
1×10-4

1×10-3

1×10-2

1×10-1

1×100

1×101

0 1 2 3 4 5 6 7 8

sp
ec
tra
lf
un
ct
io
n
�(
�
)

�

2-loop PT
exact diag.
class stat.

real-time FRG
GSA (static)

Figure: Spectral functions of the quartic ‘anharmonic’ oscillator at finite temperature, 
stemming from various computational techniques, including the real-time FRG [1], here at 
low temperature T/ω0 = 0.25, large coupling λ/ω03 = 4, and small damping γ/ω0 = 0.06.
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Figure: Imaginary part of the resulting causal, 
Lorentz invariant, but not UV-finite regulator.
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FIG. 2. Poles !p(k) of the retarded propagator (5.23) with the Drude regulator (5.22) in the complex plane as a function of
k, with !0 = 1, � = 0.5 and three di↵erent values of ↵. The black dots mark the quasi-particle poles (5.25) of the propagator
at k = 0, where the regulator vanishes. They move around with k in the lower half-plane, but never cross the real axis. The
crosses at the origin mark the points where the regulator-induced third poles disappear with k ! 0 in the IR. For ↵ < 1/2 this
relaxational regulator pole moves into the upper half-plane at a finite value of the FRG scale k and the regulator thus violates
causality at large k towards the UV.

Following the flow backwards towards the UV we see
that for ↵  1/2 the imaginary part of the relaxational
regulator pole first moves to smaller values. Eventually,
however, it turns around to increase again towards the
UV, for ↵ < 1/2 without bound. In this case it thus
always crosses the real axis and moves into the upper
half-plane (where a retarded self-energy should be an-
alytic) so that causality is violated by the regulator at
finite FRG scale k. For ↵ = 1/2 it turns around as well,
but approaches 0� for k ! 1 in the UV and never moves
into the upper half-plane. This is the liming case where
↵ is chosen precisely such that the regulator has a root at
! = 0. For larger values ↵ > 1/2 the imaginary part of
the relaxational regulator pole decreases monotonically
and the regulator never violates causality. Its real part
has no zero-crossings anymore, and always leads to a pos-

FIG. 3. Flow of the imaginary parts Im!p(k) of the regulator-
induced relaxational poles in the retarded propagators of
Fig. 2 over the FRG scale k. Here, ↵ = 1/2 is the limiting
case, i.e. causality is always violated at large k for ↵ < 1/2.

itive mass/frequency shift, because the Callan-Symanzik
counter-term is large enough to compensate the negative
shift in the squared mass/frequency by �!2

HB
from the

heat bath regulator.

C. Truncation for the E↵ective Average Action

In analogy to Ref. [28], we use the vertex expansion
around the scale-dependent minimum �0,k(x) up to order
Q, since it was proven that such a truncation gives rise to
qualitative structures such as the collisional broadening
and further resonance frequencies in the spectral func-
tion, corresponding to 1 $ 3 processes.

We will now briefly summarize the truncation and
the di↵erences to the one presented in Ref. [28]. For
the quartic oscillator, the minimum �0,k(x) ⌘ 0 is k-
independent because of the inversion symmetry of the
e↵ective action and the assumption that no spontaneous
symmetry breaking occurs. We consider a vertex expan-
sion up to sixth order in the field �, which may be ex-
plicitly written as

flow of retarded propagator poles:
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critical diffusive mode

(scaling behaviour)

Model B (after Son and Stephanov [8])

Figure: Critical scaling of the resulting IR (k → 0) spectral functions at vanishing external 
momentum, gradually building up in the limit T → Tc of approaching the the critical temperature 
from above [2]. For analogous results from classical-statistical simulations see also [4].

