

Turbulence and shell models of turbulence from Functional Renormalisation Group

Léonie Canet

ERG Berlin

In collaboration with ...

N. Wschebor Montevideo

V. Rossetto Grenoble

G. Balarac Grenoble

PhD students and post-docs:

References:

C. Pagani

C. Fontaine

LC, B. Delamotte, N. Wschebor, Phys. Rev. E 93 (2016)

M. Tarpin, LC, N. Wschebor, Phys. Fluids 30 (2018)

- A. Gorbunova, G. Balarac, LC, G. Evink, V. Rossetto, Phys. Fluids 33 (2021)
- A. Gorbunova, C. Pagani, G. Balarac, LC, V. Rossetto, Phys. Rev. F 6 (2021)

LC, arXiv:2205.01427, to appear in J. Fluid Mech. Perspectives (2022)

Presentation outline

1 Statistical theory of turbulence and Renormalisation Group

2 Time dependence of *n*-point correlation functions

3 Anomalous scaling in shell models of turbulence

Turbulence: ubiquitous and challenging phenomenon

▶ Presence of turbulence in every fluid flows

ocean

clouds

rivers

► Some characteristic features of turbulence

 chaos and impredictability

 scale invariance and universality

$$S_2 \sim r^{\zeta_2}$$

extreme events

 $E(k) \sim k^{-5/3}$

Navier-Stokes equation

Claude-Louis Navier 1785-1836

Sir George Stokes 1819-1903

incompressible Navier-Stokes equations

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = \nu \nabla^2 \mathbf{v} - \frac{1}{\rho} \nabla \pi + \mathbf{f}$$
$$\nabla \cdot \mathbf{v} = \mathbf{0}$$

200th anniversary this year ... yet still unsolved!

challenge: obtain statistical theory of turbulence

spatial properties

multi-fractal scaling of structure functions

temporal properties

sweeping effect in Eulerian correlation functions

Kolmogorov theory

Kolmogorov theory 1941 (K41)

A.N. Kolmogorov Dokl.Akad.Nauk.SSSR **30**, **31**, **32** (1941)

dimensional analysis:

- $\blacksquare \ \, {\rm eddy \ size} \ \, \ell \sim k^{-1}$
- energy flux ϵ
- structure functions

 $S_{p}(r) \equiv \left\langle |\mathbf{v}(\mathbf{r}_{0}+\mathbf{r})-\mathbf{v}(\mathbf{r}_{0})|^{p}
ight
angle$

$$\begin{split} S_{\rho}(\ell) &= C_{\rho} \, \epsilon^{\rho/3} \, \ell^{\rho/3} \quad \text{(K41)} \\ S_{3}(\ell) &= -\frac{4}{5} \, \epsilon \, \ell \quad \text{(exact)} \end{split}$$

► kinetic energy spectrum $E(k) = C_{K} \epsilon^{2/3} k^{-5/3}$

Nazarenko, Lecture Notes in Physics 825 (2011)

Kolmogorov theory and intermittency of structure functions

Kolmogorov theory 1941 (K41)

A.N. Kolmogorov

Dokl.Akad.Nauk.SSSR 30, 31, 32 (1941)

dimensional analysis:

- eddy size $\ell \sim k^{-1}$
- energy flux ϵ
- structure functions

 $S_p(r) \sim r^{\zeta_p}$

 numerical simulations and experiments

 $\zeta_p \neq p/3$

multi-fractality, intermittency

Kolmogorov theory

Kolmogorov theory 1941 (K41)

A.N. Kolmogorov Dokl.Akad.Nauk.SSSR **30, 31, 32** (1941)

dimensional analysis:

- $\blacksquare \ \, {\rm eddy \ size} \ \, \ell \sim k^{-1}$
- \blacksquare energy flux ϵ
- ► decorrelation time scale

$$\tau_{a} \sim \epsilon^{-1/3} k^{-2/3} \quad \text{(K41)}$$

Kolmogorov theory and random sweeping effect

Kolmogorov theory 1941 (K41)

A.N. Kolmogorov Dokl.Akad.Nauk.SSSR **30, 31, 32** (1941)

dimensional analysis:

