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Motivation

Einstein’s General Relativity (GR)

1
SEH = /d4$\/ —qg(R — 2\
167TGO g( )
Problems:
classical spacetime singularities [Penrose & Hawking, 1969] loss of predictivity beyond regime of
: .
quantum UV divergences [t Hoft & Veltmann, 1974; Gorroff & effective theory

Sagnotti, 1985]

Asymptotically Safe Gravity (AS)

Non-perturbative approach to quantum gravity postulating guantum scale invariance

!

Question: Potential modifications to classical spacetimes due to quantum-gravitational fluctuations?

[Weinberg, 1976]
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Asymptotic Safety in Gravity via the Functional Renormalization Group

Fk scale-dependent effective average action (EAA) I', = Z ¢i(k)Oy
IR uv
—_— = e EEEEE—
szo =TI I Fk:AUV—mo =9
. 1 B
Flow equation: _ =t (2) 1
[Wetterich, 1993: Reuter, 1996] KO 9 STr[ (U +Re)  kORe|

Asymptotic Safety: [Weinberg, 1976]

- UV-attractive non-Gaussian fixed point (UV completeness) of the RG flow with a finite number of
relevant directions (predictivity)

Einstein-Hilbert Truncation:

[Bonanno & Reuter, 2000] lim G, = G (observed Newton constant)
k—0
ro—_ ' /d4x\/§(R—2Ak) G = — 0 Gr =gk, k>m
167Gy 1+ g.~*Gok? S 4

anti-screening at high energies
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Renormalization Group Improvement

Motivation:

qualitative understanding of the effect of quantum fluctuations at high energies on a classical theory

|dea:

¢; — ¢;i(k) in classical actions/equations/solutions “chort-cut” from UV to IR

R based on simple local truncation
Challenge: instead of integrating more general
I — k(:c) scale-identification ansatz for EAA including

higher-derivative & non-local terms

Typical scale-identifications in gravity:

symmetry & dimensional analysis: .. k ~ 1/d(r), (Ru,,.R"*")"*, p/*

g e e

[Babic et al, 2000; Domazet &
Bianchi identities & minimal scale-dependence: 2A} + (R — 2A;)G}G ™' =0 Stefanci¢, 2011/12; Koch et al, 2015;

Koch & Ramirez, 2016]

New proposal:

use decoupling mechanism (close to original spirit of RG-improvement)
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Scale-ldentification from the Decoupling Mechanism

IR Kdec uv
| — —  —  —
Fk:O = F l Fk:AUv—>OO = S

decoupling scale: [Reuter & Weyer, 2000]

effect of artificial IR-cutoff R, becomes negligible compared
to physical IR-scales, ' flows very slowly for k < kgec

7
~ I l

use decoupling condition for scale- L — I
identification in RG-improvement: (:E) — Mvdec

L',

:kdec

Expectation: mimic effect of higher-derivative & non-local terms not taken into account in the

original truncation
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Setup: lterative RG-Improvement + Scale-ldentification k(z) = kq4ec
Iterative RG-improvement for self-consistent spacetimes [Platania, 2019]
Aim: dynamical adjustment of cutoff function & taking into account backreaction effects

0. start ds%o) D G(O)EGO classical solution incl. classical Newton constant

k
1. RG-step: dS%l) 2 G(l) new spacetime after 1 x RG-improvement > Go = Gi(ky)

Go

n. RG-step: ds%n) D) G(n) new spacetime after n x RG-improvements Gn(kn) =

kn = kn (spacetimen_l)
... assume sequence (G, ) converges to an effective Newton coupling G ...

a a=0:
_ 0 _ / fixed-point scaling
GOO - a+g*_1G0kgo koo —_— kOO(GOO7GQO7 e o . )
a=1:
G () determines a self-consistent spacetime ds?_, invariant under repeated approximation interpolating
RG-improvements > between UV & IR
P [Bonanno & Reuter, 2000]

