
Abstract

We report a new functional renormalization framework for an ample variety of matrix models (MM) $$
\mathcal{Z}=\int_{M_{\mathbb{N}}(\mathrm{C})_{s}^{\mathrm{s}}} \mathrm{~d} \mu_{\mathrm{GA} \text { ass }}(\mathbb{X}) \exp \left[-S^{\operatorname{TNT}}(\mathbb{X})\right] \quad \text { with } \quad \mathrm{d} \mu_{\mathrm{GAuss}}(\mathbb{X})=C_{N} \prod_{j=1}^{n} \mathrm{e}^{-N \operatorname{Tr}\left(X_{i}^{2} / 2\right)}\left(\mathrm{d} X_{i}\right)_{\text {Lebsscus }} \quad \operatorname{Tr}(1)=N
$$

namely, we allow several random Hermitian matrices $\mathbb{X}=\left(X_{1}, \ldots, X_{n}\right)$ to interact via $S^{\operatorname{INT}(\mathbb{X})}=\operatorname{Tr}\left(V_{1}\right) \times \cdots \times \operatorname{Tr}\left(V_{k}\right)$, for certain noncommutative polynomials $V_{1}, \ldots, V_{k} \in \mathbb{C}_{\langle n\rangle}$ in the n matrices. For $n=2$, an example of operators is:

$$
g_{1} \operatorname{Tr}(A B B B A B) \leftrightarrow
$$

(cylinder with labelled boundary).
We addressed the Wetterich-Morris equation both in top-down and bottom-up directions (as a formal series; for the outlook: put bounds).

Matrix models and renormalization

Bottom-up (finding the algebraic structure) Amm. Hentif Poincarer 22 2(2021), 309--3148
the proof of Wetterich-Morris equation (FRGE),

$$
\partial_{t} \Gamma_{N}[\mathbb{X}]=\frac{1}{2} \operatorname{STr}\left(\frac{\partial_{t} R_{N}}{\operatorname{Hess} \Gamma_{N}[\mathbb{X}]+R_{N}}\right)
$$

determines the algebra that governs the geometric (Neumann) series in the Hessian of Γ_{N} [Benedetti, Groh, Machado, Saueressig, JHEP 2011] appearing in the RHS - EEichhorn, Koslowski, Phys. Rev. D '13] oriented us to find some coupling scalings and we adopted their RG-time parameter $t=\log N$, but the proof of the FRGE dictates a different algebra and we follow that, not the algebra in op. cit.
β-equations found for a sextic truncation (48 operators) of $2 \mathrm{Mm}^{\prime} \mathrm{s}$. For the unique real fixed point g^{*} leading to a single relevant direction (a single positive e.v. of $\left.-\left.\left(\partial \beta_{i} / \partial g_{j}\right)_{i, j}\right|_{g^{*}}\right)$ yields a (R_{N}-dependent but accurate) value

Top-down (uniqueness of the algebraic structure)

Lett. Math. Phys. 112, 58 (2022)

- write the FRGE and solve for the algebra $\left(\mathcal{A}_{n, N}, \star\right)$, where $\operatorname{STr}=\operatorname{Tr}_{M_{n}\left(\mathcal{A}_{n, N}\right)}$
- assume an expansion of its rhs in unitary-invariant operators
- impose the one-loop structure and solve for the algebra $\mathcal{A}_{n, N}$ (see left column) - determine from it the algebra that computes Wetterich equation; it is unique and the one reported in [CP 2007. 10914], i.e. $\mathcal{A}_{n, N}=\left(\mathbb{C}_{\langle n\rangle}^{(N)} \otimes \mathbb{C}_{\langle n\rangle}^{(N)}\right) \oplus\left(\mathbb{C}_{\langle n\rangle}^{(N)} \boxtimes \mathbb{C}_{\langle n\rangle}^{(N)}\right)$ (for vector spaces \boxtimes is just the tensor product, but in the presence of a product on $\mathcal{A}_{n, N}$, these signs are different) whose product, for P, Q, U, W words on the matrices, reads:

$$
\begin{align*}
& (U \otimes W) \star(P \otimes Q)=P U \otimes W Q \tag{1a}\\
& (U \boxtimes W) \star(P \otimes Q)=U \boxtimes P W Q \tag{1b}\\
& (U \otimes W) \star(P \boxtimes Q)=W P U \boxtimes Q \tag{1c}\\
& (U \boxtimes W) \star(P \boxtimes Q)=\operatorname{Tr}(W P) U \boxtimes Q \tag{1d}
\end{align*}
$$

