Foliated asymptotically safe gravity in the fluctuation approach

Radboud University Nijmegen

Motiviation

Consider a Non-relativistic (Lorentz invariance breaking) theory, e. g. , $\mathcal{L}_{\phi_1\phi_2} = \frac{1}{2} \Big(\alpha \partial_t \phi_1 \partial_t \phi_1 + \beta \partial_i \phi_1 \partial^i \phi_1 + \gamma (\partial_t \phi_2 \partial_t \phi_2 + \partial_i \phi_2 \partial^i \phi_2) + V(\phi_1, \phi_2) \Big),$ where α , β and γ are running couplings. We have the following related questions:

• What phenomenology is related to this Lorentz violation?

Fixed points structure

- **0.1** Lorentz invariant system: $\alpha_1 = \alpha_2 = 1$, $k \partial_k \alpha_1 = k \partial_k \alpha_2 = 0$
- The projection rule is not unique:
- The flow Eqs. (3) and (4) from the q_0^2 and \vec{q}^2 components are NOT equivalent.
- Here lpha/eta is related to a different speed for ϕ_1 , compared with ϕ_2
- What is the structure of the general (non-relativistic) theory space? How to recover the Lorentz invariant case with $\alpha = \beta$ technically? Can we find Lorentz violating fixed points for α and β ?

We will study analogous questions in asymptotically safe quantum gravity.

Set up

To have a foliated structure, we do the ADM decomposition

 $\gamma_{\mu\nu} = \begin{pmatrix} N^2 + N^i N_i & N_j \\ N_i & \sigma_{ij} \end{pmatrix}$

The analogous "time derivative" of gravity is the extrinsic curvature K^{ij}

$$K_{ij} = \frac{1}{2} \mathcal{L}_n h_{ij} = \frac{1}{2} N^{-1} (\partial_\tau \sigma_{ij} - D_i N_j - D_j N_i),$$

and corresponding "spatial derivative" and potential terms: ${}^{(3)}R$ and ${\cal O}^{(2)}({}^{(3)}R)$.

- This setting introduces a prefered time direction and foliation, allowing us to study corresponding issues in quantum gravity.
- This could give a non-relativistic (kinetic term + potential) theory, with α_1 and α_2 being the running couplings for the kinetic term

$$\Gamma_{k}^{\text{grav}} = \frac{1}{16\pi G_{k}} \int d\tau d^{(D-1)} y N \sqrt{\sigma} (\underbrace{\alpha_{1} K^{ij} K_{ij} - \alpha_{2} K^{2}}_{\text{Kinetic terms}} - \underbrace{\underbrace{(3)}_{\text{Potential}} R + 2\Lambda_{k}}_{\text{Potential}}).$$
(1)

- One source of this inequivalence: $\Gamma^{(hh\hat{N}\hat{N})} = h^{kl}(-q)h_{kl}(q)\hat{N}(-p)\hat{N}(p)q_0^2$ is non-relativistic.
- We have two options for projections:
- q_0 Volume: RG flows given by Eqs. (3) and (5),
- \vec{q} Volume: RG flows given by Eqs. (4) and (5).

However two different projections could give qualitatively similar results:

	Projection	Fixed points	Couplings		Critical Exponents	
			g^*	λ^*	$ heta_1$	$ heta_2$
		FP1	0.16	0.014	4.28	2.04
9	$\chi_0 - Volume$	FP2	0.56	1.03	53.03	5.84
		FP3	-0.33	0.26	4.02	$\pm 10.15i$
		FP1	0.20	0.017	4.38	2.19
	\vec{q} – Volume	FP2	0.03	0.75	54.78	-7.19
		FP3	-0.52	0.23	-0.7	$6 \pm 8.82i$

0.2 Sub-system with a relative scaling between space and time: $\alpha_1 = \alpha_2 \neq 1$, $k \partial_k \alpha_1 = k \partial_k \alpha_2 \neq 0$

Fixed Points	Couplings			Critical Exponents			
	g^*	λ^*	$lpha_1^*$	$ heta_1$	$ heta_2$	θ_3	
FP1	0.20	0.015	1.24	4.38	2.14	1.90	
FP2	-123.61	76.56	68.88	-85.10	-5.52	2.70	
FP3	29.11	-632.41	897.62	21.50	2.95	1.72	

- α_1 : the relative scaling between space and time direction.

