G52 FUNCTIONAL RENORMALIZATION FOR MATRIX MODELS

ERG 2022 Berlin poster by
Carlos I. Pérez-Sanchez perez@thphys.uni-heidelberg.de
Institute for Theoretical Physics, University of Heidelberg

Abstract

We report a new functional renormalization framework for an ample variety of matrix models (MM)
Z = / ) dptcauss OX) exp[—S™ (X)) with  dpcaus(X) = Cn [T e NTr (X2 (A X)) 1 ppescur Tr(1) = N
MN(C ga

namely, we allow several random Hermitian matrices X = (X, ..., X};;) to interact via S™"(X) = Tr(Vy) x - - - X Tr(V), for certain noncommu-
tative polynomials V7, ..., Vi € C,; in the n matrices. For n = 2, an example of operators is:
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1 Tr(ABBBAB) >j% o Tr?2(AABABA ® AA)

,’/ ' (cylinder with labelled boundary).
IS

We addressed the Wetterich-Morris equation both in top-down and bottom-up directions (as a formal series; for the outlook: put bounds).

Matrix models and renormalization

[Brézin, Zinn-Justin, Phys. Lett. B “92] [Eichhorn, Koslowski, PRD 2013] [CP AHP 2021, 2007.10914] [CP LMP 2022 2111 .02858]
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FRGE: ABAB 2MM

|[Eichhorn, Pereira, Pithis J[HEP 2020, 2009.05111] |CP JHEP 2021, 2102.06999]