Figure: Critical spectral function of Model B 
in three spatial dimensions, realized after 
Son and Stephanov [8] by coupling a 
conserved (baryon) density linearly to the 
non-conserved order parameter. We see 
that near the critical temperature the order 
parameter (interpreted as fluctuations of 
the sigma meson) stays massive. Indeed, it 
is instead the diffusive mode which 
emerges as a mixture of fluctuations in the 
baryon density and fluctuations of the non-
conserved sigma meson which becomes 
critical, giving rise to the critical scaling 
region at finite spatial momenta. For a 
treatment of the canonical Model B within 
classical-statistical simulations see also [5].
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0

d!0

2⇡

2!0Jk(!0,p)

(! ± i")2 � !02 � ↵k(p)k
2

Figure: Trajectories of the poles ωp(k) of the retarded propagator in the complex frequency 
plane for the (0+1)-dimensional quartic ‘anharmonic’ oscillator, as a function of the FRG scale 
k. Arrows indicate flow to lower k. The black dots mark the quasiparticle poles when the 
regulator vanishes. The crosses at the origin mark the point where the regulator-induced third 
poles disappear for k → 0 in the IR. For ɑ < 1/2 (here) this relaxational pole violates causality, 
as it moves in the upper half plane for sufficiently large values of k.

general spectral representation:

(follows directly from Kramers-Kronig 
relations, when demanding causality)

Lorentz invariance

1PI vertex expansion
… around scale-dependent minimum φ0,k (use for Models A and B)

… symmetrically around φ = 0 (use for Models A and C)

effective average action: flow of 2- and 4-point functions:

flow of couplings to density:

2-Point function. The flow equation for the retarded compo-
nent of the 2-point function at two-loop order reads [11, 18]

@k�
qc
k (p) =

i�k

12
IK
k � (36)

i
Z

q

⇣
BK

k (q)Vcl,R
k (p � q) + BR

k (q)Van
k (p � q)

⌘
,

which is visualized in Fig. 2, and can be readily expanded in
powers of p2 to project the flow equation of the advanced 2-
point function onto the expansion coe�cients �qc

0,k(!), Z?k , . . . .
Like in the comoving expansion it is both numerically and

analytically convenient to separate o↵ the frequency dependent
part ��qc

0,k(!) of the full advanced 2-point function. Corre-
spondingly setting ! = 0 in (36) yields upon solving the fre-
quency and momentum integrals analytically a flow equation
for the squared mass,

�@km2
k =

i�k

4
IK
k �

4⌦dkd+3TZ?k
(2⇡)d ⇥ (37)

d
d + 2

 
1 �

⌘?k
4 + d

! Vcl,R
1,k (0)

⇣
m2

k + Z?k k2
⌘2 .

The flow equation for the spatial wave function renormal-
ization factor Z?k is obtained by di↵erentiating (36) straightfor-
wardly w.r.t. p2,

@kZ?k = iVcl,R
1,k (0) IK

k , (38)

which can be evaluated in closed form and rearranged into the
explicit expression

⌘?k =

0
BBBBBBBB@

1
2 + d

� (2⇡)d

4⌦dkd+2T

⇣
m2

k + Z?k k2
⌘2

Vcl,R
1,k (0)

1
CCCCCCCCA

�1

(39)

for the spatial anomalous dimension.

4-Point function. For the vertex flow we split the full 4-point
function �(4)

k into s, t, and u channels, as already mentioned
above, and follow our loop expansion of Ref. [18] to rewrite
the r.h.s. of its full flow equation in ‘local-vertex approxima-
tion’, cf. the second row of Fig. 2. In this regard we replace all
occurring 4-point functions with e↵ective local coupling con-
stants. The flow equation for the 4-point function expanded in
powers of p2 can hence be compactly expressed as

@kVcl,R
0,k (!) = �

i�2
k

4
JKR

k (!, 0) , (40)

@kVcl,R
1,k (0) = �

i�2
k

4
lim
p!0

@

@p2 JKR
k (0, p) , etc., (41)

here just for the retarded part, since the others (advanced and
Keldysh) follow readily by symmetry, and also with the afore-
mentioned self-consistent e↵ective local coupling constant

