But, until recently, very few numerical studies in absence of spherical symmetry,
despite progress in 3D numerical relativity

Thomas Baumgarte, Bowdoin College 26



Gravitational Favorites Effects of asphericity in critical collapse

Effects of asphericity in critical collapse

e What is effect of aspherical perturbations? Are they stable or unstable?
[TWB & Montero, 2015; Celestino & TWB, 2018]

e What is role of angular momentum?
[TWB & Gundlach, 2016; Gundlach & TWB, 2016, 2018]

Thomas Baumgarte, Bowdoin College 27



Gravitational Favorites Effects of asphericity in critical collapse

Numerical code

e adopts BSSN formulation in reference-metric form
[Nakamura et.al., 1987; Shibata & Nakamura, 1995; TWB & Shapiro, 1998;
Brown, 2007]

e adopts spherical polar coordinates without symmetry assumptions
[TWB, Montero, Cordero-Carrién & Miiller, 2013; Montero, TWB & Miiller,
2014]

e “moving puncture gauge”: 1+log slicing and Gamma driver
[Bona et.al., 1995; Alcubierre et.al., 1999]

e uses logarithmic radial coordinate and regridding

Thomas Baumgarte, Bowdoin College 28



Gravitational Favorites Aspherical deformations of ultrarelativistic fluids

Aspherical deformations of ultrarelativistic fluids

Recall ultrarelativistic fluid P = kp
Consider two-parameter family of initial data
e Gaussian density distribution centered on R,

e parameterized by
o n: strength of data
o €: eccentricity (proportional to ¢ = 2) t=0

Thomas Baumgarte, Bowdoin College 29



Gravitational Favorites Aspherical deformations of ultrarelativistic fluids

e for given value of k choose ¢, then fine-tune 7 to black-hole threshold

—> confirm scaling laws

M ~ (n—n.)

po V= (n. — )

—> measure critical exponents

e excellent agreement with pertur-
bative values

e at most little dependence on ¢

k=1/3,e=10

Thomas Baumgarte, Bowdoin College 30



Gravitational Favorites Aspherical deformations of ultrarelativistic fluids

Deviations from sphericity

e Measure dimensionless “density variable”

Q= 47R%p
o in spherical symmetry, during self-similar phase €2 = (&)
o Track
AQ = Qmax,ax T Qmax,eq
as measure of asphericity r. -~ =0.9639
e Example:
o Radiation fluid, kK = 1/3 e} .
oe=1.0 0.30 1 i
025 1 .
015 T T |
0.10 s
0.05 T
o.on T
0.5
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Gravitational Favorites Aspherical deformations of ultrarelativistic fluids

Pass the popcorn...
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Gravitational Favorites Fits

Fits

e Plot AS) as function of 7

0.11

0.01

AQ

—0.11

6.475 6.500
45 5.0 5.5 6.0 6.5
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Gravitational Favorites Fits

Fits

e Plot AS) as function of 7

e instead, plot as function of 0.15

0.101

= — log(m — 7)

0.051

0.00

AQ

—0.051

—0.10+1

—0.15
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Gravitational Favorites

Fits

e Plot AS) as function of 7
e instead, plot as function of

= — log(m — 7)

—> damped oscillations of form

AQ ~ e cos(wT + ¢)
[Gundlach, 2002]

numerical

2 4 6
T
k=1/3
€ M« Tw Y™ Y A W
perturbative 0.3558 -0.3846 3.6158
0 0.124087 6.449|0.357 0.357 |- —
0.010.124087 6.449/0.355 0.356|-0.36 3.64
0.1 [ 0.124098 6.450/0.357 0.356|-0.36 3.64
0.5 0.124444 6.460/0.356 0.357|-0.36 3.64
1.0 10.125544 6.496|0.356 0.357|-0.37 3.65

Thomas Baumgarte, Bowdoin College

35



Gravitational Favorites Fits

Fits
e Plot AS) as function of 7
e instead, plot as function of 0.151 ——1
0.101
= —log(1x — 7
g(7 ) 0.05-
—> damped oscillations of form S 0.00
AT —0.051
Y
AQ ~ e cos(wT + @) o
[Gundlach, 2002] 0154/
0 e=10.5
c 008: / k=0.2
< —0.05¢
0.1
S 001
< —0.1+
0.11
S 001
< —0.11
0.11
S 001
“ —0.11
0.25 —
S 0007 X "
< —0.25+ :
0 2 4 6 8
T
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Gravitational Favorites Fits

e Plot AS) as function of 7

e instead, plot as function of 0.151 ——
0.101
= —log(7 — 7) .
—> damped oscillations of form 3 0.00
AQ - \T ( T + ¢> —0.051
~ e cos(w o
[Gundlach, 2002] 0154/

