Research Group

# Unconventional superconductivity in moiré transition metal dichalcogenides 

Laura Classen

Nico Gneist, Michael Scherer (Bochum)
Lennart Klebl, Ammon Fischer, Dante Kennes (RWTH Aachen)

## Correlated phases in quantum materials

- Collective phases of interacting electron systems?



## Correlated phases in quantum materials

- Collective phases of interacting electron systems?



## Correlated phases in quantum materials

- Collective phases of interacting electron systems?

- Tuning knobs: temperature, density, external fields, ....



## Correlated phases in quantum materials

- Collective phases of interacting electron systems?

- Tuning knobs: temperature, density, external fields, many different (classes of) materials!

High-Tc superconductors, quantum magnets, Dirac materials, low-dimensional systems,


## Outline

- Correlated physics in 2D moiré materials
- Simulate triangular-lattice Hubbard model
- FRG: superconductivity from repulsive interactions/interplay of orders



## 2D Materials

- Designer heterostructures from stacking and twisting 2D materials

, Geim \& Grigorieva, Nature (2013)


## Twisted bilayer graphene

- Graphene: carbon atoms on honeycomb lattice (Dirac fermions, weakly correlated)



## Moiré materials

- Overlay two periodic structures with small mismatch $\rightarrow$ moiré pattern (superlattice)

rotation by $\theta=5^{\circ}$

$\theta=0^{\circ}$ but different lattice constants


## Twisted bilayer graphene

- Scanning tunneling microscopy image of two graphene layers with relative rotation of $1.8^{\circ}$
Li et al., Nature Physics (2010)



## Magic angle twisted bilayer graphene

- Strong interactions arise: correlated insulators and superconductors around $\theta^{\circ} \sim 1$




## Magic angle twisted bilayer graphene

- Strong interactions arise: correlated insulators and superconductors around $\theta^{\circ} \sim 1$




## Moiré materials as "quantum simulators"

- Correlated phases in many other 2D heterostructures

图Kennes et al, Nature Physics (202I)

- Moiré potential quenches kinetic energy
$\rightarrow$ New platform for study of correlated physics
- High degree of control:
stacking, twisting, gating, screening layers, light-matter interaction
$\rightarrow$ Quantum simulation between cold atoms and solid state materials


Transition metal
dichalcogenides

## Article

Simulation of Hubbard model physics in $\mathbf{W S e}_{2} / \mathrm{WS}_{2}$ moiré superlattices

## Transition metal dichalcogenides (TMDs)

- Also form 2D materials (3 atom thick)
oodecoo w



## Correlated states in moiré TMDs

- "Magic continuum" of angles
- Also correlated insulators reported
- "Cooperation" between insulator at $1 / 2$ filling \& (Van Hove) peak in density of states
- Wigner crystals \& stripe phases at fractional fillings $\rightarrow$ interactions of extended range


Wang et al, Nature Mat. (2020)
图Regan et al., Nature (2020)
图Xu et al., Nature (2020)
( Jin et al., Nature Materials (202I)


## Superconductivity (?)

- Evidence for zero-resistance state in tWSe2

Wang et al, Nature Mat. (2020)

- Is superconductivity exclusive for graphene systems?
- Conventional vs. electronic mechanism?




## Moiré transition metal dichalcogenides

- Homo- vs hetero-bilayers

|  |
| :---: |
|  |  |

- AA vs AB stacking ( $0^{\circ}$ vs $180^{\circ}$ )



## Moiré transition metal dichalcogenides

Band structure of WSe2

- Valence-band maxima near K, K'
- Spin-valley locking: ( $K, \uparrow$ ) and ( $K^{\prime}, \downarrow$ )
- Band gap depends on material


Chhowalla et al
Nature Chem. (2013)。

## Moiré transition metal dichalcogenides

Schematic band structure WSe2

- Valence-band maxima near K, K'
- Spin-valley locking: ( $K, \uparrow$ ) and ( $K^{\prime}, \downarrow$ )
- Band gap depends on material