�k = �6 Vcl,R/A
0,k (0) . (42)
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Figure 2: First row: Diagrammatic representation of the flow equation for the
retarded 2-point function �qc

k (x, x0) in the symmetric phase. The s, t, and u
channels of the 4-point function are diagrammatically denoted by an ellipse.
Second row: Vertex flow in self-consistent ‘local-vertex approximation’ for the
retarded component of the 4-point vertex, where the full 4-point function on the
r.h.s. is approximated by an e↵ective local coupling constant (42).

We can now set ! = 0 in (40) and solve the remaining inte-
gral analytically to find a flow equation for the quartic coupling
constant,

@k�k =
6⌦dkd+1TZ?k

(2⇡)d

 
1 �

⌘?k
2 + d

!
�2

k⇣
m2

k + Z?k k2
⌘3 , (43)

see Appendix A.

2.2. Model B—Linear coupling of a conserved density
Motivated from Son and Stephanov’s work [22] on the dy-

namic universality class of QCD’s critical endpoint for two
light quark flavors, we can now linearly couple a non-critical
conserved ‘baryon’ density n(x) to the order parameter '(x),
and should find critical Model-B instead of Model-A dynam-
ics, i.e. we modify our free energy (5) according to

F =
Z

dd x
(

1
2

(~r')2 +
m2

2
'2 +

�

4!
'4 + B'n +

n2

2�0

)
, (44)

with coupling constant B between the order parameter '(x) and
the conserved density n(x), and the baryon susceptibility �0.
The stochastic hydrodynamic equations of motion can be de-
rived using standard rules [22] (see also Refs. [23, 34–37]) and
assume the form

@2
t ' + �@t' = �

�F
�'
+ ⇠ , (45)

⌧R@
2
t n + @tn = �̄~r2 �F

�n
+ ~r · ~⇣ , (46)

where we introduced the baryon conductivity �̄, a finite Israel-
Stewart relaxation time ⌧R to exclude propagation at superlumi-
nal speeds [38], and a white Gaussian noise ~⇣ for the conserved
density.2 The r.h.s. of the equation of motion (46) for the con-
served density n(x) has the form of a total divergence, and there-
fore e↵ectively represents a continuity equation, admitting the
conserved quantity

R
dd x n(x).

2We denote the baryon conductivity by �̄ to avoid possible confusion with
the quartic coupling constant �.
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Figure 3: Flow of the static quantities gk and ��1
0,k , in local-vertex approxima-

tion. Arrows indicate flow of momentum. The limit on the r.h.s. of @k��1
0,k is

well defined because of the di↵usive nature of the n field, since all occurring
diagrams involve a di↵usive �c�cnq vertex proportional to p2.

solve the remaining q0-integral by virtue of Kramers-Kronig re-
lations and the q-integral using the convenient form of the Litim
regulator, such that we finally arrive at

@kgk =
⌦dkd+1TZ?k

(2⇡)d

 
1 �

⌘?k
2 + d

! 2gk
⇣
�0,kg2

k + �s,k
⌘

(m2
k + Z?k k2)3

, (66)

@k�
�1
0,k =

⌦dkd+1TZ?k
(2⇡)d

 
1 �

⌘?k
2 + d

! 2g2
k

(m2
k + Z?k k2)3

. (67)

We also applied our local-vertex approximation from Sec. 2.1.2
where it was used for the quartig coupling �k (cf. the second
row of Fig. 2) to the flow of the 3-point coupling constant gk.
We hence e↵ectively neglect terms involving Vcl,R/A

1,k (0) in its
flow equation.

3. Results

We use the parameters displayed in Tab. 1 as initial condi-
tions for the flow. By tuning the temperature T close to its
critical value Tc while keeping all other initial values fixed we
observe a second-order phase transition where the system re-
stores its spontaneously broken Z2 symmetry.

