
Symmetry constraints for
Callan-Symanzik flows in chiral models

Abstract
We use the functional renormalization group (fRG) approach [1] to study
the phase diagram of strong-interaction matter along the line of zero quark
chemical potential. Our formulation of the fRG includes a mass-like
Callan-Symanzik (CS) regulator function, which respects the Lorentz sym-
metry of the underlying relativistic quantum field theory. However, along
with many advantages of the CS regulator [2, 3], there comes a downside
of an artificial breaking of chiral symmetry. For a chirally symmetric low-
energy effective model for quantum chromodynamics we present concrete
symmetry constraints that have to be considered in order to obtain physical
results. We demonstrate the influence of these symmetry constraints com-
pared to a naive usage of the CS regulator based on the screening mass for
the scalar meson and the critical temperature of the chiral phase transition.

Motivation
• Much of our knowledge about QCD matter at intermediate densities and

beyond relies on low-energy effective models that share important sym-
metries with QCD. In particular, NJL-type models have proven to be a
valuable tool for low-energy hadron physics.

• When extracting IR observables with non-pertubative methods such as
the fRG, Lorentz symmetry is often broken artificially in favor a more
accessible calculation.

• Investigation of the QCD phase diagram in a Lorentz-symmetric scheme
is of high interest.

Approach
• Starting point of our studies is a two-flavor quark-meson model in the

chiral limit, defined by the classical action
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• We use the fRG method, where the Wetterich equation [1] allows to in-
terpolate smoothly between the UV physics, given by S, and the IR. Our
truncation scheme involves a one-loop approximation and taking into ac-
count only fermionic loops:
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• The cutoff function Rk is a key ingredient as it regularizes the IR by
suppressing fluctuations below the cutoff scale k. Aiming for a simple
Lorentz-symmetric regularization scheme, we implement the mass-like
CS regulator

R
ψ
k (p, q) = ik (2π)4δ(4) (p− q) .

• The RG scale k in this regulator behaves as a mass scale. Therefore,
the RG flow is not a flow through momentum shells of a single theory
but a flow through theories with quark mass k, where all loop momenta
contribute.

• To render the CS flow finite, an additional UV regularization is required
[2]. Our implementation of UV regularization relies on counter terms.

Symmetry constraints
• Due to its mass-like nature, the CS regulator couples to the σ-direction

in field space and destroys the chiral symmetry of the theory. Note that
the π-directions are not affected by the regulator. To cure the regulator-
induced symmetry breaking, additional operations have to be performed.

• In bosonic field space, chiral symmetry manifests itself as an O(4) sym-
metry. The reflection or Z(2) symmetry is then restored by demanding
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for the average effective action at all temperatures. This is equivalent to
implementing temperature-dependent boundary conditions.

• The rotational symmetry is restored by demanding
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which is basically a Ward-Takahashi identity for the SO(4) symmetry.
This has to be implemented such that the π-directions remain unaltered.

• Note that these symmetry constraints directly affect the masses of the
bosonic fields. In case of the σ-meson, we have
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RG consistency
• In the scale fixing procedure, the UV reference scale Λ = Λ0, at which

the effective action is supposed to be known, represents a natural upper
limit for all energy scales present in the vacuum theory.

• Once the IR physics is fixed by the initial condition ΓΛ0
, the RG cut-

off scale Λ should be increased such that mext/Λ � 1 for all external
parameters of interest:
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• For reasons of consistency, the IR physics should not depend on the cho-
sen UV cutoff Λ,
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= 0 .

• Based on this principle, an RG-consistent UV completion [4] can be done
as follows:

ΓΛ(Λ0) = ΓΛ0
+

∫ Λ

Λ0

dk ∂kΓk .

Then, ΓΛ(Λ0) serves as the new vacuum initial condition.

Results
• For now, concentrating on the case µ = 0, we present the influence of

symmetry constraints on the sigma screening mass mσ and the critical
temperature Tc.

• If no corrections to the CS flow are implemented, there is no chiral phase
transition but only a crossover due to a regulator-induced breaking of
chiral symmetry. The effect of physical explicit symmetry breaking is
hence expected to be "overshadowed" by the regulator.

• Constraints beyond reflection symmetry do not give rise to a change of
the nature of the transition but only yield corrections to the critical tem-
perature and the temperature-dependent behavior.
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• If only Z(2) symmetry is implemented, chiral symmetry is not fully re-
stored causing the effective potential to still evolve differently in different
directions in field space. Therefore, one can extract a critical temperature
for the σ-direction as well as for the π-directions.

• Once the O(4) symmetry is restored, the evolution of the effective poten-
tial along the σ-direction is in accordance with the π-directions leading
to a single Tc. This value agrees identically with the critical temperature
along the π-directions from before.

• An RG-consistent UV completion moreover minimizes the influence of
the RG cutoff in the finite-temperature calculations. As a result, the value
for the critical temperature decreases and converges to Tc ' 163 MeV.
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Future research plans
• Incorporation of explicit symmetry breaking to realize the pseudo-

Goldstone nature of the pions.

• Extension of calculations to finite quark chemical potential for a more
detailed investigation of the QCD phase diagram.

• Extension of calculations to finite external momenta in order to extract
spectral properties of the scalar and pseudo-scalar mesons.
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