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Correlated phases in quantum materials
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• Collective phases of interacting electron systems?
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• Collective phases of interacting electron systems?


• Tuning knobs: temperature, density, external fields, ….
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• Collective phases of interacting electron systems?


• Tuning knobs: temperature, density, external fields, ….

  many different (classes of) materials!
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High-Tc superconductors, quantum magnets, 

Dirac materials, low-dimensional systems, ….
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• Correlated physics in 2D moiré materials 

• Simulate triangular-lattice Hubbard model

• FRG: superconductivity from repulsive interactions/interplay of orders 

nVH density
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2D Materials
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• Designer heterostructures from stacking and twisting 2D materials

Geim & Grigorieva, Nature (2013)



• Graphene: carbon atoms on honeycomb lattice (Dirac fermions, weakly correlated)

Twisted bilayer graphene

8



Moiré materials
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• Overlay two periodic structures with small mismatch  moiré pattern (superlattice)→

rotation by θ = 5∘  but different lattice constantsθ = 0∘



Twisted bilayer graphene
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• Scanning tunneling 
microscopy image of two 
graphene layers with relative 
rotation of 1.8∘

Moiré pattern in STM
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Li et al, Nature Physics 6 (2010)

Li et al., Nature Physics (2010)



• Strong interactions arise: correlated insulators and superconductors around  θ∘ ∼ 1

Magic angle twisted bilayer graphene
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proximity effects. The carrier density n is tuned by applying a voltage 
to a Pd/Au bottom gate electrode. In Fig. 1b we show the longitudi-
nal resistance Rxx as a function of temperature for two magic-angle 
devices, M1 and M2, with twist angles of 1.16° and 1.05°, respectively. 
At the lowest temperature studied of 70 mK, both devices show zero 
resistance, and therefore a superconducting state. The critical temper-
ature Tc as calculated using a resistance of 50% of the ‘normal’-state 
(non-superconducting) value is approximately 1.7 K and 0.5 K for the 
two devices that we studied in detail. In Fig. 1c, d we show a single- 
particle band structure and density of states (DOS) near the charge 
neutrality point calculated for θ = 1.05°. The superconductivity in both 
devices occurs when the Fermi energy EF is tuned away from charge 
neutrality (EF = 0) to be near half-filling of the lower flat band (EF < 0, 
as indicated in Fig. 1d). The DOS within the energy scale of the flat 
bands is more than three orders of magnitudes higher than that of 
two uncoupled graphene sheets, owing to the reduction of the Fermi 
velocity and the increase in localization that occurs near the magic 
angle. However, the energy at which the DOS peaks does not gener-
ally coincide with the density that is required to half-fill the bands. 
In addition, we did not observe any appreciable superconductivity 
when the Fermi energy was tuned into the flat conduction bands 
(EF > 0). In Fig. 1e we show the current–voltage (I–Vxx, where Vxx 
is the four-probe voltage, as defined in Fig. 1a) curves of device M2 
at different temperatures. We observe typical behaviour for a two- 
dimensional superconductor. The inset shows a tentative fit of the 
same data to a Vxx ∝ I3 power law, as is predicted in a Berezinskii–
Kosterlitz–Thouless transition in two-dimensional superconductors23. 
This analysis yields a Berezinskii–Kosterlitz–Thouless transition tem-
perature of TBKT ≈ 1.0 K at n = −1.44 × 1012 cm−2, where, as before, 

n is the carrier density induced by the gate and measured from the 
charge neutrality point (which is different from the actual carrier  
density involved in transport, as we show below).

In contrast to other known two-dimensional and layered super-
conductors, the superconductivity in magic-angle TBG requires the 
application of only a small gate voltage, corresponding to a minimal 
density of only 1.2 × 1012 cm−2 from charge neutrality, an order of mag-
nitude lower than the value of 1.5 × 1013 cm−2 in LaAlO3/SrTiO3 inter-
faces and of 7 × 1013 cm−2 in electrochemically doped MoS2, among 
others24. Therefore, gate-tunable superconductivity can be realized 
in a high-mobility system without the need for ionic-liquid gating or 
chemical doping. In Fig. 2a we show the two-probe conductance of 
device M1 versus n at zero magnetic field and at a 0.4-T perpendic-
ular magnetic field. Near the charge neutrality point (n = 0), a typical 
V-shaped conductance is observed, which originates from the renor-
malized Dirac cones of the TBG band structure. The insulating states 
centred at approximately ±3.2 × 1012 cm−2 (which corresponds to ns 
for θ = 1.16°) are due to single-particle bandgaps in the band structure 
that correspond to filling ±4 electrons in each superlattice unit cell. In 
between, there are conductance minima at ±2 and ±3 electrons per 
unit cell. These minima are associated with many-body gaps induced by 
the competition between the Coulomb energy and the reduced kinetic 
energy due to confinement of the electronic state in the superlattice 
near the magic angle; these gaps give rise to insulating behaviour near 
the integer fillings18. One possible mechanism for the gaps is similar 
to the gap mechanism in Mott insulators, but with an extra two-fold 
degeneracy (for the case of ±2 electrons) from the valleys in the origi-
nal graphene Brillouin zone17,18,25,26. In the vicinity of −2 electrons 
per unit cell (n ≈ −1.3 × 1012 cm−2 to n ≈ −1.9 × 1012 cm−2) and at a 
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Figure 2 | Gate-tunable superconductivity in magic-angle TBG. 
a, Two-probe conductance G2 = I/Vbias of device M1 (θ = 1.16°) measured 
in zero magnetic field (red) and at a perpendicular field of B⊥ = 0.4 T 
(blue). The curves exhibit the typical V-shaped conductance near charge 
neutrality (n = 0, vertical purple dotted line) and insulating states at the 
superlattice bandgaps n = ±ns, which correspond to filling ±4 electrons 
in each moiré unit cell (blue and red bars). They also exhibit reduced 
conductance at intermediate integer fillings of the superlattice owing to 
Coulomb interactions (other coloured bars). Near a filling of −2 electrons 
per unit cell, there is considerable conductance enhancement at zero field 
that is suppressed in B⊥ = 0.4 T. This enhancement signals the onset of 

superconductivity. Measurements were conducted at 70 mK; Vbias = 10 µV. 
b, Four-probe resistance Rxx, measured at densities corresponding to 
the region bounded by pink dashed lines in a, versus temperature. Two 
superconducting domes are observed next to the half-filling state, which 
is labelled ‘Mott’ and centred around −ns/2 = −1.58 × 1012 cm−2. The 
remaining regions in the diagram are labelled as ‘metal’ owing to the 
metallic temperature dependence. The highest critical temperature 
observed in device M1 is Tc = 0.5 K (at 50% of the normal-state resistance). 
c, As in b, but for device M2, showing two asymmetric and overlapping 
domes. The highest critical temperature in this device is Tc = 1.7 K.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Cao et al., Nature (2018)
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Figure 2 | Gate-tunable superconductivity in magic-angle TBG. 
a, Two-probe conductance G2 = I/Vbias of device M1 (θ = 1.16°) measured 
in zero magnetic field (red) and at a perpendicular field of B⊥ = 0.4 T 
(blue). The curves exhibit the typical V-shaped conductance near charge 
neutrality (n = 0, vertical purple dotted line) and insulating states at the 
superlattice bandgaps n = ±ns, which correspond to filling ±4 electrons 
in each moiré unit cell (blue and red bars). They also exhibit reduced 
conductance at intermediate integer fillings of the superlattice owing to 
Coulomb interactions (other coloured bars). Near a filling of −2 electrons 
per unit cell, there is considerable conductance enhancement at zero field 
that is suppressed in B⊥ = 0.4 T. This enhancement signals the onset of 

