Benchmarking effective actions and their flow equations in zero dimensions

Peter Millington | peter.millington@manchester.ac.uk | @pwmillington UK Research and Innovation Future Leaders Fellow
University of Manchester

Thanks

This talk is based on:
Garbrecht \& PM '16 (1509.07847)
Alexander, PM, Nursey \& Saffin '19 (1907.06503)
PM \& Saffin '19, '21 and '22 (1905.09674, 2107.12914, 2206.08865)
Thanks go to:

- my wonderful collaborators in this area,
- the organisers of ERG2020, and to Dario Benedetti, Kevin Falls, Jan Pawlowski and Adam Rancon for the discussions that followed,
- the organisers of this super meeting,
- and all of you for coming along to this talk.

nPI quantum effective actions
 (à la Routh)

For each non-connected n-point correlation function $\Delta_{x_{1}, x_{2}, \cdots, x_{n}}^{\mathrm{nc}}$ of the theory of a scalar field Φ with classical action $S[\Phi]$, we can introduce a function $J_{x_{1}, x_{2}, \cdots, x_{n}}$ and define a functional

$$
\begin{gathered}
\Gamma_{n,\{J\}}\left[\left\{\Delta^{\mathrm{nc}}\right\}\right]=W_{n}[\{J\}]+J_{x_{1}} \Delta_{x_{1}}^{\mathrm{nc}}+J_{x_{1}, x_{2}} \Delta_{x_{1}, x_{2}}^{\mathrm{nc}}+\cdots+J_{x_{1}, x_{2}, \cdots, x_{n}} \Delta_{x_{1}, x_{2}, \cdots, x_{n}}^{\mathrm{nc}} \\
W_{n}[\{J\}]=-\hbar \ln \int D \Phi \exp \left[-\frac{1}{\hbar}\left(S[\Phi]-J_{x_{1}} \Phi_{x_{1}}-J_{x_{1}, x_{2}} \Phi_{x_{1}} \Phi_{x_{2}}-\cdots-J_{x_{1}, x_{2}, \cdots, x_{n}} \Phi_{x_{1}} \Phi_{x_{2}} \cdots \Phi_{x_{n}}\right)\right]
\end{gathered}
$$

Extremizing wrt all of the J 's for a given n leads to the n-particle irreducible effective actions.
Extremizing wrt a subset of the J 's for a given n leads to ... something else.

1Plaverage weterich'91]

The 1PI average effective action amounts to taking

$$
\Gamma_{2,\{J\}}\left[\left\{\Delta^{\mathrm{nc}}\right\}\right]=W_{2}[\{J\}]+J_{x_{1}} \Delta_{x_{1}}^{\mathrm{nc}}+J_{x_{1}, x_{2}} \Delta_{x_{1}, x_{2}}^{\mathrm{nc}}
$$

- extremizing wrt $J_{x_{1}}$ only, which sets $J_{x_{1}}=J_{x_{1}}[\phi]$ and $\Delta_{x_{1}}^{\mathrm{nc}}=\phi_{x_{1}}[\{J\}]=-\delta W_{2}[\{J\}] / \delta J_{x_{1}}$,
- setting $\Delta_{x_{1}, x_{2}}^{\mathrm{nc}}=\phi_{x_{1}} \phi_{x_{2}}$, which sets $\delta \Gamma_{2,\{J\}}[\{\Delta\}] / \delta J_{x_{1}, x_{2}} \neq 0$,
- taking $J_{x_{1}, x_{2}}=-R_{k ; x_{1}, x_{2}} / 2$ to be proportional to the inverse $\mathrm{FT} R_{k ; x_{1}, x_{2}}$ of the regulator $R_{k ; q}$.