## Moiré transition metal dichalcogenides

Schematic band structure WSe2

- Valence-band maxima near K, K'
- Spin-valley locking: ( $K, \uparrow$ ) and ( $K^{\prime}, \downarrow$ )
- Band gap depends on material
- Differences in set-up for moiré bands:


homo-bilayer AA stacking
(

hetero-bilayer AA stacking

homo-bilayer AB stacking


## Simulate triangular-lattice Hubbard models

- Add moiré potential: $\Delta(\mathbf{r})=\sum_{\mathbf{G}} V(\mathbf{G}) e^{i \mathbf{G} \cdot \mathbf{r}}$
- Huge increase of unit cell $\rightarrow$ bands folded back into reduced zone



## Simulate triangular-lattice Hubbard models

- Add moiré potential: $\Delta(\mathbf{r})=\sum_{\mathbf{G}} V(\mathbf{G}) e^{i \mathbf{G} \cdot \mathbf{r}}$
- Huge increase of unit cell $\rightarrow$ bands folded back into reduced zone

- Highest valence band: well described by triangular lattice Hubbard model


## Simulate triangular－lattice Hubbard models

hetero－bilayer AA stacking
 $\int_{K} \uparrow$

Triangular－lattice Hubbard model with $\operatorname{SU}(2)$ between $(K \uparrow) \&\left(K^{\prime} \downarrow\right)$
图 Wu，Lovorn，Tutuc，MacDonald，PRL（2018）
－Inter－layer hopping suppressed due to spin conservation
－SU（4）triangular－lattice Hubbard model （ $K \uparrow$ top $),\left(K^{\prime} \downarrow\right.$ top $),(K \uparrow$ bot．$),\left(K^{\prime} \downarrow\right.$ bot．）
，Wu，Lovorn，Tutuc，Martin，MacDonald，PRL（2019）
Zhang Sheng，Vishwanath，PRL（202I）
homo－bilayer AA stacking

－Displacement field breaks $\operatorname{SU}(2)$ between $(K \uparrow) \&\left(K^{\prime} \downarrow\right)$ and tunes energy states

## Interplay of orders for triangular lattice

- Two ordering tendencies at special filling:
$\longrightarrow$ Van Hove singularity
Nested Fermi surface
\& Honerkamp, PRB (2003)
R Raghu et al, PRB (2010)
R Nandkishore et al, Nat. Phys. (2012)
Chern, Batista PRL (2012)
Nandkishore et al, PRB (2014)
- Magnetism: spin-density-wave
- Unconventional superconductivity



## Effects on interplay of orders

hetero－bilayer AA stacking
homo－bilayer $A B$ stacking


－Effect of longer－ranged Coulomb repulsion？
图M．Scherer，D．Kennes，LC，arXiv：2 I 08.1 I 406
（ N ．Gneist，LC，M．Scherer，arXiv：2203．0I226
－Effect of more flavours in $\operatorname{SU}(4)$ ？
图Classen，Honerkamp Scherer，PRB 99，195I20（2019）
homo－bilayer AA stacking

－Effect of Fermi surface geometry and Van Hove location？图L．Klebl，A．Fischer，LC，M．Scherer，D．Kennes arXiv：2204．00648

## Competing orders from FRG

- Functional RG: discovery tool for ordering tendencies
- Calculate static 2-particle correlation function $V\left(p_{1}, p_{2}, p_{3}\right)$ dressed by interactions
neglect $\geq 6$-point vertex, self-energy feedback, frequency-dependence
- Unbiased, momentum-resolved!