Upon approaching the critical temperature from above we
observe scaling behaviour gradually building up in the result-
ing IR (k ! 0) spectral functions, which is shown in Fig. 4 for
Models A, B and C in d = 2 and 3 spatial dimensions. Specifi-
cally, we expect the scaling behaviour [2]

s2�⌘?⇢IR(sz!, sp, s1/⌫⌧) = ⇢IR(!, p, ⌧) (68)

for every s > 0, where the third argument indicates the depen-
dence on the reduced temperature ⌧ ⌘ (T � Tc)/Tc. Setting
p = 0, ⌧ = 0 and further s = !�1/z > 0 we see that at the
critical point the spectral function is described by a power law
⇢IR(!) / !�� with � = (2 � ⌘?)/z for su�ciently small !.
Correspondingly, the logarithmic derivative

�(!) ⌘ �! @
@!

log ⇢IR(!) , (69)

assumes a constant value �(!) = � = const. in the scaling
regime. However, due to the Taylor expansion in p2, we have
no direct access to the anomalous scaling dimension ⌘? through
the obtained IR (k ! 0) data, and we hence extract the spatial
anomalous scaling dimension ⌘? from the scaling of Z?k at the
FRG fixed point [7, 41, 42], which is shown in Fig. 5.

Evidently, we obtain non-trivial fixed-point values for �, in-
dicating that the flow indeed generates a power-law behaviour
in the correlation functions. As a first step, we can compare
with the mean-field results where we would always get �mf ⌘ 1
(Models A, C), and �mf ⌘ 1/2 (Model B), respectively, in the
spectral function. These are shown as dotted gray lines in Fig. 4.

Model A. Using z = (2 � �)/⌘? and ⌘? from the FRG fixed
point yields in the case of d = 2 spatial dimensions z = 2.094
from the comoving expansion, and z = 2.073 from the sym-
metric expansion, respectively. There is a slight tension in the
literature in the case of d = 2 spatial dimensions, as the re-
sults seem to converge to two di↵erent values near 2.09 (see
e.g. Refs. [3, 43, 44]), and 2.16 (see e.g. Refs. [15, 16, 45, 46]),
respectively. While our result for the dynamical critical expo-
nent in d = 2 spatial dimensions seems to be in favour of 2.09
in both expansions, we want to emphasize that one should not
underestimate systematic uncertainties in d = 2 spatial dimen-
sions contained in our procedure. Higher expansion orders are
needed to determine the scaling exponent in d = 2 spatial di-
mensions with certainty.

In d = 3 spatial dimensions the situation is more settled,
and most precision results from the literature collectively find
z ⇡ 2.024 (see e.g. Refs. [14–16, 46], and especially Ref. [47]
and references in the latter). Our results of z = 2.042 and
z = 2.035 for the comoving and symmetric expansions, respec-
tively, are in good agreement, as we expect the error induced by
the finite truncation is at least of the same order as the remain-
ing di↵erence.

Model B. Model B’s critical spectral functions are shown in
the middle column of Fig. 4, where we see that even at p = 0
critical power-law behaviour is visible, but here in the form of
a critical singularity. This is due to the finiteness of the plas-
mon mass (XXX), and the nonconserved order-parameter mode
correspondingly staying massive. We emphasize this because
for purely di↵usive dynamics the spectral function is trivial at
p = 0 [4], which is no longer true in Son and Stephanov’s
formulation of Model B because one always has the relax-
ational mode (54) originating from dissipative Model-A dy-
namics. Having then in mind that the damping constant �k di-
verges at the critical point as shown in Fig. 6, such a power-law
singularity at p = 0 is justified. Regarding the correspond-
ing exponent, an inspection of the logarithmic derivative �(!)
yields plateau values of XXX for d = 2, and XXX for d = 3
spatial dimensions, respectively.

