

# Shift-symmetric Horndeski models in the asymptotically safe swampland?\*

# SDUT

Fabian Wagner<sup>1,2</sup> with Astrid Eichhorn<sup>2</sup>, Rafael Robson-Lino dos Santos<sup>2</sup> <sup>1</sup> University of Szczecin, <sup>2</sup> CP3-Origins, University of Southern Denmark

# Horndeski

# What?

- modification of General Relativity adding a scalar  $\phi$  (scalar-tensor-theory)
- most general formulation with  $2^{nd}$  order field equations
  - $\rightarrow$  no Ostrogradski instabilities/ ghosts
- tightly constrained by GW170817
- Why?
  - dark matter
  - Hubble tension
  - inflation

# Model

#### What?

- shift-symmetric  $\phi(x) \rightarrow \phi(x) + a$
- minimal coupling to gravity
- truncation: mass dimension < 8
- Eucl. effective action ( $\chi = (\partial \phi)^2/2$ ):  $\Gamma_{k,\mathrm{H}} = \Gamma_{k,\mathrm{EH}} + \int \left[ Z_{\phi} \chi + \bar{h} \chi \Box \phi + \bar{g} \chi^2 \right] \quad (1)$
- $\rightarrow$  dim.ful couplings  $\bar{h} = hk^{-3}, \, \bar{g} = gk^{-4}$ Why?
  - $c_T = 1$  (complying with GW170817)

# Cosmological constraints

### Literature

- $\exists$  5 Horndeski parameters  $\alpha_i$
- of interest for model:  $\alpha_B(h, \bar{q})$
- stable cosmological evolution under perturbations:  $|\alpha_B| < 10^{-2}$  [1]

# Assumptions

- scalar acts as dark energy at present  $\rightarrow$  equation of state:  $w_{\phi,0} \simeq -1.0$ 
  - $\rightarrow$  density parameter:  $\Omega_{\phi,0} \simeq .69$

#### Bounds on model parameters

- dynamical explanation of dark energy (in this case)
- gravity+matter: mainly monomials with symmetries of kinetic terms of interest



# Methods

#### Gravity

- Einstein-Hilbert truncation
- Landau-gauge
- $(G_*, \Lambda_*)$  treated parametrically

#### **Cosmological Constant**

- here:  $\Lambda_* = 0$
- also checked  $\Lambda_*$  arbitrary (paper)
  - $\rightarrow$  does not change argument

#### **Derivation of beta-functions**

- solutions of truncated Wetterich equation
  - $\rightarrow$  Litim-regulator
  - $\rightarrow \mathcal{PF}^{-1}$ -expansion

# Functional renormalisation group analysis







**Figure 1:** Phase portraits of dimensionless couplings with (right) and without (left) gravity.

### Takeaways from Fig. 1

- two fixed-point candidates approaching each other with increasing  $G_*$ 
  - $\rightarrow$  Gaussian fixed point gets shifted (sGFP)
- both disappear after meeting at  $G_* \simeq 1.4$ .  $\rightarrow$  weak gravity bound
- non-Gaussian fixed point in strongly non-perturbative regime + large change in critical exponent  $\rightarrow$  likely artefact of truncation
- h = 0 at both fixed points with and without gravity
  - $\rightarrow$  reason: cubic interaction breaks reflection symmetry  $\phi \rightarrow -\phi$

Figure 2: Critical exponents at the shifted Gaussian fixed point. Black dots indicate weak gravity bound.

# Takeaway from Fig. 2

• both couplings irrelevant at sGFP  $\forall G_*$ 

# **Prediction** from asymptotic safety:



#### Assumption

• Near-perturbative g at  $k = m_p$ 

# Effective field theory analysis

**Prediction** from effective field theory

$$|\bar{g}_{\text{EFT}}| < m_p^{-4} \sim 10^{-112} \text{eV}^{-4}$$
 (5)

Conclusion

# Additional constraint

• Landau pole-like divergence for positive g

# shift-symmetric Horndeski model tightly constrained by imposing stability and dark energy-like behaviour

**Asymptotic safety** (usual caveat: in this truncation)

- $\rightarrow$  predicts vanishing cubic interaction
- $\rightarrow$  not compatible with cosmological constraints
- $\rightarrow$  not improved by next term in truncation (not shown here)

#### Effective field theory

- $\rightarrow$  predicts very weak quartic interaction
- $\rightarrow$  not compatible with cosmological constraints
- $\rightarrow$  solved by assuming strongly nonperturbative couplings at  $k = m_p$

# Asymptotically safe gravity + matter = strong constraining power!

# **Contact Information**

**Email** fabian.wagner@usz.edu.pl Web https://cosmo.usz.edu.pl/fwagner

# **Future Research**

enlarge truncation

• fate of terms implying  $c_T \neq 1$ ?

# References

to be on the arXiv soon!

[1] Creminelli *et al*, JCAP 05 (2020) 002