superconductivity. Measurements were conducted at 70 mK; Vbias = 10 µV. 
b, Four-probe resistance Rxx, measured at densities corresponding to 
the region bounded by pink dashed lines in a, versus temperature. Two 
superconducting domes are observed next to the half-filling state, which 
is labelled ‘Mott’ and centred around −ns/2 = −1.58 × 1012 cm−2. The 
remaining regions in the diagram are labelled as ‘metal’ owing to the 
metallic temperature dependence. The highest critical temperature 
observed in device M1 is Tc = 0.5 K (at 50% of the normal-state resistance). 
c, As in b, but for device M2, showing two asymmetric and overlapping 
domes. The highest critical temperature in this device is Tc = 1.7 K.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Basov, Chubukov, Nature Physics (2011)Cao et al., Nature (2018)



Moiré materials as “quantum simulators”
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• Correlated phases in many other 2D heterostructures 

• Moiré potential quenches kinetic energy


 New platform for study of correlated physics

• High degree of control: 


stacking, twisting, gating, screening layers, 

light-matter interaction


 Quantum simulation between cold atoms

  and solid state materials

→

→

Kennes et al, Nature Physics (2021)

Transition

metal

dichalcogenides



Transition metal dichalcogenides (TMDs)
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W
Se

MX2

M=Transition metal

X=Chalcogen

• Also form 2D materials (3 atom thick)



Correlated states in moiré TMDs
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• “Magic continuum” of angles


• Also correlated insulators reported 

‣ “Cooperation” between insulator at 1/2 filling 

& (Van Hove) peak in density of states

‣Wigner crystals & stripe phases at fractional 
fillings  interactions of extended range→
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FIG. 3. Angle and displacement field dependence of the correlated insulator. A Resistance versus displacement field
and relative density near half-filling for all measured angles. B Summary of measured insulating gap sizes over displacement
field across three devices. C Summary map of observed metallic and insulating regions at half-filling across di↵erent angles and
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panel shows line cuts for the gap size as a function of displacement field for a select interaction strengths.

sample shows a metallic response at all fillings with re-
sistance decreasing with decreasing temperature. How-
ever, below 10 K the resistance at 0.5ns shows a sudden
onset to thermally activated beahviour indicating an in-
sulating reponse. The extracted gap value is ⇠ 23 K,
or about twice the apparent critical temperature where
the insulating response onsets. The sharp transition to-
gether with an activation energy exceeding the onset tem-
perature are both consistent with the CI being a Mott
transition[32].

Fig.1f shows the resistance of the same 4.2� device ver-
sus top and back gate voltage (Supplementary Informa-
tion Fig. 4 for other angle data) in the range of half fill-
ing, which allows us to investigate the e↵ect of displace-
ment field - here we report the average displacement field
defined as D = (CTVT �CBVB)/2✏o, where VT (B) is the
top (bottom) gate bias, CT (B) the associated geometric
capacitance, and ✏o is the vacuum permittivity. We note
that the resistive peak at 0.5ns persists only over a finite
range 0.08 V/nm < D < 0.28 V/nm, with the maximum

resistance observed at D ⇠ 0.15V/nm. Temperature de-
pendent measurements (Supplementary Information Fig.
5) confirm a D-field induced metal-insulator-metal tran-
sition over this range, with activation gaps showing a
dome-like evolution.

The response of the samples under perpendicular ap-
plied magnetic fields provides key additional insight. We
first map the Landau level spectra as a function of ap-
plied field and induced density to unambiguously deter-
mine the density of full filling of the moiré lattice. Next,
we measure the Hall response to determine the point at
which the band curvature changes from electron-like to
hole-like, which should coincide with a peak (vHS) in
the density of states. Fig. 2a shows the longitudinal re-
sistance Rxx for the 4.5� device plotted against n/ns at
magnetic fields up to 13 T. At high fields, two sets of Lan-
dau fans are visible. Linear extrapolation of the Landau
level trajectories to zero field allows us to precisely de-
termine the position of the valence band edge as well as
the full filling density of the moiré subband (see Supple-

Wang et al, Nature Mat. (2020)
Regan et al., Nature (2020)
Xu et al., Nature (2020) 
Jin et al., Nature Materials (2021)
… 
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Here ω is the excitation frequency and ∼α n= ∆OC/∆  is the optical  
detection responsivity in region 2, which is constant for the fixed bot-
tom gate voltage used in our study. The frequency-dependent optical 
signal ∆OC(ω) allows us to extract the values of both CQ and R: at low 
excitation frequencies the resistance is negligible, so the optical signal 
probes the quantum capacitance CQ, which is proportional to the den-
sity of states of the moiré heterostructure. At high modulation frequen-
cies, both CQ and R contribute to the optical signal.

We focus our study on WSe2/WS2 heterostructures with near-zero 
twist angles that have a moiré superlattice with a period of about 8 nm 
owing to the ~4% lattice mismatch between the WS2 and WSe2 monolay-
ers. Figure 1d shows a schematic of device D1: few-layer graphene is 
used for the gates and contact to the TMD layers, and hexagonal boron 
nitride (hBN) is used at the top and bottom gate dielectrics (εr = 4.2; 
see Methods and ref. 25 for fabrication details). Figure 1e shows an opti-
cal microscopy image of the final device, with contours highlighting 
the WS2 and WSe2 layers and the local graphite top gate. To verify the 
presence of the moiré superlattice, we examine the optical absorp-
tion spectrum of the heterostructure (Fig. 1f). The spectrum shows 
clear splitting of the WSe2 A exciton, which is a signature of the moiré 
superlattice in the heterostructure25.

Figure 2a shows the ODRC signals as a function of the hole doping of 
the WSe2/WS2 moiré superlattice in region 1. We use an a.c. excitation 

voltage with the peak-to-peak amplitude of 10 mV at 1 kHz and 30 kHz. 
When region 1 is charge-neutral (Vtop > 0.2 V), the ∆OC signal is small 
because no carriers are available to redistribute in the bandgap of 
WSe2. When region 1 is hole-doped (Vtop < 0.2 V), charge redistribu-
tion occurs, leading to a large increase in the signal. Interestingly, we 
observe a strong gap-like feature at −1 V (blue dashed line in Fig. 2a). 
From a capacitance model, we estimate the corresponding hole con-
centration to be 1.86 × 1012 cm−2, which matches well with a density of 
one hole per moiré unit cell (n0 = 1.88 × 1012 cm−2; see Methods). We 
also observe two sharp dips at −0.2 V and −0.6 V (orange and green 
dashed lines in Fig. 2a), which correspond to hole concentrations of 
n = n0/3 and n = 2n0/3, respectively. Additionally, a broad, weaker feature 
is observed at −2.25 V, which corresponds to n = 2n0. These features 
become stronger at the higher excitation frequency of 30 kHz. ODRC 
signals for additional aligned heterostructures are shown in Extended 
Data Fig. 5.