- eddy size $\ell \sim k^{-1}$
- energy flux ϵ
- decorrelation time scale

 $au_{a}\sim\epsilon^{-1/3}k^{-2/3}$ (K41)

 numerical simulations and experiments

$$au_{\sf a} \sim k^{-1}$$

► random sweeping effect

A. Gorbunova, et al, Phys. Rev. F 6 (2021)

Two challenges: spatial and temporal properties of turbulence

Statistical theory for turbulence, beyond K41 theory ... "first principles" approaches

▶ fluid dynamics described by Navier-Stokes equations

- many closure schemes
 - (e.g. Direct Interaction Approximation by Kraichnan)
- simplified models of turbulence Burgers' equation, shell models

• • • •

► many similarities between critical phenomena and turbulence

- scale invariance, self-similarity
- universality
- anomalous critical exponents

second order phase transition

turbulence

 \implies Renormalisation Group

Statistical theory for turbulence : Field theory for Navier-Stokes equation

Stochastic Navier-Stokes equation

$$\partial_t v_{\alpha} + v_{\beta} \partial_{\beta} v_{\alpha} + \frac{1}{\rho} \partial_{\alpha} \pi - \nu \nabla^2 v_{\alpha} = f_{\alpha}$$
$$\partial_{\alpha} v_{\alpha} = 0$$
$$\left\langle f_{\alpha}(t, \mathbf{x}) f_{\beta}(t', \mathbf{x}') \right\rangle = 2\delta_{\alpha\beta} \delta(t - t') N_L(|\mathbf{x} - \mathbf{x}'|).$$

 f_{α} Gaussian distributed, N_L peaked at the integral scale (energy injection)

► Martin-Siggia-Rose-Janssen-de Dominicis formalism

Martin, Siggia, Rose, PRA 8 (1973), Janssen, Z. Phys. B 23 (1976), de Dominicis, J. Phys. Paris 37 (1976)

$$\mathcal{Z} = \int \mathcal{D}\mathbf{v} \, \mathcal{D}\bar{\mathbf{v}} \, \mathcal{D}\pi \, \mathcal{D}\bar{\pi} \, e^{-S_{\rm NS} + \text{ source terms}}$$
$$\mathcal{S}_{\rm NS} = \int_{t,\mathbf{x}} \bar{\mathbf{v}}_{\alpha} \Big[\partial_t \mathbf{v}_{\alpha} + \mathbf{v}_{\beta} \partial_{\beta} \mathbf{v}_{\alpha} + \frac{1}{\rho} \partial_{\alpha} \pi - \nu \nabla^2 \mathbf{v}_{\alpha} \Big] + \bar{\pi} \Big[\partial_{\alpha} \mathbf{v}_{\alpha} \Big] - \int_{t,\mathbf{x},\mathbf{x}'} \bar{\mathbf{v}}_{\alpha} \left[\mathcal{N}_{L}(|\mathbf{x} - \mathbf{x}'|) \right] \bar{\mathbf{v}}_{\alpha}$$

Statistical theory for turbulence : Perturbative Renormalisation Group

▶ Field theory for stochastic Navier-Stokes equation

$$\mathcal{S}_{\rm NS} = \int_{t,\mathbf{x}} \bar{\mathbf{v}}_{\alpha} \Big[\partial_t \mathbf{v}_{\alpha} + \mathbf{v}_{\beta} \partial_{\beta} \mathbf{v}_{\alpha} + \frac{1}{\rho} \partial_{\alpha} \pi - \nu \nabla^2 \mathbf{v}_{\alpha} \Big] + \bar{\pi} \Big[\partial_{\alpha} \mathbf{v}_{\alpha} \Big] - \int_{t,\mathbf{x},\mathbf{x}'} \bar{\mathbf{v}}_{\alpha} \left[\mathbf{N}_{L} (|\mathbf{x} - \mathbf{x}'|) \right] \bar{\mathbf{v}}_{\alpha}$$

- absence of a small expansion parameter
 - no upper critical dimension $d_c = \infty$
 - no small coupling (interaction = advection term)

Perturbative RG approaches

 \blacktriangleright introduction of a small parameter via forcing covariance $N_L(\mathbf{k}) \propto k^{d-\varepsilon}$

de Dominicis, Martin, PRA 19 (1979), Fournier, Frisch, PRA 28 (1983), Yakhot, Orszag, PRL 57 (1986)

 \implies 3D kinetic energy spectrum $E(k) \propto k^{1-2\varepsilon/3}$

- K41 scaling recovered in the limit $\varepsilon \rightarrow 4$!
- freezing mechanism invoked for $\varepsilon < 4$
- does it lead to the same universal behaviour ?

