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Motiviation
Consider a Non-relativistic (Lorentz invariance breaking) theory,

e. g. , Lϕ1ϕ2
=

1

2

(
α∂tϕ1∂tϕ1 + β∂iϕ1∂

iϕ1 + γ(∂tϕ2∂tϕ2 + ∂iϕ2∂
iϕ2) + V (ϕ1, ϕ2)

)
,

where α, β and γ are running couplings.We have the following related questions:
•What phenomenology is related to this Lorentz violation?

Here α/β is related to a different speed for ϕ1, compared with ϕ2

•What is the structure of the general (non-relativistic) theory space?
How to recover the Lorentz invariant case with α = β technically?
Can we find Lorentz violating fixed points for α and β?

We will study analogous questions in asymptotically safe quantum gravity.

Set up

To have a foliated structure, we do the ADM decomposition
γµν =

(
N 2 +N iNi Nj

Ni σij

)
The analogous "time derivative" of gravity is the extrinsic curvatureK ij

Kij =
1

2
Lnhij =

1

2
N−1(∂τσij −DiNj −DjNi),

and corresponding "spatial derivative" and potential terms: (3)R andO(2)((3)R).
• This setting introduces a prefered time direction and foliation, allowing us tostudy corresponding issues in quantum gravity.
• This could give a non-relativistic (kinetic term + potential) theory, with α1 and
α2 being the running couplings for the kinetic term

Γgrav
k =

1

16πGk

∫
dτd(D−1)yN

√
σ(α1K

ijKij − α2K
2︸ ︷︷ ︸Kinetic terms
− (3)R + 2Λk︸ ︷︷ ︸Potential

). (1)
–α1 : the relative scaling between space and time direction.

In background approximation, N̄ (or N̂ ) has a different wavefunction nor-malization than σij (or ĥij).We adopt the view that the kinetic and potential terms have different scaledependences (running couplings), just as Horava gravity [1].
–α2/α1: difference for speeds of light of transverse traceless (TT) mode andtrace mode of fluctuation.
–α1 = α2 = 1: Einstein Hilbert action

If we have fixed points and RG trajectory aroundα1 = α2 = 1, we would haveLorentz invariant sub-space.

Projection rules

The RG flow is given by the Wetterich equation
k∂kΓk =

1

2
STr [(Γ(2) +Rk)

−1k∂kRk

] (2)
We will adopt the fluctuation approach and project Wetterich equation onto thetwo point vertex of the TT mode of σ̂ij

1

16πGk

(
1

2
(α1q

2
0 + q⃗ 2)hijhij − Λkh

ijhij

)
Then the flow equations would be

1

32π
k∂k

(
α1

Gk

)
= Tq0(Gk, α1, α2,Λk, ηN), (3)

1

32π
k∂k

(
1

Gk

)
= Tq⃗(Gk, α1, α2,Λk, ηN), (4)

1

16π
k∂k

(
Λk

Gk

)
= T0(Gk, α1, α2,Λk, ηN). (5)

with Tq0, Tq⃗ and T0 the results of trace from Eq. (2).The computation would be done in a flat Euclidean background.
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Fixed points structure

0.1 Lorentz invariant system:
α1 = α2 = 1, k∂kα1 = k∂kα2 = 0

The projection rule is not unique:
• The flow Eqs. (3) and (4) from the q20 and q⃗ 2 components are NOT equivalent.
• One source of this inequivalence: Γ(hhN̂N̂) = hkl(−q)hkl(q)N̂(−p)N̂(p)q20 is non-relativistic.
•We have two options for projections:
– q0 − Volume: RG flows given by Eqs. (3) and (5),
– q⃗ − Volume: RG flows given by Eqs. (4) and (5).

However two different projections could give qualitatively similar results:
Projection Fixed points Couplings Critical Exponents

g∗ λ∗ θ1 θ2

q0 − Volume FP1 0.16 0.014 4.28 2.04FP2 0.56 1.03 53.03 5.84FP3 −0.33 0.26 4.02± 10.15i

q⃗ − Volume FP1 0.20 0.017 4.38 2.19FP2 0.03 0.75 54.78 −7.19FP3 −0.52 0.23 −0.76± 8.82i

0.2 Sub-system with a relative scaling between space and time:
α1 = α2 ̸= 1, k∂kα1 = k∂kα2 ̸= 0

Fixed Points Couplings Critical Exponents
g∗ λ∗ α∗

1 θ1 θ2 θ3FP1 0.20 0.015 1.24 4.38 2.14 1.90FP2 −123.61 76.56 68.88 −85.10 −5.52 2.70FP3 29.11 −632.41 897.62 21.50 2.95 1.72

0.3 Sub-system with different speeds for different modes:
α2 = 1, k∂kα2 = 0

In this case the tracemode comeswith a speed of 1 while the TTmode is equippedwith a speed of light of 1/√α1.
Fixed Points Couplings Critical Exponents

g∗ λ∗ α∗
1 θ1 θ2 θ3FP1 0.20 0.017 1.20 4.36 2.28 2.10FP2 −0.61 0.24 1.56 −11.37 −1.26± 10.91iFP3 0.057 0.75 0.64 26.51± 11.56i −7.13

Comparing all three sub-systems, we could see
• The Lorentz invaraint fixed point {g∗, λ∗, α∗

1} ∼ {0.20, 0.015, 1.20} persists forall system.
• The fixed point of large scaling between space and time needs to be confirmedby further computation.

Infrared behavior of flows
The flows around gk = 0 are

βg = 2gk +O[g2k] ∗ fg(λk, α1)

βλ = −2λk +O[gk] ∗ fλ(λk, α1)

βα1
= O[gk] ∗ fα1

(λk, α1).

(6)
All the point on α1 axis with gk = 0 and λk = 0 could be the potential infraredlimit of the theory and the relativistic one with α1 ∼ 1 is one of them.

Conclusion and Outlook

•We give the first fluctuation computation for foliated spacetime and the resultsare in line with the background computation [2].
• Our theory has a high energy completion for Lorentz invariant subspace.
Correspondingly, the following works could be done in the future:
• the fluctuation computation on Lorentzian background,
• search/confirmation for Lorentz violation fixed points.


