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Motivation
• Observe large scale separation of the Fermi scale ΛF and Λ, a high energy scale up to which
the standard model is thought to be valid

•ΛF is intimately tied to the mass parameterm2 in the scalar potential
•m2 receives radiative corrections∝ Λ2

• Initial parameters of the model need to be fine tuned to a very high precision
⇒ What is the influence of the standard model parameters on the fine tuning necessary?

Functional Method: The FRG
We analyse our model with the functional
renormalisation group (FRG) using the
Wetterich equation [Wetterich ’93]
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a differential equation for the effective
average action Γk, interpolating between
S for k → Λ and the full quantum effec-
tive action Γ for k → 0.
Rk denotes the regulator, implementing a
Wilsonian idea of renormalisation

Fig. 1: Typical shape of a regulator function

Effective Action: The Yukawa-QCD Model
Starting point: QCD effective action with induced 4-fermion terms
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Bymeans of theHubbard-Stratonovic transformation (partial bosonization) [Gies ’06] we trans-
late the four fermion channel into an effective quark meson Yukawa interaction
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and reparametrise our newly obtained scalar field including top/bottom-type couplings to ar-
rive at
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Symmetry Breaking in the Model
Symmetry breaking in this model is happening when the scalar potential U(ρ, ρ̃) develops a
non-vanishing minimum. For a (simple) ϕ4 potential this means
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This transition happens when the mass parameter becomes negative during our flow from the
UV to the IR. In our model we use a Φ4 potential U(ρ, ρ̃) = m2(ρ + ρ̃) + λ1

2 (ρ + ρ̃)2 + λ2ρρ̃,

where ρ = Φ∗aΦa and ρ̃ = Φ̃∗aΦ̃a

Gauged vs Ungauged Model

In the ungauged case our model co-
incides with a chiral Higgs-top-bottom
model. In this model there are two
phases, the symmetric regime in the right
half plane and the broken (deep Higgs)
regime in the left half plane, character-
ized by a non-vanishing vacuum expec-
tation value v. The transition between
phases is described by a second order
quantum phase transition v ∝ |δϵ|β
[Kleinert et al ’01]. In the gauged case we
end up in the broken regime even in the
right half plane caused by gauge interac-
tions coming fromQCD (deepQCD). How-
ever we observe an approximate a power-
law behaviour for the vev going from the
deep QCD to the deep Higgs regime for
this analysis.

Fig. 2: Phase transition in the ungauged model

Fig. 3: Phase transition in the gauged model at different g2Λ

Phase Transitions
We generate data for different values of the couplings in the UV. For the analysis of the fine
tuning in one parameter we keep all values for the other parameters fixed at the initialization
scale Λ. Shown is the critical exponent η = 2β − 1(= 2−Θ), measuring the deviation of the
RG exponent Θ from 2.

Fig. 4: Critical Exponent for the gauge coupling Fig. 5: For the Yukawa and scalar interactions

Scaling behaviour close to the transition
Close to ΛQCD and still being in the symmetric regime, the meson Yukawa coupling h2 dom-
inates over h2t/b and we can assume h2 ≫ h2t/b. Furthermore the scalar masses can be ne-
glected close to the transition. In that limit our model exhibits scaling solutions, directly con-
necting the gauge coupling g2 to the Yukawa coupling and scalar self interaction h2 ∼ g2

and λ1 ∼ g2 (quasi fixed-point in h2

g2 and
λ1
h2 , c.f. [Gies et al ’19]). This strongly influences the

running of the mass parameter through the scalar anomalous dimension ηΦ ∼ h2 ∼ g2 and
alleviates the fine tuning necessary. This can be seen in η for ΛQCD/ΛF → 1, since then this
scaling behaviour is still expected to occur in our flows.

Conclusions
• Have seen that Yukawa and scalar couplings have little influence on the fine-tuning problem
• Strong influence of the gauge coupling on the transition
→ Can be traced back to a quasi fixed-point in the meson sector of the model

• At the physical point ΛQCD
ΛF

≈ 10−4, QCD softens the fine-tuning problem with η ≈ 0.16,
compared to η ≈ 0.07 in the ungauged model.