Statistical theory for turbulence : Functional Renormalisation Group

- ▶ RG fixed point for large-scale forcing
 - K41 scaling
 - 4/5th law preserved

Tomassini, Phys. Lett. B **411** (1997) Mejía-Monasterio, Muratore-Ginnaneschi, PRE **86** (2012) LC, Delamotte, Wschebor, PRE **93** (2016)

► time dependence of generic *n*-point correlation functions

LC, V. Rossetto, N. Wschebor, G. Balarac, Phys. Rev. E **95** (2017) M. Tarpin, LC, N. Wschebor, Phys. Fluids **30**, 055102 (2018) LC, arXiv:2205.01427, to appear in J. Fluid Mech. *Perspectives* (2022)

► anomalous scaling of structure functions in shell models of turbulence

C. Fontaine, M. Tarpin, F. Bouchet, LC, ArXiv:2208.00225 (2022)

Presentation outline

1 Statistical theory of turbulence and Renormalisation Group

2 Time dependence of *n*-point correlation functions

3 Anomalous scaling in shell models of turbulence

Functional renormalisation group for turbulence

▶ Field theory for stochastic Navier-Stokes equations + regulators

$$\begin{split} \mathcal{Z}_{\kappa} &= \int \mathcal{D}\mathbf{v} \, \mathcal{D}\bar{\mathbf{v}} \, \mathcal{D}\pi \, \mathcal{D}\bar{\pi} \, e^{-\mathcal{S}_{\rm NS} - \Delta \mathcal{S}_{\kappa} + \text{ source terms}} \\ \mathcal{S}_{\rm NS} &= \int_{t,\mathbf{x}} \bar{v}_{\alpha} \Big[\partial_t v_{\alpha} + v_{\beta} \partial_{\beta} v_{\alpha} + \frac{1}{\rho} \partial_{\alpha} \pi - \nu \nabla^2 v_{\alpha} \Big] + \bar{\pi} \left[\partial_{\alpha} v_{\alpha} \right] \\ \Delta \mathcal{S}_{\kappa} &= -\int_{t,\mathbf{x},\mathbf{x}'} \Big\{ \bar{v}_{\alpha} \left[N_{\kappa} (|\mathbf{x} - \mathbf{x}'|) \right] \bar{v}_{\alpha} + \bar{v}_{\alpha} \left[R_{\kappa} (|\mathbf{x} - \mathbf{x}'|) \right] v_{\alpha} \Big\} \end{split}$$

▶ exact flow equation for Γ_{κ} and $\mathcal{W}_{\kappa} = \ln \mathcal{Z}_{\kappa}$

Wetterich, Phys. Lett. B 301 (1993)

$$\partial_{\kappa} \Gamma_{\kappa} = \frac{1}{2} \operatorname{Tr} \, \int_{\mathbf{x}, \mathbf{y}} \partial_{\kappa} \mathcal{R}_{\kappa_{ij}}(\mathbf{x} - \mathbf{y}) \left[\Gamma_{\kappa}^{(2)} + \mathcal{R}_{\kappa} \right]_{ji}^{-1} \\ \partial_{\kappa} \mathcal{W}_{\kappa} = -\frac{1}{2} \operatorname{Tr} \, \int_{\mathbf{x}, \mathbf{y}} \partial_{\kappa} \mathcal{R}_{\kappa_{ij}}(\mathbf{x} - \mathbf{y}) \left\{ \frac{\delta^{2} \mathcal{W}_{\kappa}}{\delta j_{i}(\mathbf{x}) \delta j_{j}(\mathbf{y})} + \frac{\delta \mathcal{W}_{\kappa}}{\delta j_{i}(\mathbf{x})} \frac{\delta \mathcal{W}_{\kappa}}{\delta j_{i}(\mathbf{y})} \right\}$$

▶ statistical theory for turbulence: *n*-point correlation functions

$$C^{(n)}_{\alpha_1\ldots\alpha_n}(\{t_i,\mathbf{x}_i\}) \equiv \left\langle v_{\alpha_1}(t_1,\mathbf{x}_1)\cdots v_{\alpha_n}(t_n,\mathbf{x}_n)\right\rangle_{C}$$

