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Thanks

This talk is based on:


Garbrecht & PM ’16 (1509.07847) 
Alexander, PM, Nursey & Saffin ’19 (1907.06503) 
PM & Saffin ’19, ’21 and ’22 (1905.09674, 2107.12914, 2206.08865)


Thanks go to:


• my wonderful collaborators in this area,


• the organisers of ERG2020, and to Dario Benedetti, Kevin Falls, Jan Pawlowski and Adam Rancon 
for the discussions that followed,


• the organisers of this super meeting, 

• and all of you for coming along to this talk.



nPI quantum effective actions
(à la Routh)

For each non-connected -point correlation function  of the theory of a scalar field 
 with classical action , we can introduce a function  and define a functional








Extremizing wrt all of the ’s for a given  leads to the -particle irreducible effective actions.


Extremizing wrt a subset of the ’s for a given  leads to … something else.
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1PIaverage [Wetterich ’91]

The 1PI average effective action amounts to taking





• extremizing wrt  only, which sets  and ,


• setting , which sets ,


• taking  to be proportional to the inverse FT  of the regulator .
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2PIreg [Alexander, PM, Nursey, Saffin ’19; see also Garbrecht & PM ’16]

Instead, let’s again take





• extremize wrt  and , which sets ,


,


,


• take  to be proportional to the inverse FT  of the regulator . 
[cf. Reinosa’s talk on Tuesday, i.e., Blaizot, Pawlowski and Reinosa ’11 & ’21 and Reinosa ’21]
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Flow equations

Natural variables:





Fix  such that  and then





by the functional chain rule.
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1PIaverage [Wetterich ‘93, Morris ‘94, Ellwanger ’94] 2PIreg [Alexander, PM, Nursey, Saffin ’19]



Closure

Convexity





implies





[see also footnote 11 of Cornwall, Jackiw, Tomboulis ’74] 
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2PI resummation



Zero-dimensional playground [PM, Saffin ’19, ’21 & ’22]

Take





with  and .


We can calculate 


,


any effective action and its -point variables analytically to a given order in .
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Ansätze [PM, Saffin ’21]

Ansatz:





Solve flow equations and compare with explicit result:
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Flow equations [PM, Saffin ’21]

  etc.
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Vertex functions




-point vertices are given by [PM, Saffin ‘22]
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giving


∂kγ1PI = 3ℏ [γ1PI]2 ∂kRk

[β1PI + Rk]3

n

Γ(n>2)
1PI = − [Δ1PI]−n {Δ1PI ∂

∂ϕ }
n−2

Δ1PI

Γ(4)
1PI ϕ=0

= γ1PI



Concluding remarks

• Exploit the freedom in the 2PI effective action to fix the two-point source to be the regulator, 
leading to self-consistent flow equations that are complementary to the well-known ones.


• Extremization wrt the regulator involved in this approach (a) leads to the usual 2PI 
resummation and (b) potentially lessens the regulator dependence.


• Many questions: e.g., can usual approximation schemes and methods, i.e., LPA, derivative 
expansion, PMS, regulator optimisation be applied in the same way?


Thank you for your attention. 
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