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-
The typical example of application of the Pauli-Fierz equations which is found in the books of
general relativity is the study of the gravitational radiation emitted by binary star systems. In
this work, however, I show that this system, as it is studied in the books, is not consistent with
a first order approach to the weak-gravity limit. To convince the reader that a problem exists, I
will show that, if one computes the reduced perturbation to the metric, h̄, in two equivalent ways,
he will obtain two different results, whose discrepancy is not a higher order of the theory, but is
comparable with h̄ itself. In the last part of the paper I will explain the origin of the contradiction
and why binary systems do not properly emit gravitational radiation at the first order.

-
-

Brief review of first order g-waves theory

First of all, let us briefly summarise some key steps of the study of the gravitational radiation as
a perturbative approach to general relativity in an almost flat spacetime.

One starts imposing the metric to be the sum of the flat metric1 and a small perturbation h:

gµν = ηµν + hµν , |hµν | << 1.

Keeping only the first order in h, which is considered an infinitesimal perturbation, it is immediate
to show that

gµν = ηµν − hµν ,

where the indices of h should be raised and lowered with g, but, since we keep only the first order,
this is equivalent to using η. It is useful to define the reduced perturbation h̄, which satisfies the
two equivalent conditions

hµν = h̄µν −
1
2 h̄

σ
σηµν h̄µν = hµν −

1
2h

σ
σηµν .

Notice that hσσ = −h̄σσ is the reason why the two equations above are equivalent and that this is
true only in four dimensions.

Considering the choice of the chart as a sort of gauge freedom for h, it is immediate to show
that, given bµ an arbitrary infinitesimal vector-field, there always exists a change of coordinates
such that

g′µν = ηµν + h′µν with h′µν = hµν − ∂µbν − ∂νbµ.

Under this transformation h̄ becomes

h̄′µν = h̄µν − ∂µbν − ∂νbµ + ∂σb
σηµν .

Manipulating the Einstein field equations, it has been shown that you can find a chart in which
the system  ∂µh̄

µν = 0 (Lorentz Gauge)

2h̄µν = −16πTµν (Pauli− Fierz Equations)

constitutes the first-order dynamics of h (we always employ geometrical units: c = 1, G = 1).
-

1the Minkowsky metric ηµν = diag(−1,+1,+1,+1)



Remark: if we take the four-divergence of the second equation of the system and use the first
we find that

−16π∂µTµν = ∂µ2h̄
µν = 2∂µh̄

µν = 0 =⇒ ∂µT
µν = 0.

This result, on the other hand, holds for any gauge. Consider, in fact, the exact Einstein equations

(8π)−1Gµν = Tµν .

Applying the covariant four-divergence we get

0 = ∇µTµν = ∂µT
µν + ΓµµλT

λν + ΓνµλTµλ.

The terms with the Christoffel sysmbols are at least second orders in h, so they can be neglected,
leaving

∂µT
µν = 0,

which is what we wanted to prove. 2

-
Going back to our system, the solution, using the the d’Alembert operator’s Green function, is

h̄µν(x, t) =
∫
R3

4Tµν(y, tR)
|x− y| d3y with tR = t− |x− y|.

tR is called retarded time and its presence encodes a delay in the transmission of information. It
informs us that gravity travels at the speed of light and, thus, that an amount of time is required
by signals to travel from a place to an other.

In the case of interest for our work, it is assumed that the source of the waves is a small
distribution of matter located around the origin O and that the evaluation point has a distance r
from O which is enormous compared with the scale of the source, allowing us to write

1
|x− y| ≈

1
r
.

This is the far-field limit. The second approximation consists of assuming that the system is
sufficiently small and its motion is sufficiently slow that, in the time needed by the waves to cross
it, the distribution of matter does not change considerably, leading us to the simplification

tR ≈ t− r

in the integral, which is the slow-source limit. This means that, in the calculations, the variable
tR is kept constant and the delay is an overall shift of times. Plugging our approximation in the
expression of h̄, we get

h̄µν(x, t) = 4
r

∫
R3
Tµν(y, tR)d3y.

If one considers the Lorentz gauge equation, he will notice that it must be true that

h̄0ν(x, t) = h̄0ν(x, 0)−
∫ t

0
∂j h̄

jν(x, t′)dt′,

therefore, all the information about the dynamics is contained in

h̄jk = 4
r

∫
R3
T jk(y, tR)d3y, (1)

which is the first version of the equation of the gravitational radiation.
There is a useful way to rewrite it. You only have to take the two following steps
-



Step1 : Consider the chain of identities

∂l(yjT lk) = ∂ly
jT lk + yj∂lT

lk = T jk + yj∂µT
µk − yj∂0T

0k.

