The Effective Average Action with Smooth Cutoffs

Jobst Ziebell
TPI - FSU Jena
July 26, 2022

Outline

- 1 Introduction
- 2 Path Integral Regularisation
- 3 Math
- 4 Outlook

A Quick Recap

The Effective Average Action

- $Z_k(J) = \int \exp \left[\int J\phi S_{\text{eucl}}(\phi) \frac{1}{2} F_k(\phi)(\phi) \right] \mathcal{D}\phi$
- $V_k = \ln \circ Z$

The Flow Equation

► For nice enough F_k , $\lim_{k\to\infty} \Gamma_k(\phi) = S_{\text{eucl}}(\phi)$ and

$$\partial_{k}\Gamma_{k}\left(\phi
ight)=rac{1}{2}\mathrm{Tr}\left\{ \left(\partial_{k}\mathit{F}_{k}
ight)\left[\mathit{D}_{\phi}^{2}\Gamma_{k}+\mathit{F}_{k}
ight]^{-1}
ight\}$$

How is This Derived?

Inverting the Derivatives

- Supremum in definition of Γ_k should be attained
- Extreme Point should be unique
- ▶ The derivative DW_k should be invertible

$$\Gamma_k(\phi) = (DW_k)^{-1}(\phi)(\phi) - W_k((DW_k)^{-1}(\phi)) - \frac{1}{2}F_k(\phi)(\phi)$$

Boundary Condition

▶ F_k should diverge sufficiently fast for $k \to \infty$

Mathematical Tasks

TODO List

Introduction

- Rigorously define the path integral
- \triangleright Verify assumptions about W_k and DW_k
- Find strong enough condition for F_k
- Prove everything

Understanding the Path Integral

Let $\phi \in \mathcal{S}$ be an arbitrary test function. Is there a measure μ on some space X such that

$$\int_{\mathcal{X}} T(\phi) T(\phi) d\mu (T) = \int_{\mathbb{R}^d} \tilde{\phi} (-p) \frac{1}{p^2 + m^2} \tilde{\phi} (p)$$
 (1)

and the higher correlators also match those of the Euclidean free scalar field? This precisely corresponds to making sense of

$$\int_{\mathcal{X}} T(\phi) \ T(\phi) \exp\left[-\frac{m^2}{2} \int T^2 - \frac{1}{2} \int (\partial_{\nu} T) (\partial_{\nu} T)\right] dT. \tag{2}$$

The Gaussian Measure

- Such a measure exists
- $ightharpoonup X = S'_{\beta}$ (tempered distributions, dual space of S).
- Note, T^2 is not generally well-defined for $T \in \mathcal{S}'_{\beta}$
- \Rightarrow Use as starting point for interactions $\sim \int T^4$, etc.

Regularisation

- ▶ T^4 does not make sense for $T \in \mathcal{S}'_{\beta}$
- Define regulator as linear map $\mathcal{R}: \mathcal{S}'_{\beta} \to \mathcal{S}$
 - \Rightarrow smoothen the distributions (cutoff momenta above $\Lambda_{\rm IN}$)
 - \Rightarrow make them decay at infinity (cutoff momenta below $\Lambda_{\rm IR}$)
- Consider the pushforward measure $\nu = \mathcal{R}_* \mu$ on \mathcal{S}
 - ⇒ Regularise the propagator

Regularisation - An Example

$$\mathcal{R}T = \chi \cdot (\xi * T) \tag{3}$$

with

$$\chi(x) = \exp\left[-\frac{\Lambda_{\rm IR}^2}{2}x^2\right]$$

$$\xi(x) = \left(\frac{\Lambda_{\rm UV}^2}{2\pi}\right)^{d/2} \exp\left[-\frac{\Lambda_{\rm UV}^2}{2}x^2\right]$$
(4)

Note, $w - \lim_{\Lambda_{UV} \to \infty, \Lambda_{IR} \to 0} \mathcal{R}T = T$ for all $T \in \mathcal{S}'_{\beta}$.

Yet Another Scale...