—> modes become unstable for k 2 0.49

—> expect break-down of scaling at small scales
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Gravitational Favorites Critical Collapse with Rotation

Critical Collapse with Rotation

Critical collapse with rotation leads to rotating black hole:

e Kerr black hole [Kerr, 1963]
e characterized by mass M and angular momentum J with

J
e <!
—> how does J behave as M — 0 in critical collapse??

—> what is role of angular momentum in critical collapse??
[Choptuik et.al., 2004]
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Gravitational Favorites Critical Collapse with Rotation

Angular momentum scales with

J = |n—n"
Combine with M ~ |n — n,|™ to find
% ~ =200/

For perfect fluid
P = kp radiation fluid: Kk = 1/3

with 1/9 < k < 0.49 expect

5(1+3
3((11 :;) Vs radiation fluid: v; = 2.5y,

[Gundlach, 1998; 2002]

—> For kK > 1/9 have v; > 2+, and hence expect

J
W%O as M — 0

Vg =

—> explore numerically...
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Gravitational Favorites Critical Collapse with Rotation

e Gaussian density distribution p,

parameterized by: 05 — B
o amplitude n
© SpIn V€|OC|ty ) 1.04} supercritical
N R LR
1.03}

102b v subcritical

000 005 010 015 020 025 030

—> explore sequences through two-dimensional parameter space:
o locate critical curve
o study scaling close to criticality
o generalize power-law behavior “globally”
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Gravitational Favorites

Critical Collapse with Rotation

Rotating Data

Sequences for

® constant 7

e constant ()

Rotation provides centrifugal support
—> critical curve:

Ny =~ Ny + 0.36 Q2

0] S

1.04} supercritical

1.03}

1.02+ subcritical

000 005 010 015 020 025 030
0

[TWB & Gundlach, 2016]

Thomas Baumgarte, Bowdoin College
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107° 1074 1073 1072

For all sequences
v == Y, = 0.36
vy~ 0.87 >~ 2.43 s

e independent of {2 and “direction”
across critical curve
e critical black hole is non-spinning
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Gravitational Favorites

Scaling laws

Include rotational £ = 1 term in perturbative treatment

—> derive extended scaling laws

M ~ (g —no— KQ?)™

and

J ~Q (77 — Mo — KQQ)W

Thomas Baumgarte, Bowdoin College
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Gravitational Favorites Scaling laws

e Extended scaling laws for M and J
M =~ (n—mng— KQ)™
J ~ () (77 — Mao — KQQ)W

e for example, consider “horizontal” 1 = const sequences

e normalize by maximum values _ 10 ®
=08
M(n, 2 :
(777 ) ~ <1 _x2>fyM 30.6—
Mmax(ﬁ) &: 0.4
S 02| «
=
J(na Q) ~ E(l _x2>7J 0.0 =
Jmax (1) & L0
where z = Q/Q,(n) Eo0s]
=< 067 - 0.004
S 0.002
—> excellent agreement < 0.4 0,000
= 02 0.0 01 02 0.3 Y
[TWB & Gundlach, 2016] 0.0 0.2 0.4 0.6 0.8 1.0

Q / chit
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Gravitational Favorites Scaling laws

Predictions for mass and angular momentum

A0

J0E

01Kk

[Gundlach & TWB, 2016]
... the unreasonable effectiveness of perturbation theory ...
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Gravitational Favorites Summary

Numerical simulations of critical collapse in the absence of spherical symmetry
e use code that adopts spherical polar coordinates

e study effects of
o aspherical deformations
o rotation

e find excellent agreement with perturbation theory

e aspherical modes are stable in regime 1/9 < x < 0.49 only
—> scaling-laws to smallest scales in this regime only
—> includes radiation fluid, xk = 1/3
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Numerical simulations of critical collapse in the absence of spherical symmetry
e use code that adopts spherical polar coordinates

e study effects of
o aspherical deformations
o rotation

e find excellent agreement with perturbation theory

e aspherical modes are stable in regime 1/9 < x < 0.49 only
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—> includes radiation fluid, xk = 1/3
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