Isolating T jk we get
T jk = ∂0(yjT 0k) + ∂l(yjT lk)− yj∂µTµk,

which, integrated, becomes∫
R3
T jkd3y = d

dt

∫
R3
yjT 0kd3y −

∫
R3
yj∂µT

µkd3y.

Considering that ∂µTµν = 0, it is clear that the second term in the right-hand side is zero. So we
have

h̄jk = 4
r

d

dt

∫
R3
yjT 0kd3y h̄kj = 4

r

d

dt

∫
R3
ykT 0jd3y.

But h̄jk = h̄kj , thus

h̄jk = h̄jk + h̄kj

2 = 2
r

d

dt

∫
R3

(yjT 0k + ykT 0j)d3y.

-
Step2 : Consider, now, this identity

∂l(yjykT 0l) = yjT 0k + ykT 0j + yjyk∂lT
0l.

Remembering that ∂µT 0µ = 0, we find that

yjT 0k + ykT 0j = ∂l(yjykT 0l) + yjyk∂0T
00,

which leads us to the final result

h̄jk = 2
r

d2

dt2

∫
R3
yjykT 00d3y.

Now we define the quadrupole moment of the distribution of matter as

Qjk(t) := 3
∫
R3
yjykT 00(y, t)d3y,

giving

h̄jk = 2
3r

d2

dt2
Qjk(tR). (2)

This is the second formula for the gravitational radiation we are interested in. Remember that the
equations 1 and 2 are equivalent.

-
-

Binary systems

-
Now we are ready to study the gravitational radiation emitted by binary systems. We consider

the simple situation presented in figure 1: two bodies of equal massM (this simplifies calculations)
which follow a circular motion of radius R around their collective center of mass, which is located
in the origin O. We build the axes in a way that their orbit lies in the x1 − x2 plane. The two
objects are studied on a scale which allows us to consider them as point-particles.
Solving the Newtonian problem one finds that the angular velocity of the bodies is

Ω =
√

M

4R3



Figure 1: Visual representation of our binary star system.

and the tangential velocity is obviously

v = ΩR =
√
M

4R.

Thus, onceM and R are known, all the information, in the Newtonian limit, is given. In an almost
flat spacetime the energy-momentum tensor of a system of point-particles is

Tµν(x, t) =
∑
α

m(α)γ(α)(t)vµ(α)(t)v
ν
(α)(t)δ3(x− r(α)(t)),

where α is a particle counter, m(α) is the mass of the α-th particle, r(α)(t) its position and the
three-vector v(α)(t) := ṙ(α)(t) its velocity, while

γ(α)(t) := 1√
1− |v(α)(t)|2

and vµ(α)(t) = (1,v(α)(t))T

are respectively the Lorentz factor and the non-normalized four-velocity. In our case of interest we
assume that the speed of the objects is small compared with the speed of light, so we can neglect
the γ(α). It is not a necessary requirement for our calculations, but it simplifies the notation and
the interpretations of the results. We set the origin of time in a way that, when t = 0, one of the
two masses, which will be considered the mass 1, lies on the positive x1 semi-axis. Our test, now,
will consist of calculating the emitted gravitational radiation using the two different equations we
derived and verifying that the results do not coincide.

-
1) First of all we consider that an integral over R3 cancels a δ3, thus∫

R3
T jkd3y =

∑
α

m(α)v
j
(α)v

k
(α).

The three-velocities of the two bodies are always opposite because the center of mass is at rest, so∫
R3
T jkd3y = 2Mvj(1)v

k
(1)

and we can focus our attention on the first star. Obviously it is true that

vj(1) = ΩR

− sin(Ωt)
cos(Ωt)

0

 , thus vj(1)v
k
(1) = Ω2R2

 sin2(Ωt) − sin(Ωt) cos(Ωt) 0
− sin(Ωt) cos(Ωt) cos2(Ωt) 0

0 0 0

 .



