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Motivation

Status quo

• Gaining a microscopic understanding of the effect of strong electron-phonon interactions remains a
challenge to theory.

• Recently, numerical calculations revealed new phenomena such as the emergence of nontrivial phases
with broken symmetry or the existence of several hydrodynamic regimes [1].

Aim

• Study the Holstein model (simple model describing electron-phonon interactions in condensed matter)
with renormalization group (RG) methods to obtain a deeper understanding of the nature of phase
transitions.

Holstein model [2]

H =
∑
k

ϵkc
†
kck + ω0

∑
q

b†qbq +
γ0√
V

∑
k ,q

c†k+qckXq (1)

• dispersionless Einstein phonons with frequency ω0

• strength of electron-phonon coupling is given by λ0 = νγ20/ω
2
0

Migdal’s theorem [3]

Vertex corrections can be neglected even for large electron-phonon interaction λ0 as long as

λ0ω0/ϵF ≪ 1 (2)

(based on a perturbative calculation of the leading-order correction to the electron-phonon vertex).

• Recently, numerical evidence has been presented [4] that in the two-dimensional Holstein
model this genereally accepted scenario may not be valid when λ0 is of order unity.

Pomeranchuk Instability and QCP

Ward identities

Dyson-Schwinger equations

+

FRG equation with µ as flow parameter

∂Σ(K )

∂µ
= Γc̄cφ(K ,K , 0)

∂ϕ0

∂µ
− I (K ),

where

I (K ) =

∫
K ′
G 2(K ′)

[
Γc̄c c̄c(K ,K ′,K ′,K )

+ Γc̄cφ(K ,K ′,K − K ′)D(K ′ − K )

× Γc̄cφ(K ′,K ,K ′ − K )
]
.

• We obtain the following Ward identity:

Γc̄cφ(K ,K , 0)

γ0
=

1− ∂Σ(K )
∂µ

1− Σρ

∂µ

=
1− ∂Σ(K )

∂µ

1− γ20
ω2
0

∂ρ
∂µ

, (3)

relating the electron-phonon vertex to the derivative of the electronic self-energy with respect to µ

• and the compressibility sum rule

∂ρ

∂µ
≡ ∂

∂µ

∫
K

G (K ) =
Π(0)

1− γ20D0(0)Π(0)
, (4)

where Π(Q) = −∆(Q)/γ20 is the irreducible polarization. From this it is easy to show that for Q = 0
the inverse phonon propagator is given by

D−1(0) = ω2
0 +∆(0) =

ω2
0

1 +
γ20
ω2
0

∂ρ
∂µ

. (5)

• Thermodynamic stability implies that the compressibility is non-negative and thus D−1(0) ≥ 0. This
also means that the compressibility diverges when the renormalized phonon frequency vanishes!

Perturbation Theory & Effective Phonon Action

Renormalized phonon frequency

The square of the renormalized phonon frequency to second order in λ0 is given by

ω̃2
0 = ω2

0

[
1− λ0 −

4

3
λ2
0 +O(λ3

0, λ
2
0ω0/ϵF )

]
. (6)

where we evaluated the following diagrams

(a)

+ +

(b) (c) (d) (e) (f)

+ ++

.
• For λc =

√
57−3
8 ≈ 0.57 the renormalized phonon frequency vanishes. The compressibility sum rule

then implies a divergent compressibility. At this point the system exhibits a Pomeranchuck instability
in the zero angular momentum density channel associated with phase separation [5].

• However λc is of O(1) so higher orders cannot be neglected. At this point we cannot exclude that
higher orders in λ0 remove the Pomeranchuck instability so we use the nonpert. FRG in the following.

Effective phonon action

Since we are only interested in the renorm. phonon frequency we can integrate out the electrons to obtain

Seff[X ] =
1

2

∫
Q

D−1
0 (Q)X−QXQ − Tr ln[1− G0X ]. (7)

By expanding the logarithm we see that the interaction vertices are given by the symmetrized closed
fermion loops, meaning that the inverse propagator, shown in Eq. (14), is by the RPA result.