2P1reg [Alexander, PM, Nursey, Saffin '19; see also Garbrecht \& PM '16]

Instead, let's again take

$$
\Gamma_{2,\{J\}}\left[\left\{\Delta^{\mathrm{nc}}\right\}\right]=W_{2}[\{J\}]+J_{x_{1}} \Delta_{x_{1}}^{\mathrm{nc}}+J_{x_{1}, x_{2}} \Delta_{x_{1}, x_{2}}^{\mathrm{nc}}
$$

- extremize wrt $J_{x_{1}}$ and $J_{x_{1}, x_{2}}$, which sets $\{J\}=\{J\}\left[\phi_{x_{1}}, \Delta_{x_{1}, x_{2}}\right]$,

$$
\begin{gathered}
\Delta_{x_{1}}^{\mathrm{nc}}=\phi_{x_{1}}[\{J\}]=-\delta W_{2}[\{J\}] / \delta J_{x_{1}}, \\
\Delta_{x_{1}, x_{2}}^{\mathrm{nc}}=\hbar \Delta_{x_{1}, x_{2}}[\{J\}]+\phi_{x_{1}} \phi_{x_{2}}=-\delta W_{2}[\{J\}] / \delta J_{x_{1}, x_{2}},
\end{gathered}
$$

- take $J_{x_{1}, x_{2}}=-R_{k ; x_{1}, x_{2}} / 2$ to be proportional to the inverse FT $R_{k ; x_{1}, x_{2}}$ of the regulator $R_{k ; q}$. [cf. Reinosa's talk on Tuesday, i.e., Blaizot, Pawlowski and Reinosa '11 \& '21 and Reinosa '21]

Flow equations

1Pl ${ }_{\text {average }}$ [Wetterich '93, Morris ‘94, Ellwanger '94]
Natural variables:

$$
\Gamma_{\mathrm{av}}^{1 \mathrm{PI}}=\Gamma_{\mathrm{av}}^{1 \mathrm{PI}}\left[\phi, R_{k}\right]
$$

Fix $J_{x_{1}}=J_{k ; x_{1}}$ such that $\partial_{k} \phi=0$ and then

$$
\partial_{k} \Gamma_{\mathrm{av}}^{1 \mathrm{PI}}=\frac{\delta \Gamma_{\mathrm{av}}^{1 \mathrm{PI}}}{\delta R_{k}} \cdot \partial_{k} R_{k}=\frac{\hbar}{2} \Delta_{k}^{1 \mathrm{PI}} \cdot \partial_{k} R_{k}
$$

by the functional chain rule.

2PIreg [Alexander, PM, Nursey, Saffin '19]
Natural variables:

$$
\Gamma_{\text {reg }}^{2 \mathrm{PI}}=\Gamma_{\text {reg }}^{2 \mathrm{PI}}\left[\phi, \Delta_{k}\right]
$$

Fix $J_{x_{1}}=J_{k ; x_{1}}$ such that $\partial_{k} \phi=0$ and then

$$
\partial_{k} \Gamma_{\mathrm{reg}}^{2 \mathrm{PI}}=\frac{\delta \Gamma_{\mathrm{reg}}^{2 \mathrm{PI}}}{\delta \Delta_{k}} \cdot \partial_{k} \Delta_{k}=-\frac{\hbar}{2} R_{k} \cdot \partial_{k} \Delta_{k}
$$

by the functional chain rule.

Closure

1Pl ${ }_{\text {average }}$
Convexity

$$
\frac{\delta^{2} \Gamma^{1 \mathrm{PI}}}{\delta \phi_{x_{1}} \delta \phi_{x_{2}}} \frac{\delta^{2}(-W)}{\delta J_{x_{1}} \delta J_{x_{2}}}=1
$$

implies

$$
\left[\Delta_{k ; x_{1}, x_{2}}^{1 \mathrm{PI}}\right]^{-1}=\frac{\delta^{2} \Gamma_{\mathrm{av}}^{1 \mathrm{PI}}}{\delta \phi_{x_{1}} \delta \phi_{x_{2}}}+R_{k ; x_{1}, x_{2}}
$$

2PIreg [PM, Saffin '21]