Model C. The critical spectral functions of Model C are shown
in the third column in Fig. 4. We get z = 2.56 for d = 2,
and z = 2.31 for d = 3 spatial dimensions, respectively. We
can compare this with the the analytic result z = 2 in d = 2
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in both cases: expand 2- and 4-point functions in spatial

gradients, but keep full frequency dependence:
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Real-time FRG, Gaussian-state approximation, classical-statistical simulations,
exact diagonalization of Schrödinger equation, and NLO 2-loop perturbation theory

Why real time?
Performing calculations directly in real time

• avoids the need of an analytic continuation in comparison with the imaginary-time 

formalism, and

• allows treating phenomena off-equilibrium, e.g. many aspects of heavy-ion collisions, 

which are very dynamic in nature 
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Figure 1: Diagrammatic representation of the flow equation for the retarded 2-point function �qc
k (x, x0), evaluated at the scale-dependent minimum. Our color

conventions and diagrammatic notation coincides with [11, 18]. It consists of two contributions from non-local 1-loop diagrams, which are responsible for generating
a non-trivial dependence on the external frequency ! and spatial momentum p in the spectral function ⇢(!, p). The tadpole diagram in the third term and the
interaction with the k-dependent field expectation value @k�0,k in the fourth term are responsible for generating a momentum-independent shift in the squared mass.

We thereby assume that the !-dependence of the spatial wave
function renormalization factor is weak, i.e. Z?k (!) ⇡ Z?k .

The scale-dependent retarded propagator in front of a con-
stant (classical) background field expectation value �c(x) ⌘p

2', and a vanishing quantum component �q(x) ⌘ 0, is given
by

GR
',k(!, p) = � 1

��
qc
0,k(!) � �k'2/2 � Z?k p2 + RR

k (p)
, (15)

where the advanced propagator follows readily by the sym-
metry GA

',k(!, p) = GR
',k(�!, p). Based on the Kubo-Martin-

Schwinger (KMS) condition [31, 32] in thermal equilibrium,
the Keldysh propagator

GK
',k(!, p) =
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⇣
GR
',k(!, p) �GA

',k(!, p)
⌘

(16)

is as usual set by the fluctuation-dissipation relation (FDR), pro-
vided the regulator is chosen in accordance.

Before we continue with writing down flow equations, we de-
fine for convenience the 1-loop functions (with the BR,A,K

k (!, p
as defined in [18])
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with the placeholders X,Y denoting X,Y = R, A,K the retarded,
advanced, and Keldysh components of the propagators, respec-
tively, and with the shorthand notation

R
q ⌘

R
dDq/(2⇡)D for in-

tegrals in momentum space. The combinatoric prefactor 1/2�XY

is 1/2 if X = Y and 1 if X , Y , and is included here for conve-
nience to avoid double counting. Explicit expressions are given
(when available) in Appendix A. Otherwise the frequency and
momentum integrals are solved numerically with the methods
outlined in Appendix B.

With this notation at hand, we can compactly express the flow
equation for the retarded 2-point function expanded in powers
of p2 as
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We can now separate the frequency-dependent part from the
zeroth order (p = 0) term (19) according to �qc

0,k(!) = �m2
k +

��
qc
0,k(!) for convenience, with ��qc

0,k(0) = 0. We will discuss
the flow equation of the squared mass �m2

k in the context of the
e↵ective potential below.

Using the expressions for the J’s from Appendix A in (20)
the spatial anomalous scaling dimension ⌘?k in this truncation
reads
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with ⌦d denoting the volume of the d-dimensional ball with
unit radius.