► within the FRG framework

 \implies exact (but infinite hierarchy) of FRG flow equations

M. Tarpin, LC, N. Wschebor, Phys. Fluids 30 (2018)

based on Ward identities from extended symmetries

time-gauged Galilean invariance:

$\mathcal{G} = \left\{ egin{array}{l} x_lpha o x_lpha + \epsilon_lpha\left(t ight) \ v_lpha o v_lpha - \dot{\epsilon}_lpha\left(t ight) \end{array} ight.$

• time-gauged shift symmetry: $\mathcal{R} = \begin{cases} \delta \bar{v}_{\alpha}(t, \vec{x}) &= \bar{\epsilon}_{\alpha}(t) \\ \delta \bar{p}(t, \vec{x}) &= v_{\beta}(t, \vec{x}) \bar{\epsilon}_{\beta}(t) \end{cases}$

LC, B. Delamotte, N. Wschebor, Phys. Rev. E 91 (2015)

can be solved analytically at the fixed point !

$$C_{\alpha_1...\alpha_n}^{(n)}(\{t_i, \vec{x}_i\}) \equiv \left\langle v_{\alpha_1}(t_1, \mathbf{x}_1) \cdots v_{\alpha_n}(t_n, \mathbf{x}_n) \right\rangle_c$$

= K41 × dominant time scaling

existence of two time regimes:

$$C_{\alpha_{1}...\alpha_{n}}^{(n)}(\{t_{i},\mathbf{k}_{i}\}) \propto \begin{cases} \exp\left(-\alpha_{0}\frac{L^{2}}{\tau_{0}^{2}}\left|\sum_{\ell}\mathbf{k}_{\ell}t_{\ell}\right|^{2} + \mathcal{O}(|\mathbf{k}_{\max}|L)\right) & t \ll \tau_{0} \\ \exp\left(-\alpha_{\infty}\frac{L^{2}}{\tau_{0}}\left|t\right|\sum_{k\ell}\mathbf{k}_{k}\cdot\mathbf{k}_{\ell} + \mathcal{O}(|\mathbf{k}_{\max}|L)\right) & t \gg \tau_{0} \end{cases}$$

- for $C^{(2)}$, at small times $\tau_a \propto k^{-1} \neq k^{-2/3} \implies$ random sweeping
- generalised for any *n*-point correlation
- prediction of a new regime at large time
- extensive checks with direct numerical simulations

► can be solved analytically at the fixed point !

$$C_{\alpha_1...\alpha_n}^{(n)}(\{t_i, \vec{x}_i\}) \equiv \left\langle v_{\alpha_1}(t_1, \mathbf{x}_1) \cdots v_{\alpha_n}(t_n, \mathbf{x}_n) \right\rangle_c$$

= K41 × dominant time scaling

existence of two time regimes:

$$C_{\alpha_{1}...\alpha_{n}}^{(n)}(\{t_{i},\mathbf{k}_{i}\}) \propto \begin{cases} \exp\left(-\alpha_{0}\frac{L^{2}}{\tau_{0}^{2}}\left|\sum_{\ell}\mathbf{k}_{\ell}t_{\ell}\right|^{2} + \mathcal{O}(|\mathbf{k}_{\max}|L)\right) & t \ll \tau_{0} \\ \exp\left(-\alpha_{\infty}\frac{L^{2}}{\tau_{0}}\left|t\right|\sum_{k\ell}\mathbf{k}_{k}\cdot\mathbf{k}_{\ell} + \mathcal{O}(|\mathbf{k}_{\max}|L)\right) & t \gg \tau_{0} \end{cases}$$

• but at t = 0, dominant time scaling = 0

 \Longrightarrow intermittency corrections to K41 scaling not accessible at this order

Passively advected scalars in turbulent flows

► diffusion-advection equation

$$\partial_t \theta + \mathbf{v} \cdot \nabla \theta - \kappa \nabla^2 \theta = f$$

v synthetic random field Kraichnan, Phys. Fluids 11 (1968)

$$ig\langle \hat{v}_i(t,\mathbf{k})\hat{v}_j(t',-\mathbf{k})ig
angle = P_{ij}^{\perp}(\mathbf{k})rac{D_0}{k^{d+arepsilon}}\delta(t-t')$$