We finally arrive at

h̄jk(T ) = 4
r

∫
R3
T jk(y, tR)d3y = 8MΩ2R2

r

 sin2(ΩtR) − sin(ΩtR) cos(ΩtR) 0
− sin(ΩtR) cos(ΩtR) cos2(ΩtR) 0

0 0 0

 .
The subscript (T ) reminds us that we derived this expression using the equation 1, which involves
the explicit form of the energy-momentum tensor. We can rewrite the equation in a more interesting
way using the Newtonian prescription for Ω and the duplication formulas of trigonometry:

h̄jk(T ) = M2

Rr

1− cos(2ΩtR) − sin(2ΩtR) 0
− sin(2ΩtR) 1 + cos(2ΩtR) 0

0 0 0

 .
-
2) The second way requires the computation of the quadrupole moment:

Qjk = 3
∫
R3
xjxkT 00d3x.

We notice that all the distribution of matter lies in the x1 − x2 plane, thus Qj3 = 0. The
computation of the integral, using the general expression of the energy-momentum tensor for a
system of point particles, leads us to∫

R3
xjxkT 00d3x =

∑
α

m(α)r
j
(α)r

k
(α).

The positions of the two bodies are always opposite because the center of mass is in the origin, so

Qjk = 6Mrj(1)r
k
(1)

and we can focus our attention on the first star. Obviously it is true that

rj(1) = R

cos(Ωt)
sin(Ωt)

0

 , thus rj(1)r
k
(1) = R2

 cos2(Ωt) sin(Ωt) cos(Ωt) 0
sin(Ωt) cos(Ωt) sin2(Ωt) 0

0 0 0

 .
The quadrupole moment is, therefore,

Qjk = 3MR2

1 + cos(2Ωt) sin(2Ωt) 0
sin(2Ωt) 1− cos(2Ωt) 0

0 0 0


and its second derivative is

Q̈jk = 3MR2(2Ω)2

− cos(2Ωt) − sin(2Ωt) 0
− sin(2Ωt) cos(2Ωt) 0

0 0 0

 .
We, thus, arrive at the reduced perturbation of the metric

h̄jk(Q) = 2
3r

d2

dt2
Qjk(tR) = 8MΩ2R2

r

− cos(2ΩtR) − sin(2ΩtR) 0
− sin(2ΩtR) cos(2ΩtR) 0

0 0 0

 ,
where the subscript (Q) reminds us that we derived this expression using the expression 2, which
involves the quadrupole moment. Expliciting Ω2 we get

h̄jk(Q) = M2

Rr

−2 cos(2ΩtR) −2 sin(2ΩtR) 0
−2 sin(2ΩtR) 2 cos(2ΩtR) 0

0 0 0

 .



-
Comparison of the results
Now that we have calculated h̄jk using the two equations we can subtract the second to the

first, arriving at

h̄jk(T ) − h̄
jk
(Q) = M2

Rr

1 + cos(2ΩtR) sin(2ΩtR) 0
sin(2ΩtR) 1− cos(2ΩtR) 0

0 0 0

 ,
which is, clearly, different from zero. The discrepancy has the same order of h̄jk, so the error cannot
be neglected. We proved, however, that the two ways of calculating the reduced perturbation must
be equivalent, so... what went wrong? The only ingredient which was used to pass from the first
to the second, apart from simple algebra, was the condition ∂µTµν = 0. Let us study its validity.2

∂µT
µν =

∑
α

m(α)∂µ

[
vµ(α)v

ν
(α)δ3(x− r(α))

]
.

Separating the temporal index from the spatial ones, we get

∂µT
µν =

∑
α

m(α)

[
vν(α)v

j
(α)∂jδ3(x− r(α)) + ∂tv

ν
(α)δ3(x− r(α))− vν(α)ṙ

j
(α)∂jδ3(x− r(α))

]
.

Clearly the first and the third term inside the square brackets cancel out, leaving

∂µT
µν =

∑
α

m(α)∂tv
ν
(α)δ3(x− r(α)).

Notice that, by definition, v0
(α) = 1, thus it is always true that ∂µTµ0 = 0. Since this is the equation

which was used in the step 2, we can conclude that the problem is not there. On the other hand,
if the particles do not occupy the same point, it is clear that

∂µT
µj = 0 ⇐⇒ ∂tv

j
(α) = 0 ∀α.

The interpretation of this result is simple: ∂µTµj = 0 is the conservation of momentum in absence
of gravity and for a point particle this means that it follows a uniform rectilinear motion. This
condition was invoked in the step 1, but it is not satisfied by the binary system. In fact, the two
bodies follow a circular motion, governed by a centripetal acceleration which is a pure product of
gravity, so we are not allowed to neglect the connection coefficients in ∇µTµj = 0.

So, if we go back to the step 1, and assume that the divergence of the energy-momentum tensor
does not vanish, we should obtain a prediction for the discrepancy between h̄jk(T ) and h̄jk(Q), given
by the formula

h̄jk(T ) = h̄jk(Q) −
4
r

∫
R3
xj∂µT

µkd3x.

