A functional RG perspective on the 2d Hubbard model

Sabine Andergassen

Berlin, 28.7.2022

The Hubbard model as paradigm model

represents the fundamental model for interacting quantum systems and electronic correlations

$$H = -t \sum_{\langle ij \rangle \sigma} \left(\hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + h.c. \right) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

Generalizations and extensions:

- other lattice geometries (in particular honeycomb, triangular, Kagome)
- attractive Hubbard model \rightarrow Poster by A.Al-Eryani
- multi-orbital models
- models with non-local interactions

Reviews appeared in ARCMP: Arovas et al. (2021), and from a computational perspective: Qin et al. (2021)

PHYSICAL REVIEW X 5, 041041 (2015)

Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms

J. P. F. LeBlanc,¹ Andrey E. Antipov,¹ Federico Becca,² Ireneusz W. Bulik,³ Garnet Kin-Lic Chan,⁴ Chia-Min Chung,⁵ Youjin Deng,⁶ Michel Ferrero,⁷ Thomas M. Henderson,^{3,8} Carlos A. Jiménez-Hoyos,³ E. Kozik,⁹ Xuan-Wen Liu,⁶ Andrew J. Millis,¹⁰ N. V. Prokof'ev,^{11,12} Mingpu Qin,¹³ Gustavo E. Scuseria,^{3,8} Hao Shi,¹³ B. V. Svistunov,^{11,12} Luca F. Tocchio,² I. S. Tupitsyn,¹¹ Steven R. White,⁵ Shiwei Zhang,¹³ Bo-Xiao Zheng,⁴ Zhenyue Zhu,⁵ and Emanuel Gull^{1,*}

ground-state and excited-state properties

(energies, double occupancies, and Matsubara self-energies) in various regimes

PHYSICAL REVIEW X 5, 041041 (2015)

Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms

J. P. F. LeBlanc,¹ Andrey E. Antipov,¹ Federico Becca,² Ireneusz W. Bulik,³ Garnet Kin-Lic Chan,⁴ Chia-Min Chung,⁵ Youjin Deng,⁶ Michel Ferrero,⁷ Thomas M. Henderson,^{3,8} Carlos A. Jiménez-Hoyos,³ E. Kozik,⁹ Xuan-Wen Liu,⁶ Andrew J. Millis,¹⁰ N. V. Prokof'ev,^{11,12} Mingpu Qin,¹³ Gustavo E. Scuseria,^{3,8} Hao Shi,¹³ B. V. Svistunov,^{11,12} Luca F. Tocchio,² I. S. Tupitsyn,¹¹ Steven R. White,⁵ Shiwei Zhang,¹³ Bo-Xiao Zheng,⁴ Zhenyue Zhu,⁵ and Emanuel Gull^{1,*}

ground-state and excited-state properties

(energies, double occupancies, and Matsubara self-energies) in various regimes

PHYSICAL REVIEW X 5, 041041 (2015)

Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms

J. P. F. LeBlanc,¹ Andrey E. Antipov,¹ Federico Becca,² Ireneusz W. Bulik,³ Garnet Kin-Lic Chan,⁴ Chia-Min Chung,⁵ Youjin Deng,⁶ Michel Ferrero,⁷ Thomas M. Henderson,^{3,8} Carlos A. Jiménez-Hoyos,³ E. Kozik,⁹ Xuan-Wen Liu,⁶ Andrew J. Millis,¹⁰ N. V. Prokof'ev,^{11,12} Mingpu Qin,¹³ Gustavo E. Scuseria,^{3,8} Hao Shi,¹³ B. V. Svistunov,^{11,12} Luca F. Tocchio,² I. S. Tupitsyn,¹¹ Steven R. White,⁵ Shiwei Zhang,¹³ Bo-Xiao Zheng,⁴ Zhenyue Zhu,⁵ and Emanuel Gull^{1,*}

Conclusion:

- all methods have difficulty in physically interesting intermediate coupling regime, close to half-filling
- understanding of dynamical correlation functions much less advanced than of ground-state properties

"Development of new methods, or improvement of existing methods to deal with this regime, is urgently needed."