E↵ective potential. Since all n-point vertices for n � 3 are lo-
cal, we can utilize an e↵ective potential Vk(') to encode their
flow equations, which we formally define as

V 0k(') = � 1p
2
��k[�]
��q(x)
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�c⌘
p

2',�q⌘0
, (22)

which fixes Vk(') up to some (irrelevant) k-dependent constant.
With this definition we can easily derive its flow equation by
di↵erentiating the flow equation (1) w.r.t. �q(x) [17, 18],
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where the third derivative V (3)
k (') is precisely the 3-point func-

tion at vanishing external momenta in front of a fixed field ex-
pectation value �c(x) ⌘

p
2', �q(x) ⌘ 0. Using the expres-

sion for I',k from Appendix A and formally integrating w.r.t. '
yields
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for the flow of the e↵ective potential.
Because of the Z2 symmetry the e↵ective potential only de-

pends on '2, which suggests the usual substitution ⇢ ⌘ '2,
which replaces V 00k (') = 2V 0k(⇢) + 4⇢V 00k (⇢) in the flow equa-
tion. A common approximation scheme [7] is then to expand
the e↵ective potential Vk(⇢) in a power series in ⇢ around the
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k (x, x0), evaluated at the scale-dependent minimum. Our color

conventions and diagrammatic notation coincides with [11, 18]. It consists of two contributions from non-local 1-loop diagrams, which are responsible for generating
a non-trivial dependence on the external frequency ! and spatial momentum p in the spectral function ⇢(!, p). The tadpole diagram in the third term and the
interaction with the k-dependent field expectation value @k�0,k in the fourth term are responsible for generating a momentum-independent shift in the squared mass.

We thereby assume that the !-dependence of the spatial wave
function renormalization factor is weak, i.e. Z?k (!) ⇡ Z?k .

The scale-dependent retarded propagator in front of a con-
stant (classical) background field expectation value �c(x) ⌘p

2', and a vanishing quantum component �q(x) ⌘ 0, is given
by

GR
',k(!, p) = � 1

��
qc
0,k(!) � �k'2/2 � Z?k p2 + RR

k (p)
, (15)

where the advanced propagator follows readily by the sym-
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the Keldysh propagator
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is as usual set by the fluctuation-dissipation relation (FDR), pro-
vided the regulator is chosen in accordance.

Before we continue with writing down flow equations, we de-
fine for convenience the 1-loop functions (with the BR,A,K
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as defined in [18])
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with the placeholders X,Y denoting X,Y = R, A,K the retarded,
advanced, and Keldysh components of the propagators, respec-
tively, and with the shorthand notation

R
q ⌘

R
dDq/(2⇡)D for in-

tegrals in momentum space. The combinatoric prefactor 1/2�XY

is 1/2 if X = Y and 1 if X , Y , and is included here for conve-
nience to avoid double counting. Explicit expressions are given
(when available) in Appendix A. Otherwise the frequency and
momentum integrals are solved numerically with the methods
outlined in Appendix B.

With this notation at hand, we can compactly express the flow
equation for the retarded 2-point function expanded in powers
of p2 as
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We can now separate the frequency-dependent part from the
zeroth order (p = 0) term (19) according to �qc
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k +
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0,k(!) for convenience, with ��qc

0,k(0) = 0. We will discuss
the flow equation of the squared mass �m2

k in the context of the
e↵ective potential below.

Using the expressions for the J’s from Appendix A in (20)
the spatial anomalous scaling dimension ⌘?k in this truncation
reads

⌘?k = �k@k log Z?k =
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with ⌦d denoting the volume of the d-dimensional ball with
unit radius.

E↵ective potential. Since all n-point vertices for n � 3 are lo-
cal, we can utilize an e↵ective potential Vk(') to encode their
flow equations, which we formally define as