©Walter Baxter

Passively advected scalars in turbulent flows

diffusion-advection equation

$$\partial_t \theta + \mathbf{v} \cdot \nabla \theta - \kappa \nabla^2 \theta = f$$

v synthetic random field Kraichnan, Phys. Fluids 11 (1968)

$$ig\langle \hat{v}_i(t,\mathbf{k})\hat{v}_j(t',-\mathbf{k})ig
angle = P_{ij}^{\perp}(\mathbf{k})rac{D_0}{k^{d+arepsilon}}\delta(t-t')$$

©Walter Baxter

correlation function from functional renormalisation group

$$C_{ heta}(t,\mathbf{k}) = C_{ heta}(0,\mathbf{k}) \exp\left(-rac{\kappa_{\mathrm{ren}}}{\kappa^2}|t|
ight)$$

 exponential decay for all times

$$\kappa_{\rm ren} = \kappa + \underbrace{\frac{d-1}{2d} \int_{\mathbf{k}} \frac{D_0}{(k^2 + m^2)^{(d+\varepsilon)/2}} d^d \mathbf{k}}_{\text{determined by velocity only}}$$

exact expression
 for κ_{ren}

C. Pagani, LC, Phys. Fluids 33 (2021)

Correlations in 3D Kraichnan model

▶ result from functional renormalisation group (FRG)

$$\mathcal{C}_{ heta}(t,\mathbf{k}) \propto \exp\left(-\kappa_{ ext{ren}}k^2|t|
ight) \qquad \kappa_{ ext{ren}} = \kappa + rac{1}{3}\int_{\mathbf{k}}rac{D_0}{(k^2+m^2)^{(3+arepsilon)/2}}d^3\mathbf{k}$$

▶ results from direct numerical simulations (DNS)

A. Gorbunova, C. Pagani, G. Balarac, LC, V. Rossetto, Phys. Rev. F 6 (2021)

Correlations in 3D Kraichnan model

▶ result from functional renormalisation group (FRG)

$$\mathcal{C}_ heta(t,\mathbf{k})\propto \exp\left(-\kappa_{ ext{ren}}k^2|t|
ight) \qquad \kappa_{ ext{ren}}=\kappa+rac{1}{3}\int_{\mathbf{k}}rac{D_0}{(k^2+m^2)^{(3+arepsilon)/2}}d^3\mathbf{k}$$

▶ results from direct numerical simulations (DNS)

A. Gorbunova, C. Pagani, G. Balarac, LC, V. Rossetto, Phys. Rev. F 6 (2021)

Presentation outline

1 Statistical theory of turbulence and Renormalisation Group

2 Time dependence of *n*-point correlation functions

3 Anomalous scaling in shell models of turbulence

Definition of shell models of turbulence

Navier-Stokes equations

- velocity field $\mathbf{v}(t, \mathbf{k}) \in \mathbb{R}^d$ on $\mathbf{k} \in \mathbb{R}^d$
- dynamics in spectral space

$$\begin{cases} \frac{\partial \mathbf{v}_{\alpha}}{\partial t} = B_{\alpha}[\mathbf{v}] - \nu \mathbf{k}^2 v_{\alpha} + f_{\alpha} \\ B_{\alpha}[\mathbf{v}] = -ik_{\beta} \int_{\mathbb{R}^d} P_{\alpha\gamma}^{\perp} v_{\beta}(\mathbf{k}') v_{\gamma}(\mathbf{k} - \mathbf{k}') \end{cases}$$

 quadratic invariants: $E = \frac{1}{2} \int_{\mathbf{r}} |\mathbf{v}|^2 d^d \mathbf{x} \quad H = \frac{1}{2} \int_{\mathbf{r}} |\mathbf{v} \cdot \nabla \mathbf{v} d^d \mathbf{x}$

Sabra shell model

.