We extract numerical values for the doping-dependent Ceff and R of 
the moiré heterostructure based on the effective a.c. circuit model and 
equation (1). We plot Ceff and R as a function of carrier doping in Fig. 2b, 
c (grey lines). An optical responsivity of α = 1.4 × 10−12 cm2 is chosen so 
that = +C C C C

1 1
+

1

eff 1 B 2
 at high doping, where the quantum capacitance 

is much larger than the geometric capacitances and has negligible 
contribution. At n = n0, n = n0/3 and n = 2n0/3, Ceff decreases, whereas 
the geometric capacitances remain unchanged (Fig. 2b). This decrease 
in Ceff is due to the much smaller quantum capacitance CQ, which results 
from the greatly reduced density of states at these fillings. At the same 
time, the electrical resistance shows marked increases at n = n0, n = n0/3 
and n = 2n0/3 (Fig. 2c). The simultaneous reduction of the density of 
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Fig. 2 | Doping-dependent resistance and capacitance probed by ODRC.  
a, ODRC signal at 1 kHz (grey) and 30 kHz (black) from charge-neutral to 
moderate hole doping. Strong gap-like features are observed at hole  
doping levels of n = n0/3 (orange dashed line), n = 2n0/3 (green dashed line)  
and n = n0 (blue dashed line). The purple dashed line corresponds to n = 0.  
b–d, Capacitance Ceff (b) and resistance (c) of region 1. Grey curves are 
extracted from the data in a, and black dots are extracted from the frequency-

dependent ODRC signal (d) at representative doping levels. In d, the dots are 
the frequency-dependent ODRC signal at the indicated values of Vtop and the 
lines are the corresponding fits with the RC circuit model. The decreased 
capacitance and increased resistance indicate emerging insulating states at 
n = n0/3, n = 2n0/3 and n = n0. All measurements are done at 3 K. e, Illustrations of 
generalized Wigner crystal (n = n0/3, n = 2n0/3) and Mott insulator states (n = n0) 
in a WSe2/WS2 moiré superlattice.



Superconductivity (?)
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• Evidence for zero-resistance state in tWSe2


• Is superconductivity exclusive for graphene systems?

• Conventional vs. electronic mechanism?


• Theoretical viewpoint: 

‣ SC not exclusive  [here: Van Hove scenario] 

‣ If unconventional: hexagonal symmetry guarantees 

interesting SC states 

[2D irreps for p-,d- wave  nematic or topological SC]→
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FIG. 4. Evidence of superconductivity A Resistivity ver-
sus temperature and density. The density was varied with
the back gate while the top gate was kept fixed at -12.25 V.
Two zero resistance regions (suggesting superconducting be-
haviour) appear when doping away from the insulating state.
B Resistance versus temperature at di↵erent densities near
half filling. The insulating response at half filling (blue) on-
sets at 35K, whereas the superconducting states (red and
green) reach zero resistance below 3K.

mentary Information Fig. 6 for data from other devices
and angles). For the fan originating from the valence
band edge, we observe only even-integer quantum Hall
states (white lines) up to approximately B = 8 T, con-
sistent with a two-fold degenerate Fermi surface. Above
8 T, we observe onset of additional odd integer QHE
states (red lines), indicating a lifting of the combined
spin-valley degeneracy. This degeneracy lifting is not
clearly observed in the satellite fan originating from full
filling, where two-fold degenerate Landau levels persist

to the highest measured fields. The magnitude of the
0.5ns insulating peak decreases with increasing B field
and vanishes at B ⇠ 6T. This behaviour is qualitatively
consistent with a non-ferromagnetically ordered ground
state. However, a detailed understanding of this trend is
complicated by variation of both Coulomb and Zeeman
energies under perpendicular applied field. A full study
of B-field dependence is beyond the scope of the present
manuscript and will be discussed elsewhere (see also Sup-
plementary Information Fig. 7). Fig. 2b shows the Hall
resistance measured simultaneously with the longitudi-
nal resistivity shown in Fig. 2a. At high field, the sign of
the Hall resistance inverts upon doping from low to high
carrier density, consistent with the expected response for
a single band where the dispersion changes from hole-
like to electron-like as the band is filled. This provides
further confirmation that our gate range spans a single
low-energy sub-band. Fig. 2c shows the Hall resistance
versus density, measured at B = 1 T for three separate
displacement fields . The top panel (D = 0.1 V/nm)
corresponds to low displacement field where no resistive
peak is seen in the longitudinal resistance at half filling.
Here, the Hall resistance changes sign from hole-like to
electron-like transport at n/ns ⇠ 0.4, after which the
Hall e↵ect continues to show electron-like transport with
increased doping. Since there is no evidence of an insulat-
ing sate, we interpret the single crossing point as the po-
sition of the van Hove singularity (vHS) where the moiré
subband curvature changes sign. The two lower panels of
Fig. 2c (D=0.19 V/nm and D=0.30 V/nm respectively),
correspond to the range of D where a resistive peak is ob-
served at half filling. In this case three crossings appear,
which we label n1, n2 and nvHS . We identify the nvHS

crossing as the single-particle band vHS since this marks
the point beyond which the band continues to show an
electron-like Hall response. We therefore associate the
other two crossings with the appearance of the half-filling
insulating state.

The position of the vHS evolves continuously with dis-
placement field, starting at n/ns < 0.5 for low D but
moving through half filling to n/ns > 0.5 values for large
D. The magnitude of the longitudinal resistance peak
at half filling correlates closely with the position of the
single-particle vHS with the largest resistive peak seen
when the vHS is near half-filling (Fig. 2d). The depen-
dence of the half filling CI on the vHS position indicates
that the system is in a regime of moderate correlations,
where the band structure (specifically the DOS) plays
an important role in determining the properties of the
emergent insulator. However, we note that the insulat-
ing phase itself is always observed at precisely half-filling,
indicating that we are not in the weakly correlated regime
where gaps would form at the peak of the vHS.