In background approximation, \bar{N} (or \hat{N}) has a different wavefunction normalization than σ_{ij} (or \hat{h}_{ij}).

We adopt the view that the kinetic and potential terms have different scale dependences (running couplings), just as Horava gravity [1].

- α_2/α_1 : difference for speeds of light of transverse traceless (TT) mode and trace mode of fluctuation.

- $\alpha_1 = \alpha_2 = 1$: Einstein Hilbert action

If we have fixed points and RG trajectory around $\alpha_1 = \alpha_2 = 1$, we would have Lorentz invariant sub-space.

Projection rules

The RG flow is given by the Wetterich equation

$$k\partial_k\Gamma_k = \frac{1}{2}\mathbf{STr}\left[(\Gamma^{(2)} + \mathcal{R}_k)^{-1}k\partial_k\mathcal{R}_k\right]$$
(2)

We will adopt the **fluctuation approach** and project Wetterich equation onto the two point vertex of the TT mode of $\hat{\sigma}_{ij}$

$$\frac{1}{16\pi G_k} \left(\frac{1}{2} (\alpha_1 q_0^2 + \vec{q}^{\,2}) h^{ij} h_{ij} - \Lambda_k h^{ij} h_{ij} \right)$$

0.3 Sub-system with different speeds for different modes: $\alpha_2 = 1$, $k\partial_k\alpha_2 = 0$

In this case the trace mode comes with a speed of 1 while the TT mode is equipped with a speed of light of $1/\sqrt{\alpha_1}$.

Fixed Points	Couplings			Critical Exponents			
	g^*	λ^*	$lpha_1^*$	$ heta_1$	$ heta_2$	θ_3	
FP1	0.20	0.017	1.20	4.36	2.28	2.10	
FP2	-0.61	0.24	1.56	-11.37	-1.26 :	$\pm 10.91i$	
FP3	0.057	0.75	0.64	$26.51 \pm$	11.56i	-7.13	

Comparing all three sub-systems, we could see

- The Lorentz invaraint fixed point $\{g^*,\lambda^*,\alpha_1^*\} \sim \{0.20,0.015,1.20\}$ persists for all system.
- The fixed point of large scaling between space and time needs to be confirmed by further computation.

Infrared behavior of flows

The flows around $g_k = 0$ are

 $\beta_g = 2g_k + \mathcal{O}[g_k^2] * f_g(\lambda_k, \alpha_1)$ $\beta_\lambda = -2\lambda_k + \mathcal{O}[g_k] * f_\lambda(\lambda_k, \alpha_1)$

(6)

Then the flow equations would be

$$\frac{1}{32\pi} k \partial_k \left(\frac{\alpha_1}{G_k}\right) = T_{q_0}(G_k, \alpha_1, \alpha_2, \Lambda_k, \eta_N), \quad (3)$$

$$\frac{1}{32\pi} k \partial_k \left(\frac{1}{G_k}\right) = T_{\vec{q}}(G_k, \alpha_1, \alpha_2, \Lambda_k, \eta_N), \quad (4)$$

$$\frac{1}{16\pi} k \partial_k \left(\frac{\Lambda_k}{G_k}\right) = T_0(G_k, \alpha_1, \alpha_2, \Lambda_k, \eta_N). \quad (5)$$

with T_{q_0} , $T_{\vec{q}}$ and T_0 the results of trace from Eq. (2). The computation would be done in a flat Euclidean background.

Reference

[1] P. Horava, arXiv:0901.3775 [hep-th]
[2] E. Manrique, S. Rechenberger and F. Saueressig, arXiv:1102.5012 [hep-th]; J. Biemans, A. Platania and F. Saueressig, arXiv:1702.06539 [hep-th]...

$\beta_{\alpha_1} = \mathcal{O}[g_k] * f_{\alpha_1}(\lambda_k, \alpha_1).$

All the point on α_1 axis with $g_k = 0$ and $\lambda_k = 0$ could be the potential infrared limit of the theory and the relativistic one with $\alpha_1 \sim 1$ is one of them.

Conclusion and Outlook

We give the first fluctuation computation for foliated spacetime and the results are in line with the background computation [2].
Our theory has a high energy completion for Lorentz invariant subspace.
Correspondingly, the following works could be done in the future:
the fluctuation computation on Lorentzian background,
search/confirmation for Lorentz violation fixed points.