Functional Renormalization Group Approach

A. Exact flow equations for the average effective phonon action

Introduction of the Regulator

SΛ[X ] = Seff[X ] +
1

2

∫
Q

RΛ(Q)X−QXQ (8)

Wetterich equation [6]

∂ΛΓΛ[ϕ] =
1

2
Tr

[
(Γ′′

Λ[ϕ] + RΛ)
−1

∂ΛRΛ

]
(9)

The phonon field ϕ has a finite expectation
value. Usually, one would introduce a scale
dependent expectation value and appropri-
ately chosen fluctuations for example through

ϕ = ϕ0
Λ,Q + φQ. (10)

However, this expectation value is related
to the electron density ρ via the Dyson-
Schwinger equation

ϕ0 =− γ0D
−1
0 (0)

∫
K

G (K ) = −γ0
ω2
0

ρ. (11)

In order to keep ρ constant during the flow
we expand around ϕ0, introducing

Γ̃Λ[φ] = ΓΛ[ϕ
0 + φ], (12)

with the boundary condition

lim
Λ→0

Γ̃
(1)
Λ = 0. (13)
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B. Classification of couplings and flow of relevant couplings

Γ̃
(2)
Λ0
(Q) = r0 + b0

|ω̄|
q

+ c0q
2 +O

(
ω̄2, q4

) Assume−−−−→ Γ̃
(2)
Λ (Q) = rΛ + bΛ

|ω̄|
q

+ cΛq
2 +O

(
ω̄2, q4

)
(14)

q ∝ Λ (15a)

ω̄ ∝ Λz (15b)

ϕQ ∝ Λ−1−d+z
2 (15c)

Choice of dynamical exponent z

Set the dynamical exponent z = 3. There-
fore, the flow of bΛ and cΛ are marginal,
Γ̃(4) irrelevant → deff = d + z = d + 3.

hΛ = Γ̃
(1)
Λ ∝ Λ−d+5

2 (16a)

rΛ = Γ̃
(2)
Λ (0) ∝ Λ−2 (16b)

gΛ = Γ̃
(3)
Λ (0, 0, 0) ∝ Λ−d−3

2 (16c)

C. RG flow and Pomeranchuck fixed points in d > 3

Only retaining all relevant vertices the flow equations are

∂ΛhΛ =
gΛ
2

∫
Q

˙̃DΛ(Q), (17a)

∂ΛrΛ = −g 2
Λ

∫
Q

˙̃DΛ(Q)D̃Λ(Q), (17b)

∂ΛgΛ = 3g 3
Λ

∫
Q

˙̃DΛ(Q)D̃2
Λ(Q). (17c)

Reg. phonon propagator

D̃Λ(Q) =
1

Γ̃
(2)
Λ (Q) + RΛ(Q)

(18)

By choosing a Litim [7] type regulator, adapted to Eq. (14),

RΛ(Q) = (c0Λ
2 − b0|ω̄|/q − c0q

2)Θ(c0Λ
2 − b0|ω̄|/q − c0q

2), (19)

all integrals entering the flow equations [17a-17c] become analytically manageable,
leading to the system of (rescaled) ordinary differential equations [20a-20c].

Rescaled flow equations

∂l h̃l =
d + 5

2
h̃l +

g̃l
(r̃l + 1)2

(20a)

∂l r̃l = 2r̃l −
g̃ 2
l

(r̃l + 1)3
(20b)

∂l g̃l =
3− d

2
g̃l +

3g̃ 3
l

(r̃l + 1)4
(20c)

-0.5 0.0 0.5

-0.5

0.0

0.5

g� l

r�l
d=4

G
P+P-

Eq. (20c) only has fixed points for d > 3, leading to two nontrivial Pomeranchuck
fixed points P± for d = 4 and none for d ≤ 3. Linearization of the flow equations
around the fixed points P± shows that both are tricritical.
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Conclusions

Schematic phase diagram [4]

Since we ignored a possible superfluid phase the weak-coupling phase
is a Fermi Liquid. For d ≤ 3 we do expect a first-order transition to a
phase separation for λ0 ∼ O(1), while the antiadiabatic limit is expected
to feature a charge-density-wave phase.

Connection to ϕ3-theory in d > 6

Since deff = d + 3 the P± are related to the nontrivial ultraviolet-stable
fixed point of ϕ3-theory in above six dimensions. Those are of interest
in high energy physics, because they offer a possibility to construct a
well-defined continuum limit of perturbatively non-renormalizable field
theories (asymptotic safety scenario).
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