Fig. 2e-g shows the tWSe2 band structure calculated
by DFT as a function of D, for a 4.5� twist. At zero
D, the two layers are degenerate and the hybridization
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FIG. 4. Evidence of superconductivity A Resistivity ver-
sus temperature and density. The density was varied with
the back gate while the top gate was kept fixed at -12.25 V.
Two zero resistance regions (suggesting superconducting be-
haviour) appear when doping away from the insulating state.
B Resistance versus temperature at di↵erent densities near
half filling. The insulating response at half filling (blue) on-
sets at 35K, whereas the superconducting states (red and
green) reach zero resistance below 3K.

mentary Information Fig. 6 for data from other devices
and angles). For the fan originating from the valence
band edge, we observe only even-integer quantum Hall
states (white lines) up to approximately B = 8 T, con-
sistent with a two-fold degenerate Fermi surface. Above
8 T, we observe onset of additional odd integer QHE
states (red lines), indicating a lifting of the combined
spin-valley degeneracy. This degeneracy lifting is not
clearly observed in the satellite fan originating from full
filling, where two-fold degenerate Landau levels persist

to the highest measured fields. The magnitude of the
0.5ns insulating peak decreases with increasing B field
and vanishes at B ⇠ 6T. This behaviour is qualitatively
consistent with a non-ferromagnetically ordered ground
state. However, a detailed understanding of this trend is
complicated by variation of both Coulomb and Zeeman
energies under perpendicular applied field. A full study
of B-field dependence is beyond the scope of the present
manuscript and will be discussed elsewhere (see also Sup-
plementary Information Fig. 7). Fig. 2b shows the Hall
resistance measured simultaneously with the longitudi-
nal resistivity shown in Fig. 2a. At high field, the sign of
the Hall resistance inverts upon doping from low to high
carrier density, consistent with the expected response for
a single band where the dispersion changes from hole-
like to electron-like as the band is filled. This provides
further confirmation that our gate range spans a single
low-energy sub-band. Fig. 2c shows the Hall resistance
versus density, measured at B = 1 T for three separate
displacement fields . The top panel (D = 0.1 V/nm)
corresponds to low displacement field where no resistive
peak is seen in the longitudinal resistance at half filling.
Here, the Hall resistance changes sign from hole-like to
electron-like transport at n/ns ⇠ 0.4, after which the
Hall e↵ect continues to show electron-like transport with
increased doping. Since there is no evidence of an insulat-
ing sate, we interpret the single crossing point as the po-
sition of the van Hove singularity (vHS) where the moiré
subband curvature changes sign. The two lower panels of
Fig. 2c (D=0.19 V/nm and D=0.30 V/nm respectively),
correspond to the range of D where a resistive peak is ob-
served at half filling. In this case three crossings appear,
which we label n1, n2 and nvHS . We identify the nvHS

crossing as the single-particle band vHS since this marks
the point beyond which the band continues to show an
electron-like Hall response. We therefore associate the
other two crossings with the appearance of the half-filling
insulating state.

The position of the vHS evolves continuously with dis-
placement field, starting at n/ns < 0.5 for low D but
moving through half filling to n/ns > 0.5 values for large
D. The magnitude of the longitudinal resistance peak
at half filling correlates closely with the position of the
single-particle vHS with the largest resistive peak seen
when the vHS is near half-filling (Fig. 2d). The depen-
dence of the half filling CI on the vHS position indicates
that the system is in a regime of moderate correlations,
where the band structure (specifically the DOS) plays
an important role in determining the properties of the
emergent insulator. However, we note that the insulat-
ing phase itself is always observed at precisely half-filling,
indicating that we are not in the weakly correlated regime
where gaps would form at the peak of the vHS.

Fig. 2e-g shows the tWSe2 band structure calculated
by DFT as a function of D, for a 4.5� twist. At zero
D, the two layers are degenerate and the hybridization

Wang et al, Nature Mat. (2020)



Moiré transition metal dichalcogenides
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• Homo- vs hetero-bilayers


• AA vs AB stacking (  vs )0∘ 180∘

W

Mo

Se
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Moiré transition metal dichalcogenides
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• Valence-band maxima near K, K’


• Spin-valley locking:  and 

• Band gap depends on material

(K, ↑ ) (K′￼, ↓ )

Chhowalla et al
    Nature Chem. (2013)
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Moiré transition metal dichalcogenides
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• Valence-band maxima near K, K’


• Spin-valley locking:  and 

• Band gap depends on material

(K, ↑ ) (K′￼, ↓ )
K K′￼↑
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homo-bilayer
AB stacking 

hetero-bilayer
AA stacking 

Moiré transition metal dichalcogenides
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• Valence-band maxima near K, K’


• Spin-valley locking:  and 

• Band gap depends on material


• Differences in set-up for moiré bands:

(K, ↑ ) (K′￼, ↓ )

↑
K

↑
K

homo-bilayer
AA stacking 
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Simulate triangular-lattice Hubbard models
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• Add moiré potential:  


• Huge increase of unit cell  bands folded back into reduced zone

Δ(r) = ∑
G
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Simulate triangular-lattice Hubbard models
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• Add moiré potential:  


• Huge increase of unit cell  bands folded back into reduced zone


• Highest valence band: well described by triangular lattice Hubbard model

Δ(r) = ∑
G

V(G) eiG⋅r
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Supplemental Material

MOIRÉ BANDS IN WSe2/MoS2 BILAYERS

In the di↵erent-chalcogen heterobilayer WSe2/MoS2,
the top-most valence bands are also primarily associated
with WSe2 layer. There is a relatively large di↵erence
in lattice constants between WSe2 and MoS2, and the
mismatch � is |a0 � a

0
0|/a0 ⇡ 3.9%, where a0 ⇡ 3.32

Å and a
0
0 ⇡ 3.19 Å are respectively lattice constants

of WSe2 and MoS2. Due to the mismatch �, there is a
moiré pattern even in rotationally aligned WSe2/MoS2
bilayer. Experimentally, scanning tunneling microscopy
measurement has identified a spatial variation with an
amplitude of 50 meV in the valence band maximum en-
ergy of aligned WSe2/MoS2 bilayer in AA stacking.[8]
We study moiré bands in this system, and the analysis
is similar to that presented in the main text. The moiré
potential that acts on the valence band states of WSe2 is
still approximated by:

�(r) =
0X

b

V (b) exp[ib · r] (6)

where the summation over b is again restricted to the six
moiré reciprocal lattice vectors in the first shell, which
are given by: bj ⇡ ✓Gj ⇥ ẑ � �Gj . Here ✓ is the rota-
tion angle, � is the lattice constant mismatch, and Gj

is the reciprocal lattice vectors of monolayer WSe2 in
the first shell. We also require that V (R̂2⇡/3b) = V (b)
and V (b) = V

⇤(�b), and all six V (b) are therefore fixed
by V (b1) = V exp(i ). By fitting to the experimentally
measured moiré potential [8], we obtain that (V, ) is
(5.1 meV,�71�) for WSe2 on MoS2 in AA stacking. The
moiré period is determined by aM ⇡ a0/

p
✓2 + �2, which

is about 8.5 nm in the aligned case (✓ = 0�) and decreases
as the twist angle increases.

Results for this system are summarized in Fig. 5. At
✓ = 0�, the highest valence moiré band is isolated from
other bands and has a bandwidth about 20 meV. The
Hubbard repulsive interaction can be at least an order of
magnitude larger compared to the hopping parameters.
Therefore, Hubbard model physics can also be realized
in WSe2/MoS2 bilayer, and the candidate many-body
ground states discussed in the main text are applicable
as well.