Convexity

$$
\operatorname{Hess}_{\phi, \Delta^{\mathrm{nc}}} \Gamma^{2 \mathrm{PI}} \cdot \operatorname{Hess}_{J,-R / 2}(-W)=\mathbb{\square}
$$

implies

$$
\begin{aligned}
& {\left[\Delta_{k ; x_{1}, x_{2}}\right]^{-1}=\frac{\delta^{2} \Gamma^{2 \mathrm{PI}}}{\delta \phi_{x_{1}} \delta \phi_{x_{2}}}+R_{k ; x_{1}, x_{2}}} \\
& \quad-\frac{\delta^{2} \Gamma^{2 \mathrm{PI}}}{\delta \phi_{x_{1}} \delta \Delta_{k ; y_{1}, y_{2}}}\left[\frac{\delta^{2} \Gamma^{2 \mathrm{PI}}}{\delta \Delta_{k ; y_{1}, y_{2}} \delta \Delta_{k ; y_{3}, y_{4}}}\right]^{-1} \frac{\delta^{2} \Gamma^{2 \mathrm{PI}}}{\delta \Delta_{k ; y_{3}, y_{4}} \delta \phi_{x_{2}}}
\end{aligned}
$$

[see also footnote 11 of Cornwall, Jackiw, Tomboulis '74]

Closure

1Pl ${ }_{\text {average }}$
Convexity

$$
\frac{\delta^{2} \Gamma^{1 \mathrm{PI}}}{\delta \phi_{x_{1}} \delta \phi_{x_{2}}} \frac{\delta^{2}(-W)}{\delta J_{x_{1}} \delta J_{x_{2}}}=1
$$

implies

$$
\left[\Delta_{k ; x_{1}, x_{2}}^{1 \mathrm{PI}}\right]^{-1}=\frac{\delta^{2} \Gamma_{\mathrm{av}}^{1 \mathrm{PI}}}{\delta \phi_{x_{1}} \delta \phi_{x_{2}}}+R_{k ; x_{1}, x_{2}}
$$

2PI ${ }_{\text {reg }}$ [PM, Saffin '21]
Convexity

$$
\operatorname{Hes}{\bar{\phi} \phi, \Delta^{\mathrm{nc}}} \Gamma^{2 \mathrm{PI}} \cdot \operatorname{Hes} \Sigma_{J,-R / 2}(-W)=\mathbb{0}
$$

implies
$\left[\Delta_{k ; x_{1}, x_{2}}\right]^{-1}=\frac{\delta^{2} \Gamma^{2 \mathrm{PI}}}{\delta \phi_{x_{1}} \delta \phi_{x_{2}}}+R_{k ; x_{1}, x_{2}}$

$$
-\frac{\delta^{2} \Gamma^{2 \mathrm{PI}}}{\delta \phi_{x_{1}} \delta \Delta_{k ; y_{1}, y_{2}}}\left[\frac{\delta^{2} \Gamma^{2 \mathrm{PI}}}{\delta \Delta_{k ; y_{1}, y_{2}} \delta \Delta_{k ; y_{3}, y_{4}}}\right]^{-1} \frac{\delta^{2} \Gamma^{2 \mathrm{PI}}}{\delta \Delta_{k ; y_{3}, y_{4}} \delta \phi_{x_{2}}}
$$

Closure

1Pl ${ }_{\text {average }}$
Convexity

$$
\frac{\delta^{2} \Gamma^{1 \mathrm{PI}}}{\delta \phi_{x_{1}} \delta \phi_{x_{2}}} \frac{\delta^{2}(-W)}{\delta J_{x_{1}} \delta J_{x_{2}}}=1
$$

implies

$$
\left[\Delta_{k ; x_{1}, x_{2}}^{1 \mathrm{PI}}\right]^{-1}=\frac{\delta^{2} \Gamma_{\mathrm{av}}^{1 \mathrm{PI}}}{\delta \phi_{x_{1}} \delta \phi_{x_{2}}}+R_{k ; x_{1}, x_{2}}
$$