PHYSICAL REVIEW X 11, 011058 (2021)

Tracking the Footprints of Spin Fluctuations: A MultiMethod, MultiMessenger Study of the Two-Dimensional Hubbard Model

Thomas Schäfer[®],^{1,2,3,*} Nils Wentzell[®],⁴ Fedor Šimkovic IV,^{1,2} Yuan-Yao He,^{4,5} Cornelia Hille[®],⁶ Marcel Klett,^{6,3} Christian J. Eckhardt[®],^{7,8} Behnam Arzhang,⁹ Viktor Harkov[®],^{10,11} François-Marie Le Régent[®],² Alfred Kirsch,² Yan Wang,¹² Aaram J. Kim[®],¹³ Evgeny Kozik[®],¹³ Evgeny A. Stepanov[®],¹⁰ Anna Kauch[®],⁷ Sabine Andergassen[®],⁶ Philipp Hansmann[®],^{14,15} Daniel Rohe[®],¹⁶ Yuri M. Vilk,¹² James P. F. LeBlanc[®],⁹ Shiwei Zhang[®],^{4,5} A.-M. S. Tremblay[®],¹² Michel Ferrero[®],^{1,2} Olivier Parcollet[®],^{4,17} and Antoine Georges[®],^{1,2,4,18}

half-filled Hubbard model at weak coupling as testing ground

PHYSICAL REVIEW X 11, 011058 (2021)

Tracking the Footprints of Spin Fluctuations: A MultiMethod, MultiMessenger Study of the Two-Dimensional Hubbard Model

Thomas Schäfer[®],^{1,2,3,*} Nils Wentzell[®],⁴ Fedor Šimkovic IV,^{1,2} Yuan-Yao He,^{4,5} Cornelia Hille[®],⁶ Marcel Klett,^{6,3} Christian J. Eckhardt[®],^{7,8} Behnam Arzhang,⁹ Viktor Harkov[®],^{10,11} François-Marie Le Régent[®],² Alfred Kirsch,² Yan Wang,¹² Aaram J. Kim[®],¹³ Evgeny Kozik[®],¹³ Evgeny A. Stepanov[®],¹⁰ Anna Kauch[®],⁷ Sabine Andergassen[®],⁶ Philipp Hansmann[®],^{14,15} Daniel Rohe[®],¹⁶ Yuri M. Vilk,¹² James P. F. LeBlanc[®],⁹ Shiwei Zhang[®],^{4,5} A.-M. S. Tremblay[®],¹² Michel Ferrero[®],^{1,2} Olivier Parcollet[®],^{4,17} and Antoine Georges[®],^{1,2,4,18}

half-filled Hubbard model at weak coupling as testing ground

→ comparative study of state-of-the-art quantum many-body methods:

- benchmark methods (dQMC)
- (dynamical) mean-field methods
- cluster extensions of DMFT
- vertex-based extensions of DMFT
- other approaches (TPSC, fRG, PA)

PHYSICAL REVIEW X 11, 011058 (2021)

Tracking the Footprints of Spin Fluctuations: A MultiMethod, MultiMessenger Study of the Two-Dimensional Hubbard Model

pseudogap opening due to AF fluctuations

PHYSICAL REVIEW X 11, 011058 (2021)

Tracking the Footprints of Spin Fluctuations: A MultiMethod, MultiMessenger Study of the Two-Dimensional Hubbard Model

Thomas Schäfer[®],^{1,2,3,*} Nils Wentzell[®],⁴ Fedor Šimkovic IV,^{1,2} Yuan-Yao He,^{4,5} Cornelia Hille[®],⁶ Marcel Klett,^{6,3} Christian J. Eckhardt[®],^{7,8} Behnam Arzhang,⁹ Viktor Harkov[®],^{10,11} François-Marie Le Régent[®],² Alfred Kirsch,² Yan Wang,¹² Aaram J. Kim[®],¹³ Evgeny Kozik[®],¹³ Evgeny A. Stepanov[®],¹⁰ Anna Kauch[®],⁷ Sabine Andergassen[®],⁶ Philipp Hansmann[®],^{14,15} Daniel Rohe[®],¹⁶ Yuri M. Vilk,¹² James P. F. LeBlanc[®],⁹ Shiwei Zhang[®],^{4,5} A.-M. S. Tremblay[®],¹² Michel Ferrero[®],^{1,2} Olivier Parcollet[®],^{4,17} and Antoine Georges[®],^{1,2,4,18}

Functional RG (fRG)

Physics Reports Volume 910, 10 May 2021, Pages 1-114

The nonperturbative functional renormalization group and its applications

N. Dupuis ^a $\stackrel{\circ}{\sim}$ $\stackrel{\boxtimes}{\sim}$, L. Canet ^b, A. Eichhorn ^{c, d}, W. Metzner ^e, J.M. Pawlowski ^{d, f}, M. Tissier ^a, N. Wschebor ^g

ScienceDirect

www.elsevier.com/locate/nuclphysb

Renormalization in condensed matter: Fermionic systems – from mathematics to materials