DISCUSSION ON MOIRÉ POTENTIAL

Density-functional theory (DFT) with local or semilo-
cal exchange and correlation functionals fails to capture
the long-range van der Waals (vdW) interactions between
layers in vdW structures, and leads to inaccurate esti-
mation of binding energies.[34] DFT with random-phase
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FIG. 5. (a) Moiré potential energy and (b) moiré bands for
valence states of WSe2 aligned with MoS2 in AA stacking.
(c) Hopping parameters tn and (d) Hubbard model repulsive
interaction parameters ✏Un as a function of moiré period aM

(bottom) and twist angle ✓ (top).

approximation (RPA) correction is required to account
for the nonlocal vdW interactions; however, RPA cor-
rection is computationally expensive and is beyond the
scope of this work.[34] Our primary interest is on the
position dependence of the valence band maximum en-
ergy, which varies in the moiré pattern mainly due to
the change in the local atomic coordination between the
two layers. For this reason, we expect that the moiré
potential will depend less sensitively on the non-local
vdW interaction, and DFT with local-density approxi-
mation (LDA) can provide a qualitative estimation of the
moiré potential. As shown in the main text, LDA pre-
dicts a moiré potential with an amplitude about 60 meV
in AA-stacked WSe2/MoSe2 bilayer, which is compara-
ble to the experimentally measured moiré potential in a
WSe2/MoS2 bilayer.[8]. This provides a strong justifica-
tion for our proposal that uses TMD bilayers to simulate
Hubbard model physics.
We have focused on the AA stacked bilayer. In TMD

heterostructures with a small di↵erence in lattice con-
stant or orientation, there is another distinct stacking
configuration denoted as AB.[14] AA and AB stacking
are distinguished by a 180� rotation of the top layer.
We find that moiré potential is typically shallower in
AB stacking compared to AA. In the case of AB stacked
WSe2/MoSe2, LDA calculation leads to a moiré poten-
tial with an amplitude about 10 meV for valence band
states associated with WSe2. For this system, the high-
est valence moiré band is energetically isolated from other
bands when the twist angle ✓ is less than 1.5�, and there-
fore, Hubbard model physics can be realized at small

Wu, Lovorn, Tutuc, MacDonald, PRL (2018)
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Simulate triangular-lattice Hubbard models
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Triangular-lattice Hubbard model with SU(2) between 
 & 


• Inter-layer hopping suppressed due to spin conservation

• SU(4) triangular-lattice Hubbard model 




• Displacement field breaks SU(2) between  &  
and tunes energy states

(K ↑ ) (K′￼↓ )

(K ↑ top), (K′￼↓ top), (K ↑ bot.), (K′￼↓ bot.)

(K ↑ ) (K′￼↓ )
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homo-bilayer
AA stacking 

homo-bilayer
AB stacking 

hetero-bilayer
AA stacking 

↑ μ
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↑
K Wu, Lovorn, Tutuc, MacDonald, PRL (2018)

Pan, Wu Das Sarma, PRR (2020)
Zang, Wang, Cano, Millis, PRB (2021)

Wu, Lovorn, Tutuc, Martin, MacDonald, PRL (2019)
Zhang Sheng, Vishwanath, PRL (2021)



Interplay of orders for triangular lattice
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• Two ordering tendencies at special filling: 


‣ Magnetism: spin-density-wave

‣ Unconventional superconductivity

Honerkamp, PRB (2003)
Raghu et al, PRB (2010)
Nandkishore et al, Nat. Phys. (2012)
Chern, Batista PRL (2012)
Nandkishore et al, PRB (2014)
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➡ Change for moiré models?



Effects on interplay of orders
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• Effect of longer-ranged Coulomb repulsion?


• Effect of more flavours in SU(4)?


• Effect of Fermi surface geometry and Van Hove location?
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↑ μ
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M. Scherer, D. Kennes, LC, arXiv:2108.11406
N. Gneist, LC, M. Scherer, arXiv:2203.01226  

Classen, Honerkamp Scherer, PRB 99, 195120 (2019)

L. Klebl, A. Fischer, LC, M. Scherer, D. Kennes arXiv:2204.00648



• Functional RG: discovery tool for ordering tendencies


• Calculate static 2-particle correlation function  
dressed by interactions 

neglect  6-point vertex, self-energy feedback, frequency-dependence


• Unbiased, momentum-resolved!

V(p1, p2, p3)

≥

Competing orders from FRG
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SC
MAGNET


QAHNEM

d
dΛ

VΛ(k1, k2, k3, k4) = +

Cooper Peierls screening vertex corrections

+ + +

Metzner, Salmhofer, Honerkamp, Meden, Schönhammer, Rev. Mod. Phys. (2012)



• 3 schemes: Fermi-surface patching, TUFRG, momentum-mesh (+ non-SU(2) symmetry)

• Channel decomposition: 


• TUFRG:


• High-resolution of transfer momenta q


• Form-factor expansion for k,k’ fl(k) = eik ⋅ Rl

6

FIG. 5. Momentum mesh and form-factor geometry.
Top: Momentum resolution Nq of the BZ in the transfer mo-
menta. Only a subset (red) of the momentum mesh needs to
be calculated. The remaining ones are obtained from symme-
tries. Bottom: Numbering of form factors. The shades of red
indicate the distance to the origin. The site with number 1 is
the onsite form factor, 2–7 are the nearest-neighbor form fac-
tors, 10,11,14,15,18,19 are second-nearest-neighbor form fac-
tors and 8,9,12,13,16,17 are third-nearest-neighbor form fac-
tors. The form factor shells are defined as all the form factors
sitting on the s-th blue hexagon.

where the area of the Brillouin zone is absorbed in the
momentum integral:

R
k = A

�1

BZ

R
dk.

For our implementation we use the momentum mesh
shown in Fig. 5 for Nq and plane-wave form factors
fl(k) = exp(ikRl), which reduce the numerical cost of
the projections (25)–(27). They also facilitate an in-
tuitive interpretation of form-factor e↵ects on the flow
equations in terms of distances in real space. We group
the fl into shells defined by hexagons of increasing size
around a central site, cf. Fig. 5. The shells are numbered
by Ns 2 N0 and we include up to Ns = 4, see App. B for
further details. In the next section we perform conver-
gence checks in the expansion parameters (Nq, Nl) and
show that a manageable number of transfer momenta and
form factors faithfully captures the relevant physics. The
initialization of the RG flow is discussed in App. C.

D. Analysis of pairing gaps

In the cases, where the FRG flow signals a pairing in-
stability, we further analyze the type of superconducting
pairing. To this end, we reconstruct the full supercon-
ducting pairing vertex from all form-factor contributions
to the P channel. We use the initial definition of the form
factor expansion of the vertices, cf. Eq. (18), explicitly
reading

�P (q,k,k0) =
X

l,l0

P
l,l0(q)fl(k)f

⇤
l0(k

0). (28)

While the divergence of the P channel can occur in dif-
ferent form factor sectors (l, l0) at once, the sharp peak is
always located � point of the BZ, i.e. q = 0. Therefore,
we can reconstruct the superconducting pairing vertex
by considering the q = 0 contribution

�P (q = 0,k,k0) := �P (k,k0) , (29)

and using the channel decomposition, Eq. (14).
We can then derive the superconducting interaction

from the definition of the e↵ective action. This can now
be treated employing a standard mean-field decoupling
within generalized BCS theory [83]. Close to the critical
temperature Tc for the superconducting transition, the
gap becomes small, allowing for linearization of the gap
equation, i.e.

