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Abstract
We report a new functional renormalization framework for an ample variety of matrix models (MM)

Z =
Z

MN(C)n
s.a

dµGAUSS(X) exp[−SINT(X)] with dµGAUSS(X) = CN ∏n
j=1 e−N Tr(X2

i /2)(dXi)LEBESGUE Tr(1) = N

namely, we allow several random Hermitian matrices X = (X1, . . . , Xn) to interact via SINT(X) = Tr(V1)× · · · × Tr(Vk), for certain noncommu-
tative polynomials V1, . . . , Vk ∈ C⟨n⟩ in the n matrices. For n = 2, an example of operators is:

g1 Tr(ABBBAB) ↔ ḡ1 g2 Tr⊗2(AABABA ⊗ AA) ↔
g2

(cylinder with labelled boundary).

We addressed the Wetterich-Morris equation both in top-down and bottom-up directions (as a formal series; for the outlook: put bounds).

Matrix models and renormalization

non-perturbative

[Brézin, Zinn-Justin, Phys. Lett. B ‘92]

FRGE 1MM

[Eichhorn, Koslowski, PRD 2013]

FRGE multi-MM

[CP AHP 2021, 2007.10914]

Proof of uniqueness

[CP LMP 2022 2111.02858]

FRGE: ABAB 2MM

[Eichhorn, Pereira, Pithis JHEP 2020, 2009.05111]

Comment on “FRGE: ABAB 2MM”
[CP JHEP 2021, 2102.06999]
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Bottom-up (finding the algebraic structure) Ann. Henri Poincaré 22 (2021), 3095–3148

the proof of Wetterich-Morris equation (FRGE),
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determines the algebra that governs the geometric (Neumann) series in the
Hessian of ΓN [Benedetti, Groh, Machado, Saueressig, JHEP 2011] appearing in the RHS

[Eichhorn, Koslowski, Phys. Rev. D ‘13] oriented us to find some coupling scalings and
we adopted their RG-time parameter t = log N, but the proof of the FRGE

dictates a different algebra and we follow that, not the algebra in op. cit.
β-equations found for a sextic truncation (48 operators) of 2MM’s. For the
unique real fixed point g∗ leading to a single relevant direction (a single
positive e.v. of −(∂βi/∂gj)i,j|g∗) yields a (RN-dependent but accurate) value

g∗
A4 = 1.002 ×


g∗

A4|[Kazakov-Zinn-Justin, Nucl. Phys. B ‘99]

�

Top-down (uniqueness of the algebraic structure) Lett. Math. Phys. 112, 58 (2022)

write the FRGE and solve for the algebra (An,N, ⋆), where STr = TrMn(An,N)

assume an expansion of its rhs in unitary-invariant operators
impose the one-loop structure and solve for the algebra An,N (see left column)
determine from it the algebra that computes Wetterich equation; it is unique
and the one reported in [CP 2007.10914], i.e. An,N = (C

(N)
⟨n⟩ ⊗ C

(N)
⟨n⟩ )⊕ (C

(N)
⟨n⟩ ⊠C

(N)
⟨n⟩ )

(for vector spaces ⊠ is just the tensor product, but in the presence of a product
on An,N, these signs are different) whose product, for P, Q, U, W words on the
matrices, reads:

(U ⊗ W) ⋆ (P ⊗ Q) = PU ⊗ WQ (1a)
(U ⊠W) ⋆ (P ⊗ Q) = U ⊠ PWQ (1b)
(U ⊗ W) ⋆ (P ⊠ Q) = WPU ⊠ Q (1c)
(U ⊠W) ⋆ (P ⊠ Q) = Tr(WP)U ⊠ Q (1d)

the supertrace is TrMn(An,N) = Trn ⊗TrAn,N where

TrAn,N(P ⊗ Q) = Tr P · Tr Q and TrAn,N(P ⊠ Q) = Tr(PQ)

What is new in this framework?
New is the algebra (1) above ↗ without which the β-functions cannot be correctly computed. We
now interpret this algebra. Let X = (X1, . . . , Xn) ∈ MN(C)n

s.a and C
(N)

⟨n⟩ = C⟨X⟩ or «words» . The
noncommutative derivative ∂X : C⟨n⟩ → C⊗2

⟨n⟩ sums over replacements of X in a word by ⊗, except at
the ends of the word, where one adds 1:

∂A(PAAR) = P ⊗ AR + PA ⊗ R but ∂A(ALGEBRA) = 1 ⊗ LGEBRA + ALGEBR ⊗ 1 .