2PI ${ }_{\text {reg }}$ [PM, Saffin '21]
Convexity

$$
\operatorname{Hess}_{\phi, \Delta^{\mathrm{nc}}} \Gamma^{2 \mathrm{PI}} \cdot \operatorname{Hess}_{J,-R / 2}(-W)=\mathbb{\square}
$$

implies

$$
\begin{aligned}
& {\left[\Delta_{k ; x_{1}, x_{2}}\right]^{-1}=\frac{\delta^{2} \Gamma^{2 \mathrm{PI}}}{\delta \phi_{x_{1}} \delta \phi_{x_{2}}}+R_{k ; x_{1}, x_{2}}} \\
& \quad-\frac{\delta^{2} \Gamma^{2 \mathrm{PI}}}{\delta \phi_{x_{1}} \delta \Delta_{k ; y_{1}, y_{2}}}\left[\frac{\delta^{2} \Gamma^{2 \mathrm{PI}}}{\delta \Delta_{k ; y_{1}, y_{2}} \delta \Delta_{k ; y_{3}, y_{4}}}\right]^{-1} \frac{\delta^{2} \Gamma^{2 \mathrm{PI}}}{\delta \Delta_{k ; y_{3}, y_{4}} \delta \phi_{x_{2}}}
\end{aligned}
$$

2PI resummation

Take

$$
S(\Phi)=\frac{1}{2} \Phi^{2}+\frac{\lambda}{4!} \Phi^{4}
$$

with $\hbar>0$ and $\lambda>0$.
We can calculate

$$
W\left(J, R_{k}\right)=-\hbar \ln \int D \Phi \exp \left[-\frac{1}{\hbar}\left(S(\Phi)-J \Phi+\frac{1}{2} R_{k} \Phi^{2}\right)\right],
$$

any effective action and its n-point variables analytically to a given order in λ.

Ansätze $_{\text {pm. saffir } 2]}$

1Plaverage

Ansatz:

$$
\Gamma_{\mathrm{av}}^{1 \mathrm{PI}}=\alpha^{1 \mathrm{PI}}\left(R_{k}\right)+\frac{1}{2} \beta^{1 \mathrm{PI}}\left(R_{k}\right) \phi^{2}+\frac{1}{4!} \gamma^{1 \mathrm{PI}}\left(R_{k}\right) \phi^{4}
$$

Solve flow equations and compare with explicit result:

$$
\begin{aligned}
& \Gamma_{\mathrm{av}}^{1 \mathrm{PI}}=S(\phi)+\frac{\hbar}{2}\left[\ln \left[\Delta^{1 \mathrm{PI}}\right]^{-1}\right] \\
& \quad+\hbar^{2}\left[\frac{\lambda}{8}\left[\Delta^{1 \mathrm{PI}}\right]^{2}-\frac{\lambda^{2}}{12} \phi^{2}\left[\Delta^{1 \mathrm{PI}}\right]^{3}\right] \\
& \quad+\hbar^{3}\left[-\frac{\lambda^{2}}{12}\left[\Delta^{1 \mathrm{PI}}\right]^{4}\right]
\end{aligned}
$$

2PIreg

Ansatz:
$\Gamma^{2 \mathrm{PI}}=\alpha\left(\Delta_{k}\right)+\frac{1}{2} \beta\left(\Delta_{k}\right) \phi^{2}+\frac{1}{4!} \gamma\left(\Delta_{k}\right) \phi^{4}$
Solve flow equations and compare with explicit result:

$$
\begin{aligned}
\Gamma^{2 \mathrm{PI}} & =S(\phi)+\frac{\hbar}{2}\left[\ln \Delta^{-1}+\left(1+\frac{\lambda}{2} \phi^{2}\right) \Delta-1\right] \\
& +\hbar^{2}\left[\frac{\lambda}{8} \Delta^{2}-\frac{\lambda^{2}}{12} \phi^{2} \Delta^{3}\right] \\
& +\hbar^{3}\left[-\frac{\lambda^{2}}{48} \Delta^{4}\right]
\end{aligned}
$$

Flow equations ${ }_{\text {Pn, saffir } 2 \|}$

1 $\mathrm{Pl}_{\text {average }}$

$$
\partial_{k} \alpha\left(\Delta_{k}\right)=\frac{\partial \alpha^{1 \mathrm{PI}}\left(R_{k}\right)}{\partial R_{k}} \partial_{k} R_{k} \text { etc. }
$$

