

Universal quantities at high orders of the derivative expansion

Gonzalo De Polsi

Facultad de Ciencias, Universidad de la Republica. gdepolsi@fisica.edu.uy

General picture of critical phenomena

Computing with the derivative expansion

Results and behavior of the DE

Conclusions

De Polsi – July 28th

GENERAL PICTURE OF CRITICAL PHENOMENA

Temperature

Critical Phenomena

1 Pa

-250°C -200°C -150°C -100°C -50°C 0°C

50°C 100°C 150°C 200°C 250°C 300°C 350°C 400°C 450°C

10 µbar

GENERAL PICTURE OF CRITICAL PHENOMENA

GENERAL PICTURE OF CRITICAL PHENOMENA

Critical Phenomena

Derivative Expansion

Results and DE behavior Conc

Conclusions

COMPUTING WITH THE DERIVATIVE EXPANSION

Critical Phenomena

Derivative Expansion Results and DE behavior Conclusions

COMPUTING WITH THE DERIVATIVE EXPANSION

$$\Theta_k^n(q^2) = Z_k k^2 \alpha \left(1 - \frac{q^2}{k^2}\right)^n \theta \left(1 - \frac{q^2}{k^2}\right)$$
$$E_k(q^2) = Z_k k^2 \alpha e^{-q^2/k^2}$$
$$W_k(q^2) = Z_k k^2 \alpha \frac{q^2/k^2}{e^{q^2/k^2} - 1}$$

Strict ANSATZ Full ANSATZ Essential Scheme*

α-DEPENDENT RESULTS (AND REGULATOR FAMILY)

SPIRIT: REGULATOR-INDEPENDCY \checkmark PICK THEM WHEN LESS R_k DEPENDENCE

Set of Regs. Impl. DE Ansatz Compute RG flow / Quantities **PMS** iNeeded! ¿Why? [3]

[2] Gonzalo De Polsi, Ivan Balog, Matthieu Tissier, and Nicolás Wschebor. Phys. Rev. E **101**, 042113 – (2020)

[3] Gonzalo De Polsi and Nicolás Wschebor.
arXiv:2204.09170 – (2022) (Soon to appear in PRE)
Also Wschebor's Talk.

The truth about the breaded-beef...

De Polsi – July 28th

Critical Phenomena Derivative Expansion Results and DE behavior Conclusions RESULTS AND BEHAVIOUR OF THE DE

On the dependence on the regulator (α)...

PMS IS CRUCIAL (WE KNOW WHY*) BEHAVES AS EXPECTED!

On the dependence on the regulator (α)...

On the precisión of the results...

On the precisión of the results...

	ν	η	ω
LPA	0.7090	0	0.672
$O(\partial^2)$	0.6725(52)	0.0410(59)	0.798(34)
$O(\partial^4)$	0.6716(6)	0.0380(13)	0.791(8)
CB (2016)	0.6719(12)	0.0385(7)	0.811(19)
CB (2019)	0.6718(1)	0.03818(4)	0.794(8)
6-loop $d = 3$	0.6703(15)	0.0354(25)	0.789(11)
ϵ -expansion, ϵ^5	0.6680(35)	0.0380(50)	0.802(18)
ϵ -expansion, ϵ^6	0.6690(10)	0.0380(6)	0.804(3)
MC+High-T. (2006)	0.6717(1)	0.0381(2)	0.785(20)
MC (2019)	0.67169(7)	0.03810(8)	0.789(4)

	g_4	r_6	r_8	r_{10}
LPA	25.7	1.91	1.79	-9.47
$O(\partial^2)$	20.8(12)	1.96(1)	$1.64~(4^*)$	-14.2(15)
$O(\partial^4)$	21.18(10)	1.972(5)	1.80(6)	-13.5(4)
High-T	21.14(6)	1.950(15)	1.44(10)	-13(7)
d = 3 series	21.16(5)	1.967	1.641	
ϵ -expansion	21.5(4)	1.969(12)	2.1 (9)	