Also ∂A on traces yields the cyclic derivative: ∂A Tr(PAAR) = ARP + RPA, for instance. The
noncommutative-Hessian is the matrix with entries Hessa,b Tr W = ∂Xa∂Xb Tr W. Then [Γ(2)

N ]⋆k =
[Hess ΓN]⋆k in the Neumann expansion is computed using the algebra (1)
EXAMPLE. Hess{Tr(ABAB)}:

�
∂A ◦ ∂A ∂A ◦ ∂B

∂B ◦ ∂A ∂B ◦ ∂B

�
Tr(

z }| {
ABAB) = 2

� z }| {
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z }| {
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ḡ1

ḡ3
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ḡ1

ḡ3
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Fig. 1 How the one-loop structure of the FRGE is encoded in Mn, (An,N, ⋆).
Left map: Unrenormalized interactions ḡi appearing in a k-th power of the Hessian (simplified).

Right map: The contribution to the βw1|w2-function, w1, w2 formed by reading off the legs with the arrows.
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ḡ1

ḡ2
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Fig. 2 Examples of graphs. From left to right: a graph of a 4-matrix model whose effective vertex is Tr(BDBD7)Tr(A3DACDBACDADB).
Next two graphs are both 1-loop (in the QFT sense) but only the one in the middle also in the topological sense. The latter is a

contribution to Hessa,b O1 ⋆ Hessb,c O2 ⋆ Hessc,d O3 ⋆ Hessd,a O4

Why a new framework? J. High Energ. Phys. 07(2021)42

[Eichhorn, Koslowski, Phys. Rev. D ‘13]’s approach is enough to treat 1MM’s, but that approach
projects out information needed for multimatrix models. Part of that recipe was used
in [Eichhorn-Pereira-Pithis JHEP 2020, 2009.05111] to address the FRG for the ABAB-model, computing
it on diagonal matrices; this leads to a βABAB-function (∼ g2

ABAB) that does not have the
one-loop structure independently from the regulator, and cannot follow from FRGE, if that β
function would trully describe the full ensemble (as claimed by op. cit.)
our new framework allows us to compute β-functions of the full ensemble MN(C)2

s.a, and
not only on subspaces of commuting matrices: (modulo η = ∂tZ-coeffs, double-traces and cubic terms)

β(gABBA)− gABBA(2η + 1) ∼ gAAAA × gABBA| {z }+ gBBBB × gABBA| {z }+ (gABAB)
2

| {z } + (gABBA)
2

| {z }

Hermitian 3MM Lett. Math. Phys. 112, 58 (2022)

BABY-EXAMPLE: Take operators: O1 =
ḡ1
2 [Tr(A2/2)]2 and O2 = ḡ2 Tr(ABC). Then

HessI,J O1 = δ
J
I δA

I ḡ1{Tr(A2/2) · [1N ⊗ 1N]| {z }+ A ⊠ A| {z }} .

Filled (resp. white) ribbons are contracted (resp. uncontracted) in the 1-loop. By (1),

Hess O2 = ḡ2




0 C ⊗ 1N B ⊗ 1N

1N ⊗ C 0 A ⊗ 1N

1N ⊗ B 1N ⊗ A 0


⇒[Hess O2]

⋆2 = ḡ2
2

"

..
z }| {
C ⊗ C +

..
z }| {
B ⊗ B B ⊗ A C ⊗ A

A ⊗ B A ⊗ A + C ⊗ C C ⊗ B
A ⊗ C B ⊗ C B ⊗ B + A ⊗ A

#

Extracting coefficients
[ḡ1ḡ2]TrM3(A){Hess O1 ⋆ [Hess O2]⋆2} = Tr(A2/2)×

�
(Tr C)2 + (Tr B)2�+ Tr(ACAC + ABAB) ,

which are effective vertices of the four one-loop graphs that can be formed with the con-
tractions of (the filled ribbon half-edges of) any of { .. , .. } with any of { , }.