Let us calculate the second term in the right-hand side and verify that we get exactly the error we
got computing h̄jk(T ) and h̄jk(Q) separately. The acceleration is centripetal, thus

∂tv
k
(α) = −Ω2xk

and
xj∂µT

µk = −MΩ2
∑
α

xjxkδ3(x− r(α)).

Performing the integration, using the duplication trigonometric formulas and expliciting Ω2, we
get

h̄jk(T ) − h̄
jk
(Q) = M2

Rr

1 + cos(2ΩtR) sin(2ΩtR) 0
sin(2ΩtR) 1− cos(2ΩtR) 0

0 0 0

 ,
2We remain in the approximation γ(α) ≈ 1, which simplifies the calculations.



which is exactly the discrepancy we found. So the problem is that, being the system self-gravitating,
we cannot neglect in the study of h̄jk the role played by gravity in the motion of the bodies.

-
-

Explanation of the inconsistency

-
The Pauli-Fierz equatios hold as the first order of Einstein equations in the Lorentz gauge. On

the other hand, the terms with the Christoffel symbols in the equation

−∂µTµj = ΓµµλT
λj + ΓjµλT

µλ

are a second order, thus in the limit of weak gravity, we expect that their role vanishes. However,
we saw above that their existence is the origin of the discrepancy between h̄jk(T ) and h̄jk(Q) and that
their contribution is always comparable with h̄jk itself. In fact it is true that

h̄12
(T ) − h̄

12
(Q)

h̄12
(T )

= −1,

which does not vanish in the weak gravity limit. Therefore there seems to be a mathematical
contradiction because we have that the ratio between a second order and a first order, both different
from zero, does not go to zero in the weak gravity limit, but remains fixed at −1. The final (and
most important) step of this brief work consists of solving this contradiction and explaining why
the Pauli-Fierz equations cannot be applied to binary systems in the way we, and the books, did.

In general, a perturbative analysis is performed considering a fundamental scale parameter,
studying how the system behaves when we vary it and taking the limit in which it is sufficiently
small to consider every power of the parameter negligible with respect to the previous one. Since
we are interested in the weak gravity limit, our natural scale parameter is the mass M of the
bodies, because, if it goes to zero, the energy-momentum tensor, and therefore the perturbation to
the metric, vanishes. Now, let us write the energy-momentum tensor. For simplicity we consider
only the contribution given to it by the first body because the other is analogous:

Tµν(1) = Mδ3(x− r(1))


1 −RΩs RΩc 0

−RΩs R2Ω2s2 −R2Ω2sc 0
RΩc −R2Ω2sc R2Ω2c2 0

0 0 0 0

 ,
where s is an abbreviation for sin(Ωt) and c is an abbreviation for cos(Ωt). The unwary reader,
looking at the expression above, noticing that the right-hand side of the equation is proportional
to M , may conclude that Tµν(1) can be considered a first order in the mass. There is, however, the
problem that Ω is not independent of M , but it must be true that

Ω =
√

M

4R3 .

Therefore we have that

T 00
(1) ∝M T 0j

(1) ∝M
3/2 T jk(1) ∝M

2.

If we keep only the first order in M we must write

Tµν(1) = Mδ3(x− r(1))


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .



The substance is that if we want to consider the mass an infinitesimum, but at the same time we
want that the two bodies follow a circular motion, then we must impose that also the velocity goes
to zero, otherwise the stars would escape the attraction. Thus the first order of h̄ is the Newtonian
long range attraction of the binary system seen as a single object of mass 2M . The effects due to
the rotation are a higher correction and cannot be studied as solutions of the Pauli-Fierz equations.
In fact, if you look at the final expressions of h̄jk(T ) and h̄

jk
(Q), they are both proportional to M2 and

not to M . The apparent paradox
h̄12

(T ) − h̄
12
(Q)

h̄12
(T )

= −1,

now is solved, because we showed that both the numerator and the denominator are a second order
in M , eliminating the contradiction.

The conclusion is that a priori, if Ω was free, T jk would have the same order of T 00, however
we make the speeds depend on the intensity of gravity itself and, in particular, we choose to work
with some velocities which are so small to make the perturbation of the metric generated by the
rotational motion exactly comparable with the second order of the theory. Therefore we may say
that binary systems are forced, in order to avoid to decompose, to be so slow that their emission
is negligible at the first order.