�(k) = �

X

k0

�P (k,k0)
�(k0)

2⇠k0
tanh

✓
⇠k0

2Tc

◆
, (30)

which represents an eigenvalue equation for �(k).
We can approximate its solution by diagonalizing
��P (k,k0), which is a Nq ⇥ Nq matrix in our TUFRG
implementation. The eigenvector corresponding to the
largest eigenvalue of ��P (k,k0) has the highest Tc and
therefore determines the structure of the superconduct-
ing pairing gap [83].

IV. EXTENDED HUBBARD MODEL

In this section, we investigate the paradigmatic ver-
sion of the triangular-lattice model that only includes
nearest-neighbor hopping t = t1 = 1 and all other hop-
ping amplitudes are set to zero, in particular, t2 = t3 = 0.
For the interactions, we take into account a local or on-
site Hubbard interaction U and we additionally consider
the e↵ect of including a sizable nearest-neighbor inter-
action V1. We study the Fermi-surface instabilities that
occur in the RG flow near van Hove filling, which for
this choice of hopping amplitudes is found at µ = 2t.
Furthermore, we establish convergence of the implemen-
tation with respect to the expansion in form-factor shells
and momentum resolution.

Momentum resolution

27
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interaction channels. To that end, V ⇤ is decomposed as

V
⇤(k1,k2,k3,k4) = V

⇤,0(k1,k2,k3,k4)

+ �⇤,P (k1 + k2;�k2,�k4)

+ �⇤,C(k1 � k4;k4,k2)

+ �⇤,D(k1 � k3;k3,k2) , (14)

where V
⇤,0(k1,k2,k3,k4) takes care of the initial con-

dition. The other three contributions �⇤,X with X 2

{P,C,D} are the actual channels and in each case the
transfer momentum is the first argument, see Fig. 4. In-
serting Eq. (14) into Eq. (9) and rearranging the terms,
we find that each of these three channels describes a spe-
cific physical interaction, see also Fig. 4.

These channels can be defined via their respective RG
contributions in Eqs. (11)–(13), i.e., via the three flow
equations

d

d⇤
�P (k1 + k2;�k2,�k4) = ⌧pp(k1,k2,k3,k4) , (15)

d
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�C(k1 + k4;k4,k2) = ⌧ph,c(k1,k2,k3,k4) , (16)

d

d⇤
�D(k1 � k3;k3,k2) = ⌧ph,d(k1,k2,k3,k4) , (17)

where we have dropped the index ⇤ for convenience. The
first wave-vector argument in Eqs. (15)–(17) labels the
transfer momentum. The dependence on the other two
momenta can be expanded in a form-factor basis

�X(q,k,k0) =
X

l,l0

X
l,l0(q)fl(k)f

⇤
l0(k

0) . (18)

The above expansion holds for form factors forming a
unity with respect to l and k

A
�1
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l

f
⇤
l (p)fl(k) = �(p� k) , (19)

A
�1

BZ

Z
dkf⇤

l (k)fl0(k) = �l,l0 . (20)

In the numerical implementation this expansion is trun-
cated, i.e. the l, l0 sum is restricted to a finite number Nl

of form factors to resolve the weaker momentum depen-
dence in k and k0. In contrast, the transfer momentum
q carrying a strong momentum dependence is discretized
in a momentum mesh in the BZ with resolution Nq.

The above decomposition of the vertex can be turned
into a computational advantage. This is because the first
description of the vertex V

⇤(k1,k2,k3) using a wavevec-
tor resolution Nk of the BZ, leads to a set of N3

k cou-
pled di↵erential equations. In contrast, the channel-
decomposed vertices scale with / Nq⇥N

2

l . Therefore, by
truncating the weaker wavevector dependence in Nl, we
can implement high resolutions of the important transfer
momentum at moderate numerical cost.
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FIG. 4. Channel decomposition of the vertex V ⇤. By
explicitly inserting the decomposition Eq. (14) into the vertex
Eq. (9) and relabeling the important momentum as qX and
the two remaining momenta as kX , k0

X , X 2 {P,C,D}, the
channels can be associated with superconducting, magnetic
and density fluctuations. Spin indices are as in the first line.

To obtain a set of flow equations for the form-factor
dependent channels, i.e. X l,l0(q) with X 2 {P,C,D}, we
take the derivative of the back-transformed form-factor
dependent vertex in Eq. (18) and insert two form-factor
resolved unities into the contributions in Eqs. (11)–(13).
The unities are inserted in such a way that the interac-
tions are separated from the loop kernel, yielding

d
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l,l0(q) =
X
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V
P (q)l,l1Ḃ(q)(�)
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l1,l2
V

C(q)l2,l0
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, (23)

with the form-factor dependent particle-particle (�) and
particle-hole (+) bubble integrals
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p
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0
(i!, q + p)
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0
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l0(p) , (24)

cf. App. A, and the cross-channel projections

V
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,k,k0 + q) , (27)
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dependent channels, i.e. X l,l0(q) with X 2 {P,C,D}, we
take the derivative of the back-transformed form-factor
dependent vertex in Eq. (18) and insert two form-factor
resolved unities into the contributions in Eqs. (11)–(13).
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l1,l2
V

D(q)l2,l0
⇤
, (23)

with the form-factor dependent particle-particle (�) and
particle-hole (+) bubble integrals
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FIG. 5. Momentum mesh and form-factor geometry.
Top: Momentum resolution Nq of the BZ in the transfer mo-
menta. Only a subset (red) of the momentum mesh needs to
be calculated. The remaining ones are obtained from symme-
tries. Bottom: Numbering of form factors. The shades of red
indicate the distance to the origin. The site with number 1 is
the onsite form factor, 2–7 are the nearest-neighbor form fac-
tors, 10,11,14,15,18,19 are second-nearest-neighbor form fac-
tors and 8,9,12,13,16,17 are third-nearest-neighbor form fac-
tors. The form factor shells are defined as all the form factors
sitting on the s-th blue hexagon.

where the area of the Brillouin zone is absorbed in the
momentum integral:

R
k = A

�1

BZ

R
dk.

For our implementation we use the momentum mesh
shown in Fig. 5 for Nq and plane-wave form factors
fl(k) = exp(ikRl), which reduce the numerical cost of
the projections (25)–(27). They also facilitate an in-
tuitive interpretation of form-factor e↵ects on the flow
equations in terms of distances in real space. We group
the fl into shells defined by hexagons of increasing size
around a central site, cf. Fig. 5. The shells are numbered
by Ns 2 N0 and we include up to Ns = 4, see App. B for
further details. In the next section we perform conver-
gence checks in the expansion parameters (Nq, Nl) and
show that a manageable number of transfer momenta and
form factors faithfully captures the relevant physics. The
initialization of the RG flow is discussed in App. C.