Take derivatives of $\left[\Delta^{1 \mathrm{PI}}\right]^{-1}$ with respect to ϕ at $\phi=0$ and solve for $\partial^{n}\left\{\alpha^{1 \mathrm{PI}}, \beta^{\mathrm{IPI}}, \gamma^{1 \mathrm{PI}}\right\} / \partial R_{k}^{n}$:

$$
\begin{aligned}
& \partial_{k} \alpha^{1 \mathrm{PI}}=\frac{\hbar}{2} \frac{\partial_{k} R_{k}}{\left[\beta^{1 \mathrm{PI}}+R_{k}\right]} \\
& \partial_{k} \beta^{1 \mathrm{PI}}=-\frac{\hbar}{2} \frac{\gamma^{1 \mathrm{PI}} \partial_{k} R_{k}}{\left[\beta^{1 \mathrm{PI}}+R_{k}\right]^{2}} \\
& \partial_{k} \gamma^{1 \mathrm{PI}}=3 \hbar \frac{\left[\gamma^{1 \mathrm{PI}}\right]^{2} \partial_{k} R_{k}}{\left[\beta^{1 \mathrm{PI}}+R_{k}\right]^{3}}
\end{aligned}
$$

2PI ${ }_{\text {reg }}$

$$
\partial_{k} \alpha\left(\Delta_{k}\right)=\frac{\partial \alpha\left(\Delta_{k}\right)}{\partial \Delta_{k}} \partial_{k} \Delta_{k} \text { etc. }
$$

Take derivatives of Δ^{-1} with respect to ϕ and Δ at $\phi=0$ and solve for $\partial^{n}\{\alpha, \beta, \gamma\} / \partial \Delta_{k}^{n}$ with $R_{k}^{0}=R_{k}\left(\phi=0, \Delta_{k}\right)$:

$$
\begin{aligned}
& \partial_{k} \alpha=\frac{\hbar}{2} R_{k}^{0} \frac{\partial_{k} \beta+\partial_{k} R_{k}^{0}}{\left[\beta+R_{k}^{0}\right]^{2}} \\
& \partial_{k} \beta=-\left\{\frac{\hbar}{2} \gamma-\frac{\hbar^{2}}{2} \frac{\gamma^{2}}{\left[\beta+R_{k}^{0}\right]^{2}}\right\} \frac{\partial_{k} \beta+\partial_{k} R_{k}^{0}}{\left[\beta+R_{k}^{0}\right]^{2}} \\
& \partial_{k} \gamma=\mathcal{O}\left(\gamma^{4}\right)
\end{aligned}
$$

Flow equations ${ }_{\text {Pn, saffir } 2 \|}$

1 $\mathrm{Pl}_{\text {average }}$

$$
\partial_{k} \alpha\left(\Delta_{k}\right)=\frac{\partial \alpha^{1 \mathrm{PI}}\left(R_{k}\right)}{\partial R_{k}} \partial_{k} R_{k} \text { etc. }
$$

Take derivatives of $\left[\Delta^{1 \mathrm{PI}}\right]^{-1}$ with respect to ϕ at $\phi=0$ and solve for $\partial^{n}\left\{\alpha^{1 \mathrm{PI}}, \beta^{\mathrm{IPI}}, \gamma^{1 \mathrm{PI}}\right\} / \partial R_{k}^{n}$:

$$
\begin{aligned}
& \partial_{k} \alpha^{1 \mathrm{PI}}=\frac{\hbar}{2} \frac{\partial_{k} R_{k}}{\left[\beta^{1 \mathrm{PI}}+R_{k}\right]} \\
& \partial_{k} \beta^{1 \mathrm{PI}}=-\frac{\hbar}{2} \frac{\gamma^{1 \mathrm{PI}} \partial_{k} R_{k}}{\left[\beta^{1 \mathrm{PI}}+R_{k}\right]^{2}} \\
& \partial_{k} \gamma^{1 \mathrm{PI}}=3 \hbar \frac{\left[\gamma^{1 \mathrm{PI}}\right]^{2} \partial_{k} R_{k}}{\left[\beta^{1 \mathrm{PI}}+R_{k}\right]^{3}}
\end{aligned}
$$