A Quadratic Addition

Define the partition function

$$Z_{k}(T) = \frac{\int_{\mathcal{S}} \exp\left[T(\psi) - \frac{1}{2}F_{k}(\psi, \psi) - S^{\text{int}}(\psi)\right] d\nu(\psi)}{\int_{\mathcal{S}} \exp\left[-\frac{1}{2}F_{k}(\psi, \psi) - S^{\text{int}}(\psi)\right] d\nu(\psi)}$$
(5)

for all $k \ge 0$. (Call denominator N_k)

- ▶ Demand $\exp[S^{int}] \in L^q(\nu)$ for some q > 1
- $-S^{int}$ should be bounded by some squared seminorm
- F_k nonnegative, symmetric, bilinear form, e.g $k^2 \int \psi^2$
- $ightharpoonup F_k$ should diverge roughly as k^2 pointwise + technicalities

The Conjugate Problem

The Effective Average Action

- ightharpoonup Let $W_k(T) = \ln Z_k(T)$
 - \Rightarrow W_k is convex ('trivial' from measure theory)
 - \Rightarrow D W_k is injective (almost 'trivial' Gaußian measures)
 - $\Rightarrow W_k$ extends to closure of \mathcal{S}'_{β} in $L^2(\nu)$ ('trivial' Gaußian measures)
 - \Rightarrow DW_k is surjective on this space! (tricky)
 - \Rightarrow range of DW_k is $H(\nu)$ the 'Cameron-Martin space' of ν

The Effective Average Action

Some Properties

- \blacktriangleright $H(\nu)$ is a separable real Hilbert space
- \blacktriangleright $H(\nu)$ is dense in ${\cal S}$

Finally, set

$$\Gamma_{k}(\phi) = (DW_{k})^{-1}(\phi)(\phi) - W_{k}((DW_{k})^{-1}(\phi)) - \frac{1}{2}F_{k}(\phi)(\phi)$$

for all $\phi \in H(\nu)$.

FRGE

The Flow Equation

Usually, $F_k \rightarrow R_k$ with R_k function in Fourier space. Then,

$$\partial_{k}\Gamma_{k}(\phi) = \frac{1}{2}\operatorname{Tr}\left\{\left(\partial_{k}R_{k}\right)\left[\mathcal{F}\circ\mathcal{D}_{\phi}^{2}\Gamma_{k}\circ\mathcal{F}^{-1} + R_{k}\right]^{-1}\right\} + \partial_{k}\ln\mathcal{N}_{k} \tag{6}$$

and

$$\lim_{k \to \infty} \Gamma_k(\phi) = \frac{1}{2} \langle \phi, \phi \rangle_{H(\nu)} + S^{\text{int}}(\phi) . \tag{7}$$

- \triangleright N_k from normalisation
- arXiv:2106.09466

The Assumptions

ϕ^4 Theory

► Consider interaction $\lambda \int_{\mathbb{R}^4} \phi^4$ in d=4 $\Rightarrow \text{Counterterm } -\Delta m^2 \int_{\mathbb{R}^4} \phi^2$ $\Rightarrow -S^{\text{int}} \text{ blows up!}$ $\Leftarrow \lambda \int_{\mathbb{R}^4} \phi^4 \text{ cannot control } -\Delta m^2 \int_{\mathbb{R}^4} \phi^2$

$$\int_{\mathcal{S}}\exp\left[-\lambda\int_{\mathbb{R}^{4}}\phi^{4}+\Delta\mathit{m}^{2}\int_{\mathbb{R}^{4}}\phi^{2}\right]\mathrm{d}\nu\left(\phi\right)<\infty$$

for all $\Delta m^2 > 0$?

General Math Problem

Question of Integrability

- X a locally convex space
- $\triangleright \mu$ a Gaußian measure on X
- \triangleright p, q seminorms on X
- Conditions for

$$\int_{X} \exp\left[-p(x)^{4} + \alpha q(x)^{2}\right] d\mu(x) < \infty$$

for all $\alpha > 0$?

Rather general solution in arXiv:2205.09189 (JZ, Benjamin Hinrichs, Dann Willem Janssen)

Outlook

Eliminating Cutoffs? Asymptotic Safety?

- ▶ Does the equation survive the limit of vanishing cutoffs?
 - ← Quantum triviality?
 - \Rightarrow Perhaps $\Lambda_{\rm IR} \to 0$

Further Directions

- Application to nonrelativistic problems (in progress)
- ► Fermions?
- Coupled systems?