• velocity mode $v_n(t) \in \mathbb{R}$ or \mathbb{C} on discrete shells $k_n = k_0 \lambda^n$

• dynamics

$$\begin{cases}
\frac{dv_n}{dt} = B_n[v, v^*] - \nu k_n^2 v_n + f_n \\
B_n[v, v^*] = i \left[ak_{n+1}v_{n+2}v_{n+1}^* + bk_n v_{n+1}v_{n-1}^* \\
- ck_{n-1}v_{n-1}v_{n-2} \right],
\end{cases}$$

- only local interactions
- quadratic invariants: $E = \sum v_n v_n^*$, $H = \sum \left(\frac{a}{c}\right)^n v_n v_n^*$

L'vov, Podivilov, Pomvalov, Procaccia, Vandembroucg, PRE 58 (1998) Biferale, Ann. Rev. Fluid 35 (2003), Ditlevsen, Turbulence and shell models (2011)

Structure functions in shell models

Navier-Stokes equations

- continuous symmetries
 - scale invariance $(t, k, v) \rightarrow (\lambda^{1-h}, \lambda^{-1}k, \lambda^{h+d}v)$
 - translation invariance $\mathbf{v}(t, \mathbf{k}) \rightarrow e^{-i\mathbf{k}\cdot\mathbf{x}_0}\mathbf{v}(t, \mathbf{k})$
- exact 4/5th law $S_3(r) = -\frac{4}{5}\,\varepsilon\,r,$
- structure functions

$$\mathcal{S}_{
ho}(r)\equivig\langle |\mathbf{v}(\mathbf{r}_{0}+\mathbf{r})-\mathbf{v}(\mathbf{r}_{0})|^{
ho}ig
angle \ \sim r^{\zeta_{
ho}}$$

• anomalous scaling $\zeta_p \neq \frac{p}{3}$

Sabra shell model

- discrete symmetries
 - scale invariance $(t, k_n, v_n) \rightarrow (\lambda^{1-h}, k_m, \lambda^h v_m)$
 - translation invariance $v_n(t) \rightarrow e^{i\theta_n}v_n(t), \quad \theta_{n+2} = \theta_{n+1} + \theta_n$
- exact law $S_3(k_n) = -\frac{\varepsilon}{2k_n(a-c)}$,
- structure functions

$$S_{p}(k_{n}) = \begin{cases} \langle |v_{n}|^{p} \rangle & \text{even } p \\ \lim_{n \to \infty} \langle v_{n+1}^{*} v_{n} v_{n-1} |v_{n}|^{p-3} \rangle & \text{odd } p \\ \sim k_{n}^{-\zeta_{p}} \end{cases}$$

▶ anomalous scaling $\zeta_p \neq \frac{p}{3}$

Anomalous scaling in Sabra shell models

Absence of sweeping effect in shell models

▶ Sabra model in the presence of a zero mode v_{Ω}

$$\begin{cases} \partial_t \mathbf{v}_n = B_n[\mathbf{v}, \mathbf{v}^*] - ik_n v_\Omega \mathbf{v}_n - \nu k_n^2 \mathbf{v}_n + f_n \\ \partial_t v_\Omega = f_\Omega \,, \end{cases}$$

▶ invariance under Galilean transformation

$$v_n(t)
ightarrow e^{itVk_n}v_n(t), \quad v_n^*(t)
ightarrow e^{-itVk_n}v_n^*(t), \quad v_\Omega(t)
ightarrow v_\Omega(t) - V$$

 \Longrightarrow sweeping effect carried by the zero mode only

remove zero mode \iff eliminate sweeping effect

Absence of sweeping effect in shell models

▶ Sabra model in the presence of a zero mode v_{Ω}

$$\begin{cases} \partial_t \mathbf{v}_n = B_n[\mathbf{v}, \mathbf{v}^*] - ik_n \mathbf{v}_\Omega \mathbf{v}_n - \nu k_n^2 \mathbf{v}_n + f_n \\ \partial_t \mathbf{v}_\Omega = f_\Omega \,, \end{cases}$$

▶ invariance under Galilean transformation

$$v_n(t) \rightarrow e^{itVk_n}v_n(t), \quad v_n^*(t) \rightarrow e^{-itVk_n}v_n^*(t), \quad v_\Omega(t) \rightarrow v_\Omega(t) - V$$

 \Longrightarrow sweeping effect carried by the zero mode only

remove zero mode \iff eliminate sweeping effect

▶ FRG to compute intermittency effect in structure function

Côme Fontaine, M. Tarpin, F. Bouchet, LC, ArXiv:2208.00225 (2022)

Côme's poster

Functional renormalisation group approach to shell models

• Leading order (LO) Ansatz for Γ_{κ}

$$\Gamma_{\kappa}^{\text{LO}}[u, u^*, \bar{u}, \bar{u^*}] = \sum_n \int_t \left\{ \bar{u}_n^* \left[f_{\kappa, n}^{\lambda} \partial_t u_n + B_n[u, u^*] + f_{\kappa, n}^{\nu} u_n \right] - \frac{1}{2} \bar{u}^* f_{\kappa, n}^D \bar{u}_n + \text{c.c.} \right\}$$