$2 \mathrm{Pl}_{\text {reg }}$

$$
\partial_{k} \alpha\left(\Delta_{k}\right)=\frac{\partial \alpha\left(\Delta_{k}\right)}{\partial \Delta_{k}} \partial_{k} \Delta_{k} \text { etc. }
$$

Take derivatives of Δ^{-1} with respect to ϕ and Δ at $\phi=0$ and solve for $\partial^{n}\{\alpha, \beta, \gamma\} / \partial \Delta_{k}^{n}$ with $R_{k}^{0}=R_{k}\left(\phi=0, \Delta_{k}\right)$:

$$
\begin{aligned}
& \partial_{k} \alpha=\frac{\hbar}{2} R_{k}^{0} \frac{\partial_{k} \beta+\partial_{k} R_{k}^{0}}{\left[\beta+R_{k}^{0}\right]^{2}} \\
& \partial_{k} \beta=-\left\{\frac{\hbar}{2} \gamma-\frac{\hbar^{2}}{2} \frac{\gamma^{2}}{\left[\beta+R_{k}^{0}\right]^{2}}\right\} \frac{\partial_{k} \beta+\partial_{k} R_{k}^{0}}{\left[\beta+R_{k}^{0}\right]^{2}} \\
& \partial_{k} \gamma=\mathcal{O}\left(\gamma^{4}\right)
\end{aligned}
$$

Flow equations ${ }_{\text {Pn, Saffir } 2 \boldsymbol{I}}$

1 $\mathrm{Pl}_{\text {average }}$

$$
\partial_{k} \alpha\left(\Delta_{k}\right)=\frac{\partial \alpha^{1 \mathrm{PI}}\left(R_{k}\right)}{\partial R_{k}} \partial_{k} R_{k} \text { etc. }
$$

Take derivatives of $\left[\Delta^{1 \mathrm{PI}}\right]^{-1}$ with respect to ϕ at $\phi=0$ and solve for $\partial^{n}\left\{\alpha^{1 \mathrm{PI}}, \beta^{\mathrm{IPI}}, \gamma^{1 \mathrm{PI}}\right\} / \partial R_{k}^{n}$:

$$
\begin{aligned}
& \partial_{k} \alpha^{1 \mathrm{PI}}=\frac{\hbar}{2} \frac{\partial_{k} R_{k}}{\left[\beta^{1 \mathrm{PI}}+R_{k}\right]} \\
& \partial_{k} \beta^{1 \mathrm{PI}}=-\frac{\hbar}{2} \frac{\gamma^{1 \mathrm{PI}} \partial_{k} R_{k}}{\left[\beta^{1 \mathrm{PI}}+R_{k}\right]^{2}} \\
& \partial_{k} \gamma^{1 \mathrm{PI}}=3 \hbar \frac{\left[\gamma^{1 \mathrm{PI}}\right]^{2} \partial_{k} R_{k}}{\left[\beta^{1 \mathrm{PI}}+R_{k}\right]^{3}}
\end{aligned}
$$

2PI ${ }_{\text {reg }}$

$$
\partial_{k} \alpha\left(\Delta_{k}\right)=\frac{\partial \alpha\left(\Delta_{k}\right)}{\partial \Delta_{k}} \partial_{k} \Delta_{k} \text { etc. }
$$

Take derivatives of Δ^{-1} with respect to ϕ and Δ at $\phi=0$ and solve for $\partial^{n}\{\alpha, \beta, \gamma\} / \partial \Delta_{k}^{n}$ with $R_{k}^{0}=R_{k}\left(\phi=0, \Delta_{k}\right)$:

$$
\begin{aligned}
& \partial_{k} \alpha=\frac{\hbar}{2} R_{k}^{0} \frac{\partial_{k} \beta+\partial_{k} R_{k}^{0}}{\left[\beta+R_{k}^{0}\right]^{2}} \\
& \partial_{k} \beta=-\left\{\frac{\hbar}{2} \gamma-\frac{\hbar^{2}}{2} \frac{\gamma^{2}}{\left[\beta+R_{k}^{0}\right]^{2}}\right\} \frac{\partial_{k} \beta+\partial_{k} R_{k}^{0}}{\left[\beta+R_{k}^{0}\right]^{2}} \\
& \partial_{k} \gamma=\mathcal{O}\left(\gamma^{4}\right)
\end{aligned}
$$

