The (1 + 1)-dimensional Gross-Neveu model
at non-zero (, 1’ and finite /V

Abstract

We investigate the Gross-Neveu model for a finite number of fermions V.
The solution of the Gross-Neveu model 1s well-known 1n the large- N limit
(N — o0) but unknown for finite /N. We approach the finite- /N case with
a FRG method, more precisely the Wetterich equation. By using the local
potential approximation the resulting flow equation for the scale-dependent
effective potential can be transformed into a non-linear diffusion equation.
This equation 1s solved numerically by applying a finite-volume method.
No discrete chiral symmetry breaking is observed for any finite number of
fermions, arbitrary chemical potentials and non-zero temperatures.

Gross-Neveu model

e The bosonized Gross-Neveu model in 1+ 1 dimensions is defined by the
action [4]
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where N 1s the number of fermions, 1 the chemical potential and 1" =
1/ the temperature.

 This action exhibits a chiral Z,o-symmetry, where the interesting trans-
formation 1s

v =qq, el =Yg, ¢ d =0,

 The question we want to investigate 1s whether or not this symmetry
1s spontaneously broken (SSB) by a non-vanishing global translation-
invariant minimum of the full quantum effective action.

Approach

* We use the Functional Renormalization Group (FRG) which is a tool
to calculate the full quantum effective action by a functional differential
equation, 1ie., the Wetterich equation [3]
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where R; is the regulator, ¢ is the RG-time defined by t = — In (%) with
the RG-scale k£ and the UV-cutoff A.

e This is an initial value problem with the initial condition given by
the classical action S[®] at ¢ = 0. The solution I';[®] is called scale-
dependent effective average action and can be regarded as a trajectory
flowing towards the full quantum effective (IR-)action I'[®] in the limit
t — Q.

 Since the Wetterich equation 1s to complicated to be solved 1n full gen-
erality, we have to make a truncated ansatz for the RG-trajectory. We
choose the local potential approximation (LPA)
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* In this truncation the scale-dependent effective potential U (¢, ) is the
only flowing “coupling”. The kinetic term for the boson field 1s neces-
sary to study the impact of their dynamics on the system.

e To obtain an RG-flow equation for the scale-dependent effective action
we have to choose regulators and a proper projection procedure. In our
case we use 1-d and 2-d Litim regulators and evaluate the Wetterich
equation on a constant field configuration [¢(7,2) = o, ¥(1,2) = 0,

Y(T,z) = 0].

LPA flow equation

e Using the 2-d Litim regulators, the LPA flow equations with infinite and
finite volume as well as on a finite lattice have a similar form. They differ
only in some prefactors (Ref. [6] in preparation):
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where ¢, = k? and 1}, /¢ denote the bosonic and fermionic momentum

b/f

space, respectively. The functions €4 are the dispersion relations, which
encode the discretization scheme 1n the case of a finite lattice.

e This flow equation can be reformulated in a conservation form, more
precisely a non-linear diffusion equation [2, 1]

Opu = £ Q(t, dpu) + S(t,0),

where u(t, o) = O;U(t, o) and we refer to Q)(¢, Jyu) as a non-linear dif-
fusion flux and to S(z, o) as a non-linear sink term. We solve this PDE
with a finite volume method.

e The mean-field (MF) approximation means that we ignore the bosonic
contribution, ie., () = 0.

e For all RG flows we choose the initial condition, ie., 912\ such that the MF
eftective potential has its global minimum at o\jp o = 1 for 7" = p = 0.
This choice guarantees RG-consistency since the early RG flow 1s gov-
erned by the fermionic contribution.

Results

» To give a more detailed intuition about the RG flow, we have solved the
diffusion equation and determined the effective potential at a single point
in the phase diagram (using the 2-d Litim regulators):
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* Of special interest is the global minimum of U.(o), oy,;,, Which serves
as an order parameter for SSB in the IR:
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e The different scenarios share qualitatively the same behavior.

* SSB occurs while the RG flow but vanishes at some restoration scale
kres (black stars) for all tested parameter sets with 1" > 0.

e This 1s also the case in the infinite-volume limit using the 1-d Litim reg-
ulators, where we can also study the RG flow for p & 0 [1].
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e For small RG-scales, the broken phase shrinks towards lower tempera-
tures and vanishes for our test points.

» To be more quantitative, we analyze the 7-, y- and /N-dependence of the
restoration scale and extrapolate it w.r.t. /V and 7' (especially for large N
and low 7' the numerical calculations become hard):

N =2
I o
100 = p-induced restoration /M; E
: kres(T) ox const. :
10~1 3 E
g 0=075 -
i pw=0.7 i
1= 0.65
102 - p=06 7
- p=055 1
B p=04 :
- pw=20 .
10—3 - L1 L1 —
102 10~
T
p=70
E T T T ' T T T ' T T T T E
1071
, 1072 E
<& : i
10~3 3 E
104 | fres(N) o E
- Lo Lo .
10 10
N

e Our results suggest that there is no SSB in the IR for finite N and 7" > 0.

 For small chemical potentials and temperatures, the bosonic fluctuations
(b.f.) restore the Zy-symmetry, while for larger chemical potentials, the
chemical potential itself restores the Zo-symmetry.

Main result [1]

Using FRG in LPA, we find no SSB in the Gross-Neveu model
for any finite /V, non-zero 1" and arbitrary .

TECHNISCHE
UNIVERSITAT
DARMSTADT

Jonas Stoll
jstoll@theorie.ikp.physik.tu-

darmstadt.de

Niklas Zorbach
nzorbach @theorie.ikp.physik.tu-

darmstadt.de

Jens Braun
jens.braun @physik.tu-darmstadt.de

Together with Adrian Koenigstein, Mar-
tin J. Steil and Stefan Rechenberger. The
project was supported by M. Buballa and

D. H. Rischke.

References

[1] Stoll, Jonas and Zorbach, Niklas and Koenigstein, Adrian
and Steil, Martin J. and Rechenberger, Stefan, “Bosonic fluc-
tuations in the (1 + 1)-dimensional Gross-Neveu(-Yukawa)

model at varying p and 7" and finite N, arXiv:2108.10616.

[2] A. Koenigstein, M. J. Steil et al., “Numerical fluid dynam-
ics for FRG flow equations: Zero-dimensional QFTs as nu-
merical test cases — Part I & II”, arXiv:2108.02504 and
arXiv:2108.10085.

[3] C. Wetterich, “Exact evolution equation for the effective po-
tential”, Phys. Lett. B 301, (1993), 90-94.

[4] D. J. Gross and A. Neveu, “Dynamical Symmetry Breaking
in Asymptotically Free Field Theories”, Phys. Rev. D 10,
(2000), 3235.

[5] M. Thies, “From relativistic quantum fields to condensed
matter and back again: Updating the Gross-Neveu phase dia-
gram”, J. Phys. A 39, (2006), 12707-12734.

[6] J. Braun, L. Pannullo and N. Zorbach, in preparation.

CRC-TR 21

Strong-interaction matter
under extreme conditions

HGS-HIRe for FAIR

Helmholtz Graduate School for Hadron and lon Research



mailto:jstoll@theorie.ikp.physik.tu-darmstadt.de
mailto:jstoll@theorie.ikp.physik.tu-darmstadt.de
mailto:nzorbach@theorie.ikp.physik.tu-darmstadt.de
mailto:nzorbach@theorie.ikp.physik.tu-darmstadt.de
mailto:jens.braun@physik.tu-darmstadt.de

