Real-time functional renormalization group for critical dynamics

Johannes V. Roth and Lorenz von Smekal

Why real time?

Performing calculations directly in real time
avoids the need of an analytic continuation in comparison with the imaginary-time formalism, and
allows treating phenomena off-equilibrium, e.g. many aspects of heavy-ion collisions, which are very dynamic in nature

Comparison of real-time methods
 $H=\frac{p^{2}}{2}+\frac{\omega_{0}^{2}}{2} x^{2}+\frac{\lambda}{4} x^{x^{4}}$

Real-time FRG, Gaussian-state approximation, classical-statistical simulations, exact diagonalization of Schrödinger equation, and NLO 2-loop perturbation theory

Figure: Spectral functions of the quartic 'anharmonic' oscillator at finite temperature, stemming from various computational techniques, including the real-time FRG [1], here at low temperature $T / \omega_{0}=0.25$, large coupling $\lambda / \omega_{0}{ }^{3}=4$, and small damping $\gamma / \omega_{0}=0.06$.

Dynamic universality classes

Landau-Ginzburg free energy (statics) Equations of motion (dynamics)

Halperin-Hohenberg classification

$B=0, g=0$: Model A, $z=2+c \eta$
$B>0, g=0$: Model B, $z=4-\eta$ (see Son, Stephanov)
$B=0, g>0$: Model C, $z=2+a / v$

Causal regulators

general spectral representation:
Lorentz invariance $J(\omega, \boldsymbol{p})=\operatorname{sgn}(\omega) \theta\left(p^{2}\right) \widetilde{J}\left(p^{2}\right)$
$R_{k}^{R / A}(\omega, \boldsymbol{p})=-\int_{0}^{\infty} \frac{d \omega^{\prime}}{2 \pi} \frac{2 \omega^{\prime} J_{k}\left(\omega^{\prime}, \boldsymbol{p}\right)}{(\omega \pm i \varepsilon)^{2}-\omega^{\prime 2}}-\alpha_{k}(\boldsymbol{p}) k^{2}$
Example: $\quad \tilde{J}_{k}\left(\mu^{2}\right)=\frac{4 k \mu}{\left(1+\mu^{2} / k^{2}\right)^{2}}$
(follows directly from Kramers-Kronig
relations, when demanding causality)
Constructing regulators in the real-time FRG that comply with the causal analytic (retarded/ advanced) structure of the propagators is a nonrivial task [9]. In our work we show that every causal regulator has a spectral representation like above, which can be interpreted as an interaction with a FRG-scale dependent fictitious heat bath [1,2]. Importantly, such a spectra representation entails that causal regulators are not UV-finite with respect to frequencies

flow of retarded propagator poles

Figure: Imaginary part of the resulting causal Lorentz invariant, but not UV-finite requlator.

Figure: Trajectories of the poles $\omega_{p}(k)$ of the retarded propagator in the complex frequency plane for the $(0+1)$-dimensional quartic 'anharmonic' Oscillator, as a function of the FRG scale k. Arrows indicate flow to lower k. The black dots mark the quasiparticle poles when the regulator vanishes. The crosses at the origin mark the point where the regulator-induced third poles disappear for $k \rightarrow 0$ in the IR. For $a<1 / 2$ (here) this relaxational pole violates causality, as it moves in the upper half plane for sufficiently large values of k.

Truncations for real-time applications

Critical spectral functions of Model A, B, and C
Scaling hypothesis $\quad s^{2-\eta} \rho\left(s^{z} \omega, s \boldsymbol{p}, s^{1 / \nu} \tau\right)=\rho(\omega, \boldsymbol{p}, \tau)$

ω / MeV
Figure: Critical scaling of the resulting $\operatorname{IR}(k \rightarrow 0)$ spectral functions at vanishing external momentum, gradually building up in the limit $T \rightarrow T_{c}$ of approaching the the critical temperature from above [2]. For analogous results from classical-statistical simulations see also [4].

Figure: Critical spectral function of Model B in three spatial dimensions, realized after Son and Stephanov [8] by coupling a conserved (baryon) density linearly to the non-conserved order parameter. We see that near the critical temperature the order parameter (interpreted as fluctuations of the sigma meson) stays massive. Indeed, it is instead the diffusive mode which emerges as a mixture of fluctuations in the baryon density and fluctuations of the nonconserved sigma meson which becomes critical, giving rise to the critical scaling
region at finite spatial momenta. For a
treatment of the canonical Model B within classical-statistical simulations see also [5].

References

[1] J. V. Roth, D. Schweitzer, L. J. Sieke, L. von Smekal, Phys. Rev. D 105, 116017 (2022)
[2] J. V. Roth, L. von Smekal, in preparation
[3] S. Huelsmann, S. Schlichting, P. Scior, Phys. Rev. D 102, 096004 (2020)
[4] D. Schweitzer, S. Schlichting, L. von Smekal, Nucl. Phys. B 960, 115165 (2020)
[5] D. Schweitzer, S. Schlichting, L. von Smekal, arXiv:2110.01696 [hep-lat]
[6] A. O. Caldeira and A. J. Leggett, Physics A 121, 587 (1983)
[7] P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977)
[8] D. T. Son, M. A. Stephanov, Phys. Rev. D 70, 056001 (2004)
[9] C. Duclut and B. Delamotte, Phys. Rev. E 95, 012107 (2017)