the supertrace is $\operatorname{Tr}_{M_{n}\left(\mathcal{A}_{n, N}\right)}=\operatorname{Tr}_{n} \otimes \operatorname{Tr}_{\mathcal{A}_{n, N}}$ where
$\operatorname{Tr}_{\mathcal{A}_{n, N}}(P \otimes Q)=\operatorname{Tr} P \cdot \operatorname{Tr} Q \quad$ and $\quad \operatorname{Tr}_{\mathcal{A}_{n, N}}(P \boxtimes Q)=\operatorname{Tr}(P Q)$

What is new in this framework?

- New is the algebra (1) above \nearrow without which the β-functions cannot be correctly computed. We now interpret this algebra. Let $\mathbb{X}=\left(X_{1}, \ldots, X_{n}\right) \in M_{N}(\mathbb{C})_{\text {s.a }}^{n}$ and $\mathbb{C}_{\langle n\rangle}^{(N)}=\mathbb{C}\langle\mathbb{X}\rangle$ or «words». The noncommutative derivative $\partial_{X}: \mathbb{C}_{\langle n\rangle} \rightarrow \mathbb{C}_{\langle n\rangle}^{\otimes 2}$ sums over replacements of X in a word by \otimes, except at the ends of the word, where one adds 1:

$$
\partial_{A}(P A A R)=P \otimes A R+P A \otimes R \quad \text { but } \quad \partial_{A}(A L G E B R A)=1 \otimes L G E B R A+A L G E B R \otimes 1
$$

Also ∂_{A} on traces yields the cyclic derivative: $\partial_{A} \operatorname{Tr}(P A A R)=A R P+R P A$, for instance. The noncommutative-Hessian is the matrix with entries $\operatorname{Hess}_{a, b} \operatorname{Tr} W=\partial_{X_{a}} \partial_{X_{b}} \operatorname{Tr} W$. Then $\left[\Gamma_{N}^{(2)}\right]{ }^{* k}=$ $\left[\text { Hess } \Gamma_{N}\right]^{* k}$ in the Neumann expansion is computed using the algebra (1)

$$
\begin{aligned}
& \text { Example. Hess }\{\operatorname{Tr}(A B A B)\} \text { : }
\end{aligned}
$$

Hermitian 3MM

$$
\operatorname{Hess}_{I, J} O_{1}=\delta_{I}^{J} \delta_{I}^{A} \bar{g}_{1}\{\underbrace{\operatorname{Tr}\left(A^{2} / 2\right) \cdot\left[1_{N} \otimes 1_{N}\right]}_{\swarrow}+\underbrace{A \boxtimes A}_{\searrow<}\}
$$

Filled (resp. white) ribbons are contracted (resp. uncontracted) in the 1-loop. By (1),

$$
\text { Hess } O_{2}=\bar{g}_{2}\left[\begin{array}{ccc}
0 & C \otimes 1_{N} & B \otimes 1_{N} \\
1_{N} \otimes C & 0 & A \otimes 1_{N} \\
1_{N} \otimes B & 1_{N} \otimes A & 0
\end{array}\right] \Rightarrow\left[\text { Hess } O_{2}\right]^{+2}=\bar{\delta}_{2}^{2}\left[\begin{array}{c}
\overbrace{C \otimes C}+\overbrace{B \otimes B}^{\overbrace{i}} \\
A \otimes B \\
A \otimes C
\end{array}\right.
$$

Extracting coefficients

$\left[\bar{g}_{1} \bar{g}_{2}\right] \operatorname{Tr}_{M_{3}(A)}\left\{\right.$ Hess $\left.O_{1} \star[\text { Hess O2 }]^{+2}\right\}=\operatorname{Tr}\left(A^{2} / 2\right) \times\left[(\operatorname{TrC})^{2}+(\operatorname{Tr} B)^{2}\right]+\operatorname{Tr}(A C A C+A B A B)$, which are effective vertices of the four one-loop graphs that can be formed with the contractions of (the filled ribbon half-edges of) any of $\left\{\frac{\downarrow}{\square}, ~\right\}$ with any of $\{\mathbb{\nearrow}, \gg<\}$.