Manfred Salmhofer

Salmhofer (1999); Berges et al., PR (2002); Kopietz et al., (2010); Metzner et al., RMP (2012)

- divergent correl. length at continuous phase transitions hinders finite-size scaling
- energetic differences of competing phases often very small
- crossover regions with different physical properties
- approximate methods tend to break symmetries and overemphasize ordered phases

The Hubbard model at half filling

weak coupling

ground state is insulating (charge gap

for any interaction strength U) with

AF Neel order

 \rightarrow crossover at U~4t

strong coupling

Mott gap

Halboth and Metzner, PRL (2000); Huseman and Salmhofer, PRB (2009); Eichhorn *et al.*, PRE (2013); Lauscher *et al.*, PRD (2000)

at moderate interaction strength !

Zanchi and Schulz, PRB (2000); Halboth and Metzner, PRL&PRB (2000); Honerkamp and Salmhofer, PRL (2001); Honerkamp *et al.*, PRB (2001)

at moderate interaction strength !

convincing evidence established also by other methods

Kyung et al., PRB (2003); Raghu *et al.*, PRB (2010); Deng *et al.*, EPL (2015); Simkovic *et al.*, PRB (2021)

T=0

ground state identified from divergences of two-particle vertex and susceptibilities at some critical cutoff

T>0

pseudo-critical T in a temperature flow (≠ true critical T)

Note:

- that order parameter fluctuations suppressing actual transition T in 2d not captured by 2. order truncation
- also static approximation insufficient beyond weak coupling regime

T>0

<u>Note</u>:

- that order parameter fluctuations suppressing actual transition T in 2d not captured by 2. order truncation
- also static approximation insufficient beyond weak coupling regime

T>0

<u>Note</u>:

- that order parameter fluctuations suppressing actual transition T in 2d not captured by 2. order truncation
- also static approximation insufficient beyond weak coupling regime

→ development of improved vertex parametrizations

Order parameters and critical temperatures

symmetry breaking such as magnetic order or superconductivity associated with divergence at pseudo-critical scale

→ to continue flow, order parameter needs to be implemented:

Fermionic flows

including tiny symmetry breaking field that develops into a finite order parameter below critical scale

Eberlein and Metzner, PRB (2014)

Flows with order-parameter fields

flow of collective bosonic order parameter fields obtained by Hubbard-Stratonovich decoupling

Baier et al., PRB (2004); Krahl et al., PRB (2009); Friederich et al., PRB (2010&11)

Renormalized mean-field theory

combination of flow equations at high scales with mean-field approximation at low scales (fRG+MF)

Reiss et al., PRB (2007); Wang et al., PRB (2014); Yamase et al., PRL (2016)

Order parameters and critical temperatures

Amplitudes of magnetic and pairing gap

mean-field theory treatment of gap formation below energy scale of spontaneous symmetry breaking

full frequency dependence of interaction vertices and gap functions confirms important previous results in static approximation !

Vilardi et al., PRB (2020)

Order parameters and critical temperatures

Phase diagram

- sizable doping regime with robust pairing coexisting with Neel or incomm.AF
- Kosterlitz-Thouless determined from superfluid phase stiffness

→ superconducting dome centred around 15% hole doping

Establishing a new level of accuracy

fRG in first implementation provides

- possibility to scan parameter space due to reduced numerical effort
- physical picture and *qualitative* agreement with experiments

Algorithmic advancements

- efficient parametrization of vertex function
- multiloop extension

Application to 2D Hubbard model

- → quantitative description at weak-to-intermediate couplings
- → towards strong coupling by combination with DMFT

→ unbiased and optimized approach towards *quantitative* predictions

less compact **n**c) generate $_{r}$) of the dia-

fer dependence $(k_1 + k_3) k_2 - k_1$ flow equations. The equations (31a) to (31c) generate

ermionic hereiter [28] diffet load stand s

Multiloop extension

- improves truncation by partial inclusion of higher order vertex contributions
- recovers parquet approximation (PA) at infinite loop order
 - → solution satisfies exact relations and is *independent* of cutoff !

- strong suppression of pseudocritical temperature
- main effect already at 2ℓ , which appears to be almost at loop convergence

Kugler and von Delft, PRL (2018); Tagliavini et al., SciPost Phys. (2019)

Multiloop fRG results

Magnetic susceptibility at half filling

- AF peak dominant at half-filling
- excellent agreement with PA and determinant dQMC \rightarrow quantitative fRG !