D. Analysis of pairing gaps

In the cases, where the FRG flow signals a pairing in-
stability, we further analyze the type of superconducting
pairing. To this end, we reconstruct the full supercon-
ducting pairing vertex from all form-factor contributions
to the P channel. We use the initial definition of the form
factor expansion of the vertices, cf. Eq. (18), explicitly
reading

�P (q,k,k0) =
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l,l0

P
l,l0(q)fl(k)f
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0). (28)

While the divergence of the P channel can occur in dif-
ferent form factor sectors (l, l0) at once, the sharp peak is
always located � point of the BZ, i.e. q = 0. Therefore,
we can reconstruct the superconducting pairing vertex
by considering the q = 0 contribution

�P (q = 0,k,k0) := �P (k,k0) , (29)

and using the channel decomposition, Eq. (14).
We can then derive the superconducting interaction

from the definition of the e↵ective action. This can now
be treated employing a standard mean-field decoupling
within generalized BCS theory [83]. Close to the critical
temperature Tc for the superconducting transition, the
gap becomes small, allowing for linearization of the gap
equation, i.e.
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which represents an eigenvalue equation for �(k).
We can approximate its solution by diagonalizing
��P (k,k0), which is a Nq ⇥ Nq matrix in our TUFRG
implementation. The eigenvector corresponding to the
largest eigenvalue of ��P (k,k0) has the highest Tc and
therefore determines the structure of the superconduct-
ing pairing gap [83].

IV. EXTENDED HUBBARD MODEL

In this section, we investigate the paradigmatic ver-
sion of the triangular-lattice model that only includes
nearest-neighbor hopping t = t1 = 1 and all other hop-
ping amplitudes are set to zero, in particular, t2 = t3 = 0.
For the interactions, we take into account a local or on-
site Hubbard interaction U and we additionally consider
the e↵ect of including a sizable nearest-neighbor inter-
action V1. We study the Fermi-surface instabilities that
occur in the RG flow near van Hove filling, which for
this choice of hopping amplitudes is found at µ = 2t.
Furthermore, we establish convergence of the implemen-
tation with respect to the expansion in form-factor shells
and momentum resolution.

V = ΦP + ΦC + ΦD

ΦX(q, k, k′￼) = ∑
l,l′￼

Xl,l′￼(q)fl(k)f*l′￼(k′￼)

Karrasch et al, J. Phys. Cond. Mat. (2008)
Husemann, Salmhofer, PRB (2009)
Lichtenstein et al, Comp. Phys. Com. (2017)
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• SU(2) Hubbard model


• Longer-ranged interactions important! Up to .


• Overall strength tunable, e.g., substrate engineering


• Specifically: WSe2/MoS2 
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i, j
∑

σ

ti−jc†
i,σcj,σ − μ∑

iσ

c†
i,σciσ +

U
2 ∑

i,σ,σ′￼

niσniσ′￼+ ∑
σ,σ′￼

∑
i, j

Vi−jniσnjσ′￼

θ = 0 : t1 ≈ 2.5 meV, t2 ≈ 0.5 meV, t3 ≈ 0.25 meV
Wu, Lovorn, Tutuc, MacDonald, PRL (2018)
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• Spin density wave instability:


• Longer-ranged interactions stabilise 
unconventional pairing state

10

bilayer of WSe2/MoS2 at vanishing twist angle. Here,
the highest spin-polarized valence band from WSe2 con-
tributes an isolated flat band at the Fermi level to the
moiré band structure [11]. This isolated band can be
accurately described by a tight-binding model with up
to third-nearest-neighbor hopping, t1 ⇡ �2.5meV, t2 ⇡

0.5meV, t3 ⇡ 0.25meV, cf. Sec. II. The resulting band
structure features a Van Hove singularity near �5.5meV
and the Fermi surface at that filling is approximately
nested. The interactions can be tuned in strength and
range using dielectric environments or screening layers.
Explicitly, the system can be tuned into the intermediate
interaction regime, which we associate roughly with an
onsite repulsion U/t ⇡ 4. To explore the e↵ect of tunabil-
ity in the range of the interactions, we vary V1 again but
additionally include the longer-ranged interactions V2

and V3, choosing fixed ratios with V1, i.e. V2/V1 ⇡ 0.357
and V3/V1 ⇡ 0.260 as estimated in Ref. [27].

In Fig. 11, we present the correlated phase dia-
gram that contains the instabilities we predict using the
TUFRG as function of µ and V1. It is qualitatively
very similar to the paradigmatic case in Sec. IV; directly
around Van Hove filling, we obtain a SDW instability
bounded by pairing instabilities. However, the additional
hoppings and interactions decrease the critical tempera-
ture and even completely suppress some pairing instabili-
ties at smaller V1. We now only find pairing states which
belong to the irrep E2 with the largest contribution com-
ing from second-nearest-neighbor harmonics, i.e. we can
classify them as g-wave based on their number of nodes
along the Fermi surface (as in Fig. 8). For µ > �5.5meV,
where the Fermi surface is closed around �, this confirms
the previous low-resolution FRG calculation [40] with the
exception that we do not find the i-wave pairing insta-
bility at Vi = 0 that was already marked as fragile in
Ref. 40. Instead, the i-wave pairing is destroyed when
more distanced hoppings t2, t3 are included. We extend
the phase diagram to µ < �5.5meV, where the Fermi
surface consists of pockets around K,K

0. We find the
same g-wave pairing instability as for µ > �5.5meV at
larger Vi, while the f -wave pairing for small V1 in Fig. 7
also disappears when t2 and t3 are included.

We emphasize that the g-wave pairing is a robust result
that we obtain with both models. This stronger momen-
tum dependence arises due to the inclusion of a sizable
nearest-neighbor interaction V1 > 0. It is based on pair-
ing between second-nearest neighbors as the classification
in terms of lattice harmonics shows so that on-site and
nearest-neighbor repulsion can be avoided.

VI. TOPOLOGICAL SUPERCONDUCTIVITY

If a superconducting state develops out of the g-wave
pairing instability, a specific linear combination of the
two pairing solutions is formed. It was argued that a
chiral linear combination g ± ig minimizes the Landau
free energy and thus makes up the ground state[40]. Such

�5.3 �5.4 �5.5 �5.6

1.6
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0.4

0.0

V
1/
|t
|

| |
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U/|t| = 4.0
erature Tc/|t|

µ in meV

FIG. 11. Moiré TMD phase diagram of the e↵ective
extended triangular-lattice Hubbard model describing TMD
hetero-bilayers near 1/4 filling. The phase diagram includes
VDW (�), gSC (O), and metallic (⇥) phases.

a g ± ig state fully gaps the Fermi surface despite the
high number of nodes in the single pairing solutions. It
also breaks time-reversal symmetry and is topologically
non-trivial with a non-zero winding number which can
be defined via

N =
1

4⇡

Z

BZ

d
2
k ~m ·

✓
@m

@kx
⇥

@m

@ky

◆
, (31)

with the pseudo-spin vector

~m =
1

E~k

(Re�k, Im�k, ⇠k)
T
. (32)

We find that in the whole parameter range, where the
pairing gap in the E2 irrep occurs, the second-nearest
neighbor harmonics dominate. The implied g + ig state
results in a Chern number of |N | = 4. This is in con-
trast to |N | = 2 for a d + id state, which would be a
possible ground state if the nearest-neighbor harmonics
dominated. The Chern number is directly proportional
to the quantum spin and thermal Hall conductance in
such a topologically non-trivial superconducting state.
Therefore, the higher-harmonic gap function can mani-
fest itself experimentally by enhanced quantum spin and
thermal Hall responses [40].