Vertex functions

1Plaverage

$$
\partial_{k} \gamma^{1 \mathrm{PI}}=3 \hbar \frac{\left[\gamma^{1 \mathrm{PI}}\right]^{2} \partial_{k} R_{k}}{\left[\beta^{1 \mathrm{PI}}+R_{k}\right]^{3}}
$$

n-point vertices are given by
$\Gamma_{1 \mathrm{PI}}^{(n>2)}=-\left[\Delta^{1 \mathrm{PI}}\right]^{-n}\left\{\Delta^{1 \mathrm{PI}} \frac{\partial}{\partial \phi}\right\}^{n-2} \Delta^{1 \mathrm{PI}}$
giving
$\left.\Gamma_{1 \mathrm{PI}}^{(4)}\right|_{\phi=0}=\gamma^{1 \mathrm{PI}}$
$2 \mathrm{Pl}_{\mathrm{reg}}$

$$
\partial_{k} \gamma=\mathcal{O}\left(\gamma^{4}\right)
$$

n-point vertices are given by [PM, Saffin '22]
$\Gamma^{(n>2)}=-\Delta^{-n}\left\{\Delta\left[\frac{\partial}{\partial \phi}-\frac{\partial^{2} \Gamma^{2 \mathrm{PI}}}{\partial \phi \partial \Delta}\left(\frac{\partial^{2} \Gamma^{2 \mathrm{PI}}}{\partial \Delta^{2}}\right)^{-1} \frac{\partial}{\partial \Delta}\right]\right\}^{n-2} \Delta$
giving
$\left.\Gamma^{(4)}\right|_{\phi=0}=\gamma-\frac{3}{2} \hbar \gamma^{2} \frac{1}{\left[\beta+R_{k}^{0}\right]^{2}}$

Concluding remarks

- Exploit the freedom in the 2PI effective action to fix the two-point source to be the regulator, leading to self-consistent flow equations that are complementary to the well-known ones.
- Extremization wrt the regulator involved in this approach (a) leads to the usual 2PI resummation and (b) potentially lessens the regulator dependence.
- Many questions: e.g., can usual approximation schemes and methods, i.e., LPA, derivative expansion, PMS, regulator optimisation be applied in the same way?

Thank you for your attention.

References

Alexander, Millington, Nursey \& Saffin 2019, Phys Rev D 100101702 (R) [Erratum: Phys Rev D 104 (2021) 069906], 1907.06503
Blaizot, Pawlowski, Reinosa 2011, Exact renormalization group and Φ-derivable approximations, Phys Lett B 696 523, 1009.6048
Blaizot, Pawlowski, Reinosa 2021, Functional renormalization group and 2PI effective action formalism, Annals Phys 431 168549, 2102.13628
Cornwall, Jackiw, Tomboulis 1974, Effective action for composite operators, Phys Rev D 102428
Ellwanger 1994, Flow equations for N point functions and bound states, Z Phys C 62 503, hep-ph/9308260
Garbrecht \& Millington 2016, Constraining the effective action by a method of external sources, Nucl Phys B 906 105, 1509.07847
Millington \& Saffin 2019, Visualising quantum effective action calculations in zero dimensions, J Phys A 52 405401, 1905.09674
Millington \& Saffin 2021, Benchmarking regulator-sourced 2PI and average 1PI flow equations in zero dimensions, J Phys A 54 465401, 2107.12914
Millington \& Saffin 2022, Vertex functions from the 2PI effective action, 2206.08865
Morris 1994, The exact renormalization group and approximate solutions, Int J Mod Phys A 9 2411, hep-ph/9308265
Reinosa 2021, On overlapping Feynman (sub)graphs, Phys Rev D 103 105015, 2103.07123
Wetterich 1991, Average action and the renormalization group equations, Nucl Phys B 352529
Wetterich 1993, Exact evolution equation for the effective potential, Phys Lett B 301 90, 1710.05815