食 Metzner, Salmhofer, Honerkamp, Meden, Schönhammer, Rev. Mod. Phys. (20I2)

## Momentum resolution

- 3 schemes: Fermi-surface patching, TUFRG, momentum-mesh (+ non-SU(2) symmetry)
- Channel decomposition:

$$
V=\Phi^{P}+\Phi^{C}+\Phi^{D}
$$



## - TUFRG:

$$
\Phi^{X}\left(q, k, k^{\prime}\right)=\sum_{l, l^{\prime}} X^{l, l^{\prime}}(q) f_{l}(k) f_{l^{\prime}}^{*}\left(k^{\prime}\right)
$$

| Channel $X$ | $P$ | $C$ | $D$ |
| :--- | :--- | :--- | :--- |
| Interaction type | Pairing | Magnetic | Density |
| Transfer momentum $q_{X}$ | $\boldsymbol{k}_{1}+\boldsymbol{k}_{2}$ | $\boldsymbol{k}_{1}-\boldsymbol{k}_{4}$ | $\boldsymbol{k}_{1}-\boldsymbol{k}_{3}$ |
| Momentum $k_{X}$ | $-\boldsymbol{k}_{2}$ | $\boldsymbol{k}_{4}$ | $\boldsymbol{k}_{3}$ |
| Momentum $k_{X}^{\prime}$ | $-\boldsymbol{k}_{4}$ | $\boldsymbol{k}_{2}$ | $\boldsymbol{k}_{2}$ |

- High-resolution of transfer momenta q
- Form-factor expansion for $\mathrm{k}, \mathrm{k}^{\prime} f_{l}(k)=e^{i \mathbf{k} \cdot \mathbf{R}_{l}}$

R Karrasch et al, J. Phys. Cond. Mat. (2008)
R Husemann, Salmhofer, PRB (2009)
Lichtenstein et al, Comp. Phys. Com. (2017)


## AA hetero-bilayer

- SU(2) Hubbard model

$$
H=\sum_{i, j} \sum_{\sigma} t_{i-j} c_{i, \sigma}^{\dagger} c_{j, \sigma}-\mu \sum_{i \sigma} c_{i, \sigma}^{\dagger} c_{i \sigma}+\frac{U}{2} \sum_{i, \sigma, \sigma^{\prime}} n_{i \sigma} n_{i \sigma^{\prime}}+\sum_{\sigma, \sigma^{\prime}} \sum_{i, j} V_{i-j} n_{i \sigma} n_{j \sigma^{\prime}} \quad n_{i \nu}=c_{i \nu}^{\dagger} c_{i \nu}
$$

- Longer-ranged interactions important! Up to $V_{3}$.
- Overall strength tunable, e.g., substrate engineering
- Specifically: WSe2/MoS2 $\theta=0: t_{1} \approx 2.5 \mathrm{meV}, t_{2} \approx 0.5 \mathrm{meV}, t_{3} \approx 0.25 \mathrm{meV}$图 Wu, Lovorn, Tutuc, MacDonald, PRL (2018)



## AA hetero-bilayer

- Spin density wave instability:

- Longer-ranged interactions stabilise unconventional pairing state



## Pairing symmetry

- SC gap: $\Delta(\mathbf{k})=-\sum_{\mathbf{k}^{\prime}} V_{p a i r}\left(\mathbf{k}, \mathbf{k}^{\prime}\right) \frac{\Delta\left(\mathbf{k}^{\prime}\right)}{2 \xi_{\mathbf{k}^{\prime}}} \tanh \frac{\xi_{\mathbf{k}^{\prime}}}{2 T_{c}}$
- Fitted well by 2 nd nearest-neighbour harmonics of irrep $E_{2}$ of lattice symmetry $C_{6 v}$ $\rightarrow$ " $g$-wave"
- 2 degenerate solutions (symmetry!)