V 0k(') = � 1p
2
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��q(x)
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which fixes Vk(') up to some (irrelevant) k-dependent constant.
With this definition we can easily derive its flow equation by
di↵erentiating the flow equation (1) w.r.t. �q(x) [17, 18],
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where the third derivative V (3)
k (') is precisely the 3-point func-

tion at vanishing external momenta in front of a fixed field ex-
pectation value �c(x) ⌘

p
2', �q(x) ⌘ 0. Using the expres-

sion for I',k from Appendix A and formally integrating w.r.t. '
yields
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for the flow of the e↵ective potential.
Because of the Z2 symmetry the e↵ective potential only de-

pends on '2, which suggests the usual substitution ⇢ ⌘ '2,
which replaces V 00k (') = 2V 0k(⇢) + 4⇢V 00k (⇢) in the flow equa-
tion. A common approximation scheme [7] is then to expand
the e↵ective potential Vk(⇢) in a power series in ⇢ around the
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k (x, x0), evaluated at the scale-dependent minimum. Our color

conventions and diagrammatic notation coincides with [11, 18]. It consists of two contributions from non-local 1-loop diagrams, which are responsible for generating
a non-trivial dependence on the external frequency ! and spatial momentum p in the spectral function ⇢(!, p). The tadpole diagram in the third term and the
interaction with the k-dependent field expectation value @k�0,k in the fourth term are responsible for generating a momentum-independent shift in the squared mass.

We thereby assume that the !-dependence of the spatial wave
function renormalization factor is weak, i.e. Z?k (!) ⇡ Z?k .

The scale-dependent retarded propagator in front of a con-
stant (classical) background field expectation value �c(x) ⌘p

2', and a vanishing quantum component �q(x) ⌘ 0, is given
by
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where the advanced propagator follows readily by the sym-
metry GA
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the Keldysh propagator
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is as usual set by the fluctuation-dissipation relation (FDR), pro-
vided the regulator is chosen in accordance.

Before we continue with writing down flow equations, we de-
fine for convenience the 1-loop functions (with the BR,A,K
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as defined in [18])
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with the placeholders X,Y denoting X,Y = R, A,K the retarded,
advanced, and Keldysh components of the propagators, respec-
tively, and with the shorthand notation
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dDq/(2⇡)D for in-
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is 1/2 if X = Y and 1 if X , Y , and is included here for conve-
nience to avoid double counting. Explicit expressions are given
(when available) in Appendix A. Otherwise the frequency and
momentum integrals are solved numerically with the methods
outlined in Appendix B.
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We can now separate the frequency-dependent part from the
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with ⌦d denoting the volume of the d-dimensional ball with
unit radius.

E↵ective potential. Since all n-point vertices for n � 3 are lo-
cal, we can utilize an e↵ective potential Vk(') to encode their
flow equations, which we formally define as
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which fixes Vk(') up to some (irrelevant) k-dependent constant.
With this definition we can easily derive its flow equation by
di↵erentiating the flow equation (1) w.r.t. �q(x) [17, 18],
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where the third derivative V (3)
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tion at vanishing external momenta in front of a fixed field ex-
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for the flow of the e↵ective potential.
Because of the Z2 symmetry the e↵ective potential only de-

pends on '2, which suggests the usual substitution ⇢ ⌘ '2,
which replaces V 00k (') = 2V 0k(⇢) + 4⇢V 00k (⇢) in the flow equa-
tion. A common approximation scheme [7] is then to expand
the e↵ective potential Vk(⇢) in a power series in ⇢ around the
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non-conserved

B = 0, g = 0: Model A, z = 2 + cη
B > 0, g = 0: Model B, z = 4 – η (see Son, Stephanov)
B = 0, g > 0: Model C, z = 2 + α/ν
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J(!,p) = sgn(!) ✓(p2) eJ(p2)

Constructing regulators in the real-time FRG that 
comply with the causal analytic (retarded/
advanced) structure of the propagators is a non-
trivial task [9]. In our work we show that every 
causal regulator has a spectral representation 
like above, which can be interpreted as an 
interaction with a FRG-scale dependent fictitious 
heat bath [1,2]. Importantly, such a spectral 
representation entails that causal regulators are 
not UV-finite with respect to frequencies.

Halperin-Hohenberg classification

linear Model B coupling

non-linear Model C coupling
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