Hille et al., PRReserach (2020)

Multiloop fRG results

Evolution with interaction

deviations with increasing interaction (corrections to dQMC of 4. order)

→ convergence becomes more challenging

Multiloop fRG results

Magnetic susceptibility at finite doping

very high accuracy, despite convergence in form factors not fully achieved

Susceptibilities as a function of doping

- AF fluctuations dominate → become incommensurate at larger doping
- superconducting d-wave fluctuations expected to grow at lower T
- large effect of multiloop corrections included in 2ℓ , correct to $O(U^3)$

Fluctuation diagnostics

$$\chi^{X}(\mathbf{q},i\omega) = \sum_{i\nu} \Pi^{X}(\mathbf{q},i\omega,i\nu) + \sum_{i\nu,i\nu'} \Pi^{X}(\mathbf{q},i\omega,i\nu) \mathbf{V}^{X}(\mathbf{q},i\omega,i\nu,i\nu') \Pi^{X}(\mathbf{q},i\omega,i\nu')$$
$$:= \chi^{X,0}(\mathbf{q},i\omega) + \left[\chi^{X,0} \mathbf{V}^{X} \chi^{X,0}\right](\mathbf{q},i\omega)$$

magnetic channel vertex driven, in particular by crossed p-h channel

Gunnarsson et al., PRL (2015)

Fluctuation diagnostics

underlying mechanism can be understood already at 2. order of self-energy:

Ornstein-Zernike form of spin susceptibility

$$\chi_{\rm sp}(\mathbf{q}, i\Omega_n = 0) = \frac{A}{(\mathbf{q} - \mathbf{Q})^2 + \xi^{-2}}$$

predicts spectral gap for momenta close to the hot spots

Vilk et al., JdP (1997); Wu et al., PRB (2017); Hille et al., PRReasearch (2020)

2ℓ fRG results

→ Poster H. Braun

Pseudogap opening

for small T quasi-particle weight determined by slope of $\text{Im}\Sigma$ at lowest frequencies

- momentum-selective pseudogap opening
- fluctuation diagnostics:
 (incomm.) AF fluctuations
 responsible for pseudogap
 opening also at finite doping

→ pseudogap driven by long-ranged AF fluctuations

Extension to correlated starting points

exploit freedom of choice for cutoff and $\mathcal{S}_{\mathrm{initial}}$

- → include correlation effects already in initial conditions
- reduce truncation error by starting 'closer' to final action

Wentzell et al., PRB (2015)

Starting from Dynamical Mean Field Theory (DMFT):

non-perturbative treatment of local correlations

- exact solution in the limit $d \to \infty$
- strong-coupling regime accessible

BUT lack of non-local spatial correlations

Metzner and Vollhardt, PRL (1989); Georges and Kotliar, PRB (1992)

(Il) DMF²RG results

Critical flow parameter for AF instability and maximal d-wave pairing interaction

- no major impact of channel interplay

→ d-wave pairing driven by (nonlocal) magnetic fluctuations

Vilardi et al., PRB (2019)

Summary and outlook

→ controlled numerical solutions in various regions of the phase diagram available

- → despite all progress, many open challenges remain:
 - precise locations of phase boundaries, in particular of d-wave superconductivity
 - extension to more orbitals and/or longer ranged interactions
 - real-time evolution and real frequency observables

Qin et al. (2021)

Thank you!

- A. Al-Eryani, H. Braun, K. Fraboulet, S. Heinzelmann, C. Hille, A. Tagliavini (Uni Tübingen)
- P. M. Bonetti, W. Metzner, T. Schäfer, C. Taranto, D. Vilardi

(MPI Stuttgart)

P. Chalupa, C. Eckhardt, K. Held, A. Kauch, A. Toschi

(TU Wien)

C. Honerkamp

(RWTH Aachen)

Y.-Y. He, N. Wentzell

(CCQ, Flatiron Institute)

D. Rohe

(FZJ)

F. Kugler

(Rutgers)

Single-boson exchange representation → Poster K. Fraboulet

Decomposition in terms of U-reducibility

Krien et al., PRB (2019)

$$U \pm \underbrace{\phi_{kk'}^{X}(q)}_{\text{2P-reducible}} = \underbrace{h_{k}^{X}(q) D^{X}(q) h_{k'}^{X}(q)}_{U\text{-reducible}} + \underbrace{\mathcal{R}_{kk'}^{X}(q)}_{U\text{-irreducible}}$$

 \rightarrow allows to

- simplify vertex complexity
- clearly identify collective excitations
- → extremely localised frequency structures in rest function at strong coupling