## Superconducting state

- 2 degenerate pairing solutions $\rightarrow$ gap $\Delta(\mathbf{k})=\Delta_{1} g_{1}(\mathbf{k})+\Delta_{2} g_{2}(\mathbf{k})$
- Which linear combination realised in ground state?
- Minimize Landau free energy

$$
\mathscr{L}=\alpha\left(\left|\Delta_{1}\right|^{2}+\left|\Delta_{2}\right|^{2}\right)+\beta\left(\left|\Delta_{1}\right|^{2}+\left|\Delta_{2}\right|^{2}\right)^{2}+\gamma\left|\Delta_{1}^{2}+\Delta_{2}^{2}\right|^{2}
$$

## Superconducting state

- 2 degenerate pairing solutions $\rightarrow$ gap $\Delta(\mathbf{k})=\Delta_{1} g_{1}(\mathbf{k})+\Delta_{2} g_{2}(\mathbf{k})$
- Which linear combination realised in ground state?
- Minimize Landau free energy

$$
\mathscr{L}=\alpha\left(\left|\Delta_{1}\right|^{2}+\left|\Delta_{2}\right|^{2}\right)+\beta\left(\left|\Delta_{1}\right|^{2}+\left|\Delta_{2}\right|^{2}\right)^{2}+\gamma\left|\Delta_{1}^{2}+\Delta_{2}^{2}\right|^{2}
$$

- FRG data as input to calculate $\alpha, \beta, \gamma$

$$
\Rightarrow \Delta(\mathbf{k})=\Delta_{1}\left[g_{1}(\mathbf{k}) \pm i g_{2}(\mathbf{k})\right]
$$

- $|\Delta(\mathbf{k})|$ has no nodes, $\arg \Delta(\mathbf{k})$ winds 4 times



## Topological superconductivity

- Spontaneous breaking of time-reversal: $g_{1}+i g_{2}$ vs $g_{1}-i g_{2}$
- "Skyrmion" number $\mathcal{N}=\frac{1}{4 \pi} \int_{\mathrm{BZ}} d^{2} k \mathbf{m} \cdot\left(\frac{\partial \mathbf{m}}{\partial k_{x}} \times \frac{\partial \mathbf{m}}{\partial k_{y}}\right)$

$$
\text { based on "pseudo-spin" } \mathbf{m}=\frac{\left(\operatorname{Re} \Delta_{\mathbf{k}}, \operatorname{Im} \Delta_{\mathbf{k}}, \xi_{\mathbf{k}}\right)}{\sqrt{\xi^{2}+\Delta_{\mathbf{k}}^{2}}}
$$



## Topological superconductivity

- Spontaneous breaking of time-reversal: $g_{1}+i g_{2}$ vs $g_{1}-i g_{2}$
- "Skyrmion" number $\mathcal{N}=\frac{1}{4 \pi} \int_{\mathrm{BZ}} d^{2} k \mathbf{m} \cdot\left(\frac{\partial \mathbf{m}}{\partial k_{x}} \times \frac{\partial \mathbf{m}}{\partial k_{y}}\right)$

$$
\text { based on "pseudo-spin" } \mathbf{m}=\frac{\left(\operatorname{Re} \Delta_{\mathbf{k}}, \operatorname{Im} \Delta_{\mathbf{k}}, \xi_{\mathbf{k}}\right)}{\sqrt{\xi^{2}+\Delta_{\mathbf{k}}^{2}}}
$$


$\left.\begin{array}{l}g+i g: \mathcal{N}=4 \\ d+i d: \mathcal{N}=2\end{array}\right\}$ same symmetry under $C_{6}$, different topology

## Topological superconductivity

- Spontaneous breaking of time-reversal: $g_{1}+i g_{2}$ vs $g_{1}-i g_{2}$
- "Skyrmion" number $\mathcal{N}=\frac{1}{4 \pi} \int_{\mathrm{BZ}} d^{2} k \mathbf{m} \cdot\left(\frac{\partial \mathbf{m}}{\partial k_{x}} \times \frac{\partial \mathbf{m}}{\partial k_{y}}\right)$

$$
\text { based on "pseudo-spin" } \mathbf{m}=\frac{\left(\operatorname{Re} \Delta_{\mathbf{k}}, \operatorname{Im} \Delta_{\mathbf{k}}, \xi_{\mathbf{k}}\right)}{\sqrt{\xi^{2}+\Delta_{\mathbf{k}}^{2}}}
$$


$\left.\begin{array}{l}g+i g: \mathcal{N}=4 \\ d+i d: \mathcal{N}=2\end{array}\right\}$ same symmetry under $C_{6}$, different topology