- initial condition: $f_{\kappa=\Lambda,n}^{\lambda} = 1$, $f_{\kappa=\Lambda,n}^{\nu} = \nu k_n^2$, $f_{\kappa=\Lambda,n}^{D} = 0$
- $\Gamma_{\kappa}^{(2)}$: functional dependence in *n*, bare frequency dependence
- only bare vertices (given by B_n[u, u^{*}])

similar to Mejía-Monasterio, Muratore-Ginnaneschi, PRE 86 (2012), LC, Delamotte, Wschebor, PRE 93 (2016)

▶ Flow equations for $f_{\kappa,n}^{\nu}$, $f_{\kappa,n}^{D}$, $f_{\kappa,n}^{\lambda}$

 \implies same simplification (as hydrodynamics vs shell models) occurs!

- set of ordinary coupled equations
- strictly local in wavenumber around κ !
- dimensionful integration \longrightarrow fixed-point builds up as $\kappa \rightarrow 0$

Fixed-point with anomalous scaling for the Sabra shell model

 \implies anomalous scaling for the three functions !

second order structure function

$$\begin{split} \zeta_2^{\rm K41} &= 2/3 \\ \zeta_2^{\rm L0} &\simeq 0.74 \pm 0.02 \\ \zeta_2^{\rm DNS} &\simeq 0.720 \pm 0.008 \end{split}$$

Fixed-point with anomalous scaling for the Sabra shell model

third-order structure function

- from direct calculation at LO $S_{3}(k_{n}) = \Im m \langle v_{n-1}v_{n}v_{n+1}^{*} \rangle = \Im m \left[\frac{\delta^{3} \mathcal{W}_{\kappa}}{\delta j_{n-1}(t) j_{n}(t) j_{n+1}^{*}(t)} \right] \Big|_{\kappa \to 0}$
- from recursion relation using analogue of Kármán-Howarth relation and S_2 at LO $\nu k_n^2 S_2(k_n) = ak_{n+1}S_3(k_{n+1}) + bk_n S_3(k_n) + ck_{n-1}S_3(k_{n-1}) + N_n$.

Fixed-point with anomalous scaling for the Sabra shell model

higher-order structure function from direct computation at LO

anomalous scaling for all S_p with $\zeta_p \neq p/3$, but ζ_p affine in p

• akin a β -model Frisch, sulem, Nelkin, JFM 87 (1978), anomalous but uni-fractal

• due to keeping only bare vertices at LO \implies to be improved ...

Effect of long-range forcing

► two sources of forcing: LR power-law + SR large scale forcing $\langle f_n(t)f_{n'}(t')\rangle = 2[D(k_nL)^2 \exp(-(k_nL)^2) + D^{LR}k_n^{-\rho}]\delta(t-t')\delta_{nn'},$

▶ freezing for $\rho < 0$

Effect of long-range forcing

• LR with $\rho = 0$, SR with $D \uparrow$

 $\begin{array}{l} \mathsf{LR:} \ \zeta_2^{\mathrm{LR}} = 2/3 \ (\mathsf{K41}) \\ \mathsf{SR:} \ \zeta_2^{\mathrm{SR}} \simeq 0.74 \ (\mathsf{anomalous}) \end{array}$

 \Longrightarrow two distinct fixed-points

SR fixed-point intermittent, LR fixed-point non-intermittent

▶ anomalous scaling cannot be captured from the $\rho \rightarrow 0$ limit of the LR fixed-point

▶ $\rho \rightarrow 0$ in shell models $\iff \varepsilon \rightarrow 4$ in 3D Navier-Stokes likely to hold also in this case

Conclusions and perspectives

summary

 rigorous expression for time-dependence of *n*-point correlation functions in Navier-Stokes turbulence

 \implies sweeping effect

calculation of structure functions in Sabra shell models

 \implies anomalous scaling but uni-fractal

perspectives

- improve determination of intermittency exponents in shell models
- compute structure functions in 3D Navier-Stokes turbulence
- use FRG for climate and meteo applications ?

Thank you for attention !