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Invitation
Many interesting non-perturbative phenomena
in physics are inherently timelike, ranging from
scattering processes, the formation and spec-
trum of bound states to the time evolution of
quantum systems close and far from equilib-
rium. The spectral fRG is a genuine real time
approach which uses the spectral representation
of the propagator to enable the analytic eval-
uation of the flow equation in the full complex
frequency plane. We use the framework of renor-
malised spectral flows, put forward in [1], and
apply it to a scalar ϕ4-theory in (2+1) dimen-
sions. We impose onshell-renormalisation con-
ditions to control the flow in theory space and
calculate self-consistent spectral functions. The
content of this poster is based on [2]

Spectral functions and spectral diagrams
• Spectral representation for the propagator
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, ρ(w) = 2 ImG(wR) .

• Existence of the spectral representation is
tied to causality, i.e. the absence of non-
analyticities away from the real axes.

• Parametrisation of spectral function in
terms of poles (asymptotic particle states)
and cuts (scattering continuum):

ρ(λ) =
2π

Z
δ(λ2 −m2

pole) + ρ̃(λ) .

• Insert spectral representation in diagra-
matic functional expressions, see [3]:
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• Integrate loop integrals analytically to ex-
tract the full momentum structure.

Spectral CS-regulator
• Need a causal regulator which does not

spoil Lorentz invariance.
⇒ Mass-like Callan-Symanzik cut-off

Rk = Zϕk
2 .

with the wave function renormalisation
Zϕ.

• Suppression of infrared modes by shifting
the mass:
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• Trade UV-regularisation for causality and
Lorentz invariance.

Renormalised flowequation

∂tΓk = 1
2

q

− ∂tSct

• Without UV-regularisation, Wetterich flow
needs to be renormalised in d > 2.
⇒ Renormalisation via counterterm action.

• The Callan-Symanzik flow connects in-
finitely massive theories in the UV with
light (or massless) theories in the infrared.
⇒ Every point on the solution trajectory

represents a physical theory!

• CS-flow with counterterms can be derived
as a limit of UV-regulated (spectral) flows.

• Counterterm-flow is fixed by an explicit
(flowing) renormalisation condition.

• The real-time nature of the approach al-
lows us to choose an on-shell renormalisa-
tion scheme:
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Spectral functions and propagators
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• Diagrams finite, but we use
counter-term flow to control the
flow in theory space.

• Flowequations evaluated in the
broken phase, i.e. ϕ0 ̸= 0.

• Non-trivial Γ(4) included via
s-channel bubble resummation:
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Spectral functions in comparison to the DSE results
from [3] within a skeleton-expansion with the same
approximation for the vertices. All quantities are
measured in units of mpole.
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Euclidean propagators from the fRG computation:
Solid lines are directly calculated from the
(euclidean) flow, dots are propagator values
calculated from the spectral representation.

RG-evolution of the spectral tail

• The theory has only one meaningfull di-
mensionless parameter:

σ(k̃ =
k

kref
) =
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mpole
=
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k

• Right: RG-evolution of the scattering
tail ρ̃(λ) for the trajectory
σ(k̃ = 2) = 2.5 → σ(k̃ = 1) = 5.
All quantities are measured in units of
an arbitrary reference scale kref .
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