- $\mathcal{N}$ chiral edge modes $\rightarrow$ enhanced, quantized response
- Spin Hall conductance $\sigma_{x y}^{s}=\mathcal{N} \hbar /(8 \pi)$
- Thermal Hall conductance $\kappa=\mathcal{N} \pi k_{B}^{2} /(6 \hbar)$



## AB homobilayer

- SU(4) Hubbard model

$$
\begin{gathered}
H=-t \sum_{\langle i, j\rangle} \sum_{\alpha}\left(c_{i \alpha}^{\dagger} c_{j \alpha}+h . c .\right)+U \sum_{i}\left(\sum_{\alpha}^{\alpha} n_{i, \alpha}\right)^{2}+J \sum_{\langle i, j\rangle} \sum_{x}\left(c_{i}^{\dagger} T^{x} c_{i}\right)\left(c_{j}^{\dagger} T^{x} c_{j}^{x}\right) \\
\alpha \in\left\{(K \uparrow t),\left(K^{\prime} \downarrow t\right),(K \uparrow b),\left(K^{\prime} \downarrow b\right)\right\}
\end{gathered}
$$

- Include exchange coupling $J$
- Also tested robustness regarding Hund's coupling $\operatorname{SU}(4) \rightarrow \mathrm{SU}(2) \times \mathrm{SU}(2)$


## AB homobilayer

- Main ordering tendencies:
- QAH: interaction-induced quantum anomalous Hall state (same as iCDW: loop currents)
- d-wave superconductivity

- QAH instead of SDW due to more flavours


[^0]

## AA homobilayer

- Hubbard model with $\operatorname{SU}(2)$ breaking from displacement field

$$
H=-\sum_{\langle i, j\rangle} \sum_{\sigma}|t| e^{i \sigma \varphi} c_{i \sigma}^{\dagger} c_{j \sigma}+\frac{U}{2} \sum_{i, \sigma, \sigma^{\prime}} n_{i \sigma} n_{i \sigma^{\prime}}
$$

- Displacement field yields Peierls phase $\varphi \in[0, \pi / 3]$
- Tunable Van Hove singularities $\rightarrow$ rich phase diagram of symmetry-broken phases

$$
\varphi=0
$$



$$
\varphi=\pi / 6
$$



$$
\varphi=\pi / 3
$$


, Pan, Wu Das Sarma, PRR (2020); Zang, Wang, Cano, Millis, PRB (202I)

## AA homobilayer

- Density-wave instabilities follow Van Hove singularity
- Fluctuations mediate pairing in vicinity



## AA homobilayer

- Density-wave instabilities follow Van Hove singularity
- Fluctuations mediate pairing in vicinity
- (Incommensurate) wave vectors of DWs follow Fermi surface nesting: 3 stripes $\rightarrow 120^{\circ}$ spiral $\rightarrow$ FM



## AA homobilayer

- Density-wave instabilities follow Van Hove singularity
- Fluctuations mediate pairing in vicinity
- (Incommensurate) wave vectors of DWs follow Fermi surface nesting:
3 stripes $\rightarrow 120^{\circ}$ spiral $\rightarrow$ FM
- Pairing symmetry: mixed s/f or p/d ( $p+i p / d+i d$ )
- Mainly determined by filling (i.e. Fermi surface): maximise gap



## Summary

- Study correlated phases and mechanism for superconductivity
- Moiré materials: stacked and twisted 2D materials
- Moiré transition metal dichalcogenides as "simulators" for triangular-lattice Hubbard model
- FRG to investigate interplay of orders $\rightarrow$ unbiased method with high enough momentum resolution



## Thank you!

Nico Gneist, Michael Scherer (Bochum)
Lennart Klebl, Ammon Fischer, Dante Kennes (RWTH Aachen)

L.Classen@fkf.mpg.de I www.fkf.mpg.de


[^0]:    See also Lin, Nandkishore $\operatorname{PRB}(2019)$