B Ottom'up (finding the algebraic structure) Ann. Henri Poincaré 22 (2021), 3095-3148 ';ir:: TOp-dOWIl (uniqueness of the algebraic structure) Lett. Math. Phys. 112, 58 (2022)
« the pr()of of Wetterich-Morris equation (FRGE)’ . « write the FRGE and solve for the algebra (An,N/ *), where STr = TrMn(An,N)
. 3R < assume an expansion of its rhs in unitary-invariant operators
oI'n[X]| = 5 STr (H ossT t[XN] R ) ’ f | « impose the one-loop structure and solve for the algebra A,, 5 (see left column)
- « determine from it the algebra that computes Wetterich equation; it is unique
and the one reported in [CP 2007.10914], i.€. A, N = (C%) 2 C%)) ® (C%) C%))
deter.mmes the algebra that governs the geometric (Neum.ann.) series in the (for vector spaces X is just the tensor product, but in the presence of a product
Hessian of I'y [Benedetti, Groh, Machado, Saueressig, JHEP 2011] appearing in the RHS on A, n, these signs are different) whose product, for P, Q, U, W words on the
« [Eichhorn, Koslowski, Phys. Rev. D ‘13] oriented us to find some coupling scalings and matrices, reads:
we adopted their RG-time parameter t = log N, but the proof of the FRGE (U W)*(P®Q)=PURWQ (1a)
dictates a different algebra and we follow that, not the algebra in op. cit. (UKW) % (P®Q)=UNPWQ (1b)
« B-equations found for a sextic truncation (48 operators) of 2MM’s. For the (U@ W)*(PRQ) =WPUKXQ (Ic)
unique real fixed point ¢* leading to a single relevant direction (a single (UK W) x (PXQ) = Tr(WP)UKQ (1d)
positive e.v. of —(9B;/0g/)i i|¢+) yields a (Ry-dependent but accurate) value « the supertrace is Try;, (4, ,) = Trn ® Try4,, where
gj<44 — 1002 X (g;‘lt|[Kazakov—Zinn—Justin, Nucl. Phys. 5‘99]) Tr.An,N(P ® Q) — TI' P ) TI' Q and Tr.AnN(P Q) — TI'(PQ)
What is new in this framework? Y & \ B
- New is the algebra (1) above " without which the S-functions cannot be correctly computed. We ﬁ \@ R ﬁ % o \@ TR v
now interpret this algebra. Let X = (Xj,...,X,) € My(C)?, and Ci:; = C(X) or «words» . The @l @,
noncommutative derivative dx : C,y — C%ﬁ% sums over replacements of X in a word by ®, except at \ < )
the ends of the word, where one adds 1: Aoneloop diagram n asimplecate 1y ® el outer word (€ Cip) et inner word @, & outer word ¢
da(PAAR) =P® AR+PA®R  but dA(/ALGEBRA) =1® LGEBRA + ALGEBR® 1. Let i Unnesormmaized intercions g appesring in a . powees of th essm (tmplife).
. , , . . Right map: The contribution to the B, |,,,-function, w;, w, formed by reading off the legs with the arrows.
Also d4 on traces yields the cyclic derivative: do Tr(PAAR) = ARP + RPA, for instance. The o \ T
noncommutative-Hessian is the matrix with entries Hess,, TrW = 0dx,dx, Tr W. Then [1”1(3)]*" = LAV
[Hess I'y|** in the Neumann expansion is computed using the algebra (1) X/v
« EXAMPLE. Hess{Tr(ABAB) }: ~/ N L \/ S\
X 7\ N TN N, A
AL QA A B YA e —
0 00 0“4 od Tr(ZéTB)—Z B® B AB®1+1®BA )
P00 9P o0dP BA®1+1® AB A®A AN
— ~—— Fig. 2 Examples of graphs. From left to 1jight: a graph of a 4-matrix model v.vhose ef.fective vertex is Tr(BDBD7) Tr(A3DACDBA(?DADB).
> ( 4 ) < > < Next two graphs are both 1-100pc(01;1tiki1§u(3ilj)z :EI}_SIE)S::t (;)11171.(}7 I_’Idel;eszflg ;11 tI}_}ESI:jgie*aIljsslsr;:lgi topological sense. The latter is a
1535 o
Why d NEW f I'amEWOI'k? J. High Energ. Phys. 07(2021)42 =irH Hermltlan 3MM Lett. Math. Phys. 112, 58 (2022)
« [Eichhorn, Koslowski, Phys. Rev. D 13]'s approach is enough to treat 1MM’s, but that approach BABY-EXAMPLE: Take operators: O1 = % [Tr(A?/2)]* and O = g Tr(ABC). Then
projects out information needed for multimatrix models. Part of that recipe was used Hess] 1 O1 = 5{5{\@{\%( A2/2) Iy ®1 Nl +ARAY.
IN [Eichhorn-Pereira-Pithis JHEP 2020, 2009.05111] t0 address the FRG for the ABAB-model, computing 7 >
~ X

it on diagonal matrices; this leads to a B 4pap-function (~ 8?43 4p) that does not have the

one-loop structure independently from the requlator, and cannot follow from FRGE, if that 3

function would trully describe the full ensemble (as claimed by op. cit.) THJ' _U_H_
CC +

Filled (resp. white) ribbons are contracted (resp. uncontracted) in the 1-loop. By (1),

—~ =

. 0 C®1ly B®1 B® A A
« our new framework allows us to compute B-functions of the full ensemble My(C)zZ,, and Hes0 o Tvee 0 Aei| = [Heso]e g PR S SR
IN®B In®A 0 A®C B®C BB+AR®A

not only on subspaces of Commuting matrices: (modulo 17 = d;Z-coeffs, double-traces and cubic terms)

Extracting coefficients

2 2
B(8aBBa) — §ABBA(2N + 1) ~ §aa44 X §aBBA + &BBBE X §ABBA + (§4BAB)” + ($4BBA) 18122] Tran, ) {Hess Or # [Hess O5]*2} = Tr(A2/2) x [(Tr C)? + (Tr B)?] + Te(ACAC + ABAB),
which are effective vertices of the four one-loop graphs that can be formed with the con-

< >>© //ﬂ\\ /\//\\ tractions of (the filled ribbon half-edges of) any of { +——, -4} with any of { X, ){}.



