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The framework: introduction & motivation

The framework of Background-Independent field quantization with
sequences of gravity-coupled approximants is based upon three
requirements for a quantization scheme:

(R1) Background Independence

(R2) Gravity-coupled approximants

(R3) N-type cutoffs

These three requirements are not logically independent. Next, we will
explain and motivate them in detail.
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(R1) Background Independence

Background structures (if they are employed) must be determined by
dynamical laws (self-consistence).
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(R2) Gravity-coupled approximants

By an approximant we understand a “quasi-physical” auxiliary system
consisting of a QM state Ψf with f < ∞ degrees of freedom and a
classical metric, denoted by

App(f) = Ψf ⊗metric .

When we invoke (R1) we obtain a quantum system on a self-consistent
background:

Appsc(f) = Ψsc
f ⊗self-consistent metric

f→∞−−−→ ΨQFT ⊗ self-consistent metric .
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Motivations for (R2) Gravity-coupled approximants

If approximants are physically realizable systems in their own right,
we enhance chances to find sequences which converge to physically
interesting limits.

Background Independence is a natural requirement.

Possibility of observable discreteness: experiment tells us that
Nature is actually better described by the approximant App(fObs),
rather then in the limit f → ∞.

Calculations which not invoke (R1) at the level of the regularized
system can lead to defective background structures such as seen in
the cosmological constant problem stemming from summing up
vacuum energies.

Maximilian Becker BI field quantization with sequences of gravity-coupled approximants



7/24

The framework N-sequences of gravity coupled approximants Summary

The cosmological constant problem stemming from
summing up vacuum energies

Astronomical observations give an experimental bound on the value of
the cosmological constant:

Λ

8πG
= ρvac +

Λb

8πG
≤ ρcrit ≈ 10−47GeV 4 .

For a basic theoretical estimate of ρvac assume. . .

. . .ϕ is a free & massless field of Euclidean (Minkowski) space

. . . the field to consist of a set of harmonic oscillator with zero point
energy 1/2ℏω and dispersion relation ω(p⃗) = |p⃗|
. . . the cutoff scale P at the Planck scale:

⇒ ρvac[gµν= δµν ] =
1

2

∫
|p⃗|≤P

d3p

(2π)3
|p⃗| ∼ P4 = m4

Pl = 1076GeV 4

This is a deviation theory-experiment of ∼ 123 digits!
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Motivations for (R2) Gravity-coupled approximants

This further motivates the inclusion of gravity into the physical
description of the approximants:
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(R3) N-type cutoffs
N-type cutoffs are a specific technical realization of (R2).

An N-type cutoff is a metric-independent regularization scheme for path
integrals of the type

Z =

∫
F

D(χ)e−S[χ] ,

constructed as follows. Let B = {wα( · ) | α ∈ I} be a basis of F . Let
N ∈ N (N ∈ [0,∞) is possible, too) and define

BN := {wα( · ) | α ∈ IN}

with B0 = ∅, B∞ = B, N2 > N1 ⇒ BN2 ⊃ BN1 . Then

{FN = spanBN}N∈N

is called an N-type cutoff. The regularized path integral is given by

ZN =

∫
FN

−D(χ)e−S[χ] .
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(R3) N-type cutoffs

The metric-independent N-type cutoff is usually constructed with the
eigenbasis of some metric-dependent self-adjoint operator, such as
K [ḡ ] = −□ḡ = −ḡµνD̄µD̄ν .

Consider its EV-problem and assume its spectrum to be discrete (e.g.,
when M compact):

K [ḡ ]wα[ḡ ](x) = λα[ḡ ]wα[ḡ ](x) , α ∈ I .

Then an N-type cutoff is given by

BN [ḡ ] := {wα[ḡ ]( · ) | α ∈ IN}

For example, for M = S2(r) one has with α = ℓ the EVs
λℓ[ḡ ] = ℓ(ℓ+ 1)/r2 with ℓ = 0, 1, 2, . . . and IN = {ℓ | ℓ ≤ N}.
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(R3) N-type cutoffs

The N-type cutoff regularizes traces over these Hilbert spaces as follows
(schematically for scalars here):

TrS[OS] =
∞∑
n=1

Dn∑
m=1

⟨nm|OS|nm⟩ ,

TrS → TrSN
,

∞∑
n=1

→
N∑

n=1

.

Note that the degrees of freedom become a function of N then:

f = TrS[1S] → f(N) = TrSN
[1SN

] < ∞ .

(and fully analogously for vectors and tensors).
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(R3) N-type cutoffs vs. P-type cutoffs

The familiar momentum-space cutoff is background-dependent. If the EV
λ = λα[ḡ ] ⇔ α = α[ḡ ](λ) is used as a label, one will have the basis

B[ḡ ] = {Wλ[ḡ ]( · ) | λ ∈ spec(K )} ,

with
Wλ[ḡ ](x) := wα[ḡ ](x)

∣∣∣
α=α[ḡ ](λ)

,

and regularization works via the momentum-cutoff P,

BP [ḡ ] = {Wλ[ḡ ]( · ) | λ ≤ P2} .