VII. CONCLUSION

In this work, we have taken recent developments in the
field of correlated moiré materials as motivation to revisit
the phase diagram of correlated electrons on the trian-
gular lattice with extended Hubbard interactions near
Van Hove filling. To that end, we implemented and care-
fully benchmarked the TUFRG scheme in a numerically
e�cient way. We studied two versions of the extended
Hubbard model: a minimal, paradigmatic one with only
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• SC gap: 


• Fitted well by 2nd nearest-neighbour harmonics of irrep  of lattice symmetry        
 “g-wave”


• 2 degenerate solutions (symmetry!)
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• 2 degenerate pairing solutions  gap 

• Which linear combination realised in ground state?

• Minimize Landau free energy


→ Δ(k) = Δ1 g1(k) + Δ2 g2(k)

ℒ=α( |Δ1 |2+|Δ2 |2 )+β( |Δ1 |2+|Δ2 |2 )2+γ |Δ2
1+Δ2

2 |2
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• 2 degenerate pairing solutions  gap 

• Which linear combination realised in ground state?

• Minimize Landau free energy





• FRG data as input to calculate  




•  has no nodes, arg  winds 4 times

→ Δ(k) = Δ1 g1(k) + Δ2 g2(k)

ℒ=α( |Δ1 |2+|Δ2 |2 )+β( |Δ1 |2+|Δ2 |2 )2+γ |Δ2
1+Δ2

2 |2

α, β, γ
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• Spontaneous breaking of time-reversal:  vs 


•  “Skyrmion” number 


based on “pseudo-spin”  

g1 + ig2 g1 − ig2
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• Spontaneous breaking of time-reversal:  vs 


•  “Skyrmion” number 


based on “pseudo-spin”  


•     same symmetry under , different topology

g1 + ig2 g1 − ig2
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• Spontaneous breaking of time-reversal:  vs 


•  “Skyrmion” number 


based on “pseudo-spin”  


•     same symmetry under , different topology


•  chiral edge modes  enhanced, quantized response


‣ Spin Hall conductance 

‣ Thermal Hall conductance 
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• SU(4) Hubbard model





• Include exchange coupling  


• Also tested robustness regarding Hund’s coupling SU(4)  SU(2) x SU(2)

H = − t∑
⟨i, j⟩

∑
α

(c†
iαcjα + h . c.) + U∑

i (∑
α

ni,α)
2

+ J∑
⟨i, j⟩

∑
x

(c†
i Txci)(c†

j Txcj)

J

→

SU(4) generators

α ∈ {(K ↑ t), (K′￼↓ t), (K ↑ b), (K′￼↓ b)}



AB homobilayer

37

• Main ordering tendencies:


‣ QAH: interaction-induced quantum 
anomalous Hall state (same as iCDW: loop 
currents)


‣ d-wave superconductivity


• QAH instead of SDW due to more flavours 

U = 3t, J = 0.4t, VH = 0.1t

Chemical potential

M. Salmhofer / Nuclear Physics B 941 (2019) 868–899 879

Fig. 4. The level-2 truncation of the 1PI hierarchy, for an SU(2)-spin and U(1)-charge invariant ansatz for the effec-
tive action. Spin is conserved along the heavy particle lines. Left: (a) the particle–particle contribution, (b) the crossed 
particle-hole contribution, (c) the particle-hole contributions. Right: the contributions to the fermionic self-energy.
(Figure taken from [64].)

3.5. RG equation for the many-fermion system

For a many-fermion system of spin- 1
2 fermions, such as the Hubbard model, and under the 

assumption that U(1) × SU(2)-invariance is unbroken,

γ "
1 (K,K ′) = δα,α′ (ik0 − E(k) − %"(k)χ"(k)) (33)

(Here χ" is the regulator function used to define the flow, specified in our applications below.) 
Similarly, U(1) × SU(2)-symmetry implies that γ "

2 (K1, . . . , K4) is determined by the vertex 
v"(k1, k2, k3) that describes the interaction of particles with spin conservation (for details and a 
derivation, see [64]). They satisfy the flow equation

%̇"(p) = 1
2

∫
dl S"(l)

(
v"(p, l,p) − 2v"(p, l, l)

)
,

v̇"(p1, ..., p4) = (Tpp + Tph,cr + Tph,d)(p1, ..., p4),

(34)

where

Tpp(p1, ..., p4) = −1
2

∫
dl L"(l,p1 + p2 − l) v"(p1,p2, l) v"(p1 + p2 − l, l,p3),

Tph,cr (p1, ..., p4) = −1
2

∫
dl L"(l,p1 − p3 + l) v"(p1, l,p3) v"(p1 − p3 + l, p2, l),

Tph,d(p1, ..., p4) = 1
2

∫
dl L"(l,p2 − p3 + l)

(
2v"(p1,p2 − p3 + l, l) v"(l,p2,p3)

− v"(p1,p2 − p3 + l, l) v"(l,p2,p2 − p3 + l)

− v"(p1,p2 − p3 + l, p4) v"(l,p2,p3)
)

.

Here L"(p1, p2) = ∂
∂"

(
G"(p1)G"(p2)

)
.

Graphically, the terms on the right hand side of these equations can be represented by the 
diagrams shown in Fig. 4.

Because of their structure, these equations are also called “one-loop” RG equations. It should 
be noted, however, that this is slightly deceptive – the form of L used here already involves par-
ticular two-loop contributions, which are essential for fulfilling Ward identities from the global 
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• Hubbard model with SU(2) breaking from displacement field





• Displacement field yields Peierls phase 


• Tunable Van Hove singularities  rich phase diagram of symmetry-broken phases
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• Density-wave instabilities follow Van Hove singularity

• Fluctuations mediate pairing in vicinity
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• Density-wave instabilities follow Van Hove singularity

• Fluctuations mediate pairing in vicinity
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(a) (b)• (Incommensurate) wave vectors of 
DWs follow Fermi surface nesting: 


3 stripes   spiral  FM→ 120∘ →
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• (Incommensurate) wave vectors of 
DWs follow Fermi surface nesting: 


3 stripes   spiral  FM


• Pairing symmetry: mixed s/f or p/d 
(p+ip/d+id)


• Mainly determined by filling (i.e. Fermi 
surface): maximise gap

→ 120∘ →

• Density-wave instabilities follow Van Hove singularity

• Fluctuations mediate pairing in vicinity
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• Moiré materials: stacked and twisted 2D materials


• Moiré transition metal dichalcogenides as 
“simulators” for triangular-lattice Hubbard model


• FRG to investigate interplay of orders  unbiased 
method with high enough momentum resolution

→

• Study correlated phases and mechanism for superconductivity 
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