A. Pelissetto and E. Vicari, Physics Reports 368, 549, (2002).

$$g_4 = -3 \frac{U''(0)}{(U'(0))^{2-d/2} Z(0)^{d/2}}$$

$$r_{6} = \frac{5}{3} \frac{U^{(3)}U^{(1)}}{(U^{(2)})^{2}}$$
$$r_{8} = \frac{35}{9} \frac{U^{(4)}(U^{(1)})^{2}}{(U^{(2)})^{3}}$$
$$r_{10} = \frac{35}{3} \frac{U^{(5)}(U^{(1)})^{3}}{(U^{(2)})^{4}}$$

LPA

 $O(\partial^2)$

 $O(\partial^4)$

RESULTS AND BEHAVIOUR OF THE DE

On the precisión of the results...

On the precisión of the results...

[eps, d=3] A. Butti and F. Parisen Toldin
Nuclear Physics B 704 , 527, (2005).

[MC] Martin Hasenbusch Phys. Rev. B 105, 054428, (2022)

	ν	η	ω
LPA	0.839	0	0.770
$O(\partial^2)$	0.782(8)	0.0364(52)	0.724(34)
$O(\partial^4)$	0.7797(9)	0.0338(11)	0.760(18)
Six-loop, $d = 3$	0.764(2)	0.030(1)	
ϵ expansion, ϵ^5	0.764(6)	0.034(2)	
MC	0,7808(6)	0,03397(9)	0,754(7)
Large N	0.71(7)	0.031(15)	0.51(6)

	[71]	LPA	$\mathcal{O}(\partial^2)$	$\mathcal{O}(\partial^4)$
g_4^+	15.74(2)	17.9	15.8(5)	15.77(3)
r_6	15.6(1) 1.72(2)	1.65	1.73(2)	1.739(2)
r_8	1.70(1) -1(3)	0.04	$0.09(2^*)$	0.16(2)
r_{10}	-0.3(5) 3(8)	-3.0	-7.6(16)	-7.0(6)

$$g_4 = -3 \frac{U''(0)}{(U'(0))^{2-d/2} Z(0)^{d/2}}$$

$$r_{6} = \frac{5}{3} \frac{U^{(3)}U^{(1)}}{(U^{(2)})^{2}}$$
$$r_{8} = \frac{35}{9} \frac{U^{(4)}(U^{(1)})^{2}}{(U^{(2)})^{3}}$$
$$r_{10} = \frac{35}{3} \frac{U^{(5)}(U^{(1)})^{3}}{(U^{(2)})^{4}}$$

$$N = 5$$

On the precisión of the results

[eps, d=3] A. Butti and F. Parisen Toldin Nuclear Physics B **704**, 527, (2005).

[MC] Martin Hasenbusch Phys. Rev. B 105, 054428, (2022)

ν	η	ω
0.839	0	0.770
0.782(8)	0.0364(52)	0.724(34)
0.7797(9)	0.0338(11)	0.760(18)
0.764(2)	0.030(1)	
0.764(6)	0.034(2)	
0,7808(6)	0,03397(9)	0,754(7)
0.71(7)	0.031(15)	0.51(6)
	ν 0.839 0.782(8) 0.7797(9) 0.764(2) 0.764(6) 0,7808(6) 0.71(7)	ν η 0.83900.782(8)0.0364(52)0.7797(9)0.0338(11)0.764(2)0.030(1)0.764(6)0.034(2)0,7808(6)0,03397(9)0.71(7)0.031(15)

On the precisión of the results

• The small parameter ($\sim 1/4$) of the DE allows for the introduction of error bars and PMS is crucial.

Results and DE behavior

- Evidence shows that these error bars are consistent (and self-consisted!).
- We have used it to compute quantities with the highest quality and even quantities not accesible to fixed-point methods.
- DE produces results with a precision comparable to methods taking five orders of magnitude of CPU time! $\left(\frac{\tau_{CPU}\left(\frac{CB}{MC}\right)}{\tau_{CPU}\left(\mathcal{O}(\partial^4)\right)} > 10^5\right)$.

Conclusions