However, the ḡ -dependence in α = α[ḡ ](λ) can not be self-consistently
determined, and thus (R2) is violated!
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Scalar field on Sd(L)

Consider the 1L effective action induced from a free scalar field with
mass M and coupling ξ to gravity,

Γ[ḡ ] = SEH[ḡ ] + Γ1L[ḡ ] with Γ1L[ḡ ] =
1

2
Tr log(−□ḡ +M2 + ξḡ) .

On Sd(L), it is sufficient to consider the equations of motion

T̄ Γ[ḡ ] = 0 with T̄ = −2

∫
ddxḡµν(x)

δ

δḡµν(x)
.

Implementing an N-type cutoff one finds

T̄ Γ1L[ḡ ]N = TrN

[
−□ḡ + ξR̄

−□ḡ +M2 + ξR̄

]

=
N∑

n=1

Dn
En(L) + ξR̄(L)

En(L) +M2 + ξR̄(L)
=: Θeff

N (L) .
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Scalar field on S4(L)

Therewith, the equation of motion becomes

R̄(L) =
2d

d − 2
Λb − 16πG

(d − 2)vol[Sd(L)]
Θeff

N (L) ,

and its solution are the self-consistent radii Lsc(N; ξ,M,G ,Λb).

For d = 4 there exist no solutions for Λb = 0; and for 3/L2b = Λb > 0 and
M = 0 = ξ we have the self-consistent radii

Lsc(N)2 =
1

2
L2b

[
1 +

√
1 +

G

πL2b
f(N)

]
N→∞−−−−→ ∞ ,

where f(N) ≈ 1
12N

4 in leading order.

This is the opposite behavior as seen in the background-dependent
calculation. Here, we have no singularity, but rather a flat universe when

removing the cutoff: S4(Lsc(N))
N→∞−−−−→ R4.
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Scalar field on S4(L): another look at N vs. P
In general, we have the equation R = 4Λ = P4. From an N-type cutoff,
we can derive a “self-consistent” P-cutoff by

Psc(N)2 := EN(L
sc(N)) =

N(N + 3)

Lsc(N)2
N→∞−−−−→ (24π)1/2

mPl

NT
,

where NT = (12π)1/4
√
Lb/ℓPl . Thus, for an N-type cutoff we have

N → ∞ ̸⇔ P → ∞.

On the other hand, for a P-type cutoff we have P2 = EN(LRS) =
N(N+3)

L2
RS

,

where the rigid spacetime is needed to determine the wα from λ ≤ P2.
Thus, here one has N → ∞ ⇔ P → ∞.
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Scalar field on S4(L): micro states of dS space

This result gives furthermore insights into the micro states of dS space.
Therefore consider the Bekenstein-Hawking entropy of dS space (which is
a purely thermodynamical quantity):

S =
3π

GΛ
=

π

G
L2

=
π

G
Lsc(N)2 =

π

2G
L2b

[
1 +

√
1 +

G

πL2b
f(N)

]
.

Therewith, we have proven an instance of a “Λ-N -connection”:

Sobs =
3π

GΛobs
=

π

2G
L2b

[
1 +

√
1 +

G

πL2b
f(Nobs)

]
.

Universes with a strictly positive cosmological constant are described by a
quantum theory with only a finite number of degrees of freedom, and this
number is given by the Bekenstein-Hawking entropy of dS space.
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Vacuum fluctuations of the geometry

Let us repeat the analysis for the scalar, but this time for “full-fledged”
quantum gravity. Consider the standard BRST gauge-fixed “quantum
action”:

S [h, C̄ ,C ; ḡ ] = SEH[ḡ + h] + Sgf [h; ḡ ] + Sgh[h, C̄ ,C ; ḡ ] ,

where

Sgf [h; ḡ ] =
1

32πG

∫
ddx

√
ḡ ḡµν

(
Fαβ

µ [ḡ ]hαβ
)(
Fγδ

ν [ḡ ]hγδ
)
,

involves the differential operator Fαβ
µ [ḡ ] := δβµ ḡαγD̄γ − 1

2 ḡ
αβD̄µ and

further we have the concomitant ghost action

Sgh[h, C̄ ,C ; ḡ ] = −
√
2

∫
ddx

√
ḡ C̄µM [ḡ + h, ḡ ]µνC

ν

with the Faddeev-Popov operator M [ḡ + h, ḡ ]µν .
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Vacuum fluctuations of the geometry

For our purpose, let us consider the dynamical fields (hµν , C̄µ,C
µ) as

special sort of “matter” inhabiting the classical spacetime (M, ḡµν):

SM[h, C̄ ,C ; ḡ ] := S [h, C̄ ,C ; ḡ ]− SEH[ḡ ]

= SEH[ḡ + h]− SEH[ḡ ] + Sgf [h; ḡ ] + Sgh[h, C̄ ,C ; ḡ ]

= SFG[h; ḡ ] + SFgh[C̄ ,C ; ḡ ] + (linear) + O(3) ,

where we have expanded around (h = 0, C̄ = 0 = C ). Here, SFG denotes
the “Free Graviton” action and SFgh denotes the “Free ghost” action.
These are bilinear in the respective dynamical variables:

SFG[h; ḡ ] :=
1

2

∫
ddx

√
ḡ hµνK [ḡ ]µν

ρσhρσ

SFgh[C̄ ,C ; ḡ ] := Sgh[0, C̄ ,C ; ḡ ] = −
√
2

∫
ddx

√
ḡ C̄µM [ḡ , ḡ ]µνC

ν ,

with K [ḡ ]µν
ρσ = 1

16πG [−(D̄2 + 2Λb)Kµν
ρσ + Vµν

ρσ].
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Vacuum fluctuations of the geometry

From this bare action, we can obtain in the usual way the standard 1L
gravitational effective action for vanishing ghost arguments,

Γ[h, 0, 0; ḡ ] = SEH[ḡ + h] + Γ1L[ḡ + h] + O(2 loops)

with Γ1L[ḡ ] = ΓFG[ḡ ] + ΓFgh[ḡ ] . Here, self-consistency is given by the
tadpole condition

δ

δhµν(x)
Γ[h, 0, 0; ḡ ]

∣∣∣∣∣
h=0, ḡ=ḡ sc

= 0 ,

which for the 1L approximation for Γ amounts to the Einstein equation

R̄µν − 1

2
ḡµνR̄ + Λb ḡ

µν = (8πG )Tµν [ḡ ]

with the stress tensor Tµν [ḡ ](x) ≡ − 2√
ḡ

δ
δḡµν(x)

Γ1L[ḡ ] .
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Vacuum fluctuations of the geometry

ΓFG[ḡ ] and ΓFgh[ḡ ] are determined by the Gaussian functional integrals,
respectively,

e−ΓFG[ḡ ] =

∫
D1

[
ḡ (d−4)/(4d)ĥ• •

]
e−SFG[ĥ• •;ḡ• •] ,

e−ΓFgh[ḡ ] =

∫
D1

[
ḡ (d+2)/(4d)Ĉ

•

]
D1

[
ḡ (d−2)/(4d) ̂̄C •

]
e−SFgh[

̂̄C •,Ĉ
•
;ḡ• •] .

For M compact, one finds

ΓFG[ḡ• •] =
1

2

∑
n,m

ln (Fn[ḡ• •])

ΓFgh[ḡ• •] = −
∑
n,m

ln
(
F gh

n [ḡ• •]
)
,

where Fn and F gh
n are given by the spectral values of the operators

K [ḡ ]• •
• • and M [ḡ , ḡ ]••, respectively.
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Vacuum fluctuations of the geometry on S4(L)
On M = Sd(L) we can write ḡµν(x) = L2γµν(x), where γµν denotes the
dimensionless standard metric on the unit d-sphere.

The tadpole condition for Γ (the Einstein equation) determines the
self-consistent background geometries given by ḡ sc

µν = (Lsc)2γµν and
reads for d = 4, implementing an N-type cutoff,

4ΛbL
4 − 12L2 =

3G

π
ΘN(L) ,

where the integrated trace of the stress tensor yields the spectral sums

ΘN(L) ≡ ΘN [L
2γµν ] = fG(N)− fgh(N) + ∆ΘN(L; Λb) .

This representation of the trace involves the (exact) number of graviton
and ghost degrees of freedom,

fG(N) =
1

12

[
10N4 + O(N3)

]
, fgh(N) =

1

12

[
8N4 + O(N3)

]
;

and a (L; Λb)-dependent spectral sum ∆ΘN .
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Vacuum fluctuations of the geometry on S4(L)

In the leading-N approximation, for N → ∞, we have

f(N) := fG(N)− fgh(N) ≈ 1

6
N4

and ∆ΘN ∼ N2, such that we may neglect the latter term. For Λb > 0
this leads to the self-consistent radii

(LscN )
2 =

1

2
L2b

1 +
√
1 +

1

π

(
ℓPl

Lb

)2

f(N)

 N→∞−−−−→ ∞ ,

again with the “Hubble radius” Lb =
√
3/Λb. Also adding graviton

degrees of freedom (i.e., lifting the cutoff) tends to flatten the universe.
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Summary and outlook

We employed a new quantization scheme with the requirement of BI
already at the level of the regularized precursor of a QFT.

For quantized free matter fields coupled to gravity and quantized
metric fluctuations (in terms of quantum GR as an effective theory),
we found that quantizing additional modes reduces curvature, and
drives the universe to flat space.

Within its technical limitations, these results suggest that pure QEG
should have a distinguished ground state, namely flat space.

Outlook: more refined background geometries & (self) interactions
& flow equation for ΓN
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THANK YOU!
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