+ combine with scale-identification from decoupling mechanism

Difficulty: determining k,, (spacetime,,_1) = Kqec (spacetime,, _1 ) from the decoupling condition would require

spacetime,, 1 to arise from a variational principle for a gravitational action
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Application: Quantum-Corrected Vaidya Spacetimes

0. start:

Classical (imploding) Vaidya spacetimes [Vaidya, 1951; Vaidya, 1966]

2G (gym (v
I52) = —fio)(r, 0)de? + 2dvdr + 2492 | fy(r,0) = 1 — 2O ton o o8
r sourced by energy-
milv momentum tensor
GLOJ = 81 G(O)Tug) 3 T;SS) = Ho)UpUy ,  H(0) = W(O))TQ of perfect fluid
n. RG-step:
RG-improved Vaidya spacetimes
2M (1, v)
foy(r,v) =1— ( ; , Muy(r,v) = Gey(r,v)m(v)

exact solution to GR -
“Generalized Vaidya
spacetimes”

[Wang & Wu, 1999]

Go) =8r GTw , T = pmyluly + (pmy + pewy) (Lunw + Lony) + py g

pv

M) _ M M )

Hn) = 4nGyr? Pn) 4G yr? Pn) = _87rG(n)r
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Application: Quantum-Corrected Vaidya Spacetimes
Scale-identification

Fact no. 1: ds%o) follows from variational principle for a gravitational action [Ray, 1972]
— associated Euclidean EAA:

o) = - [ dovi(1og R - 0) ()

Fact no. 2: energy density and pressure determine Ricci scalar of spacetime,,

Rny = 167G () (P(n) = P(m)) (1

Although a derivation of spacetime,, 1 from a gravitational action is not available for n > 1, we can combine
the decoupling condition for (I) with the expression for the Ricci scalar (ll), to identify an RG-scale
parameter at each step of the iteration which includes all physical quantities characterizing the spacetime at the
previous step:

32

kdec(zn) = G(n—l) (,u(n—l) + _7T(,0(n—1) - p(n—l)))

3 lim
n—oo

Master equation for the effective Newton coupling of the self-consistent RG-improved spacetime

(Gowm(v)(l&rrG;’o(r, v) + 327G, (7,v) + 3Goo (7, ) + 3Gowm(v)Goo (T, v) + 127Tar2) Goo(r,v) — 120Gor? =0

— —1 .
W = 9, 2nd-order nonlinear PDE — specify classical mass function & study different regimes...
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RG-Improved VKP Spacetime: Numerical Solution for the Dynamics

Vaidya-Kuroda-Papapetrou model

m(v)

[Vaidya, 1966; Kuroda, 1984; Papapetrou, 1985] mb Schwarzschild

classical gravitational collapse

Minkowski

Y
S

] I

Numerical solution

effective Newton coupling
of the RG-improved spacetime

&
Il
3
Il
l
Il
—_

9/14



B G2, T Sl
S e NN R LA S-S ;

Analytical Approximations in the Static Phase

Static limit of PDE:  m(v) =m = const , Go = Goo(T)
UV fixed-point regime
G(k) = gk (+ a=0)

PDE reduces to ordinary differential equation which admits exact solution...

1

G (T) = ?“3/2 for small r (same exponent found in [Pawlowski & Stock, 2018])
dwWm
In particular:
1
RMVPUR/W’OU X 3 Vs. X 3 (for classical Schwarzschild spacetime)
r r

m==) anti-screening Newton coupling at high energies results in weakening of classical singularity
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Analytical Approximations in the Static Phase

IR-regime
o oscillatory solutions analogous to results in higher-derivative
0 gravity — consistent with aim of RG-improvement [Bonanno &
G(k) = Tr oG (<a=1, k<<mp) Reuter, 2013: Zhang et al, 2015]

PDE reduces to ordinary Stokes-type differential equation with solutions given by damped Airy functions...

i N
Eg E8 B m/mp =1
. o B m/mp =2
B m/mp =5
& m/mp; = 10
5 | 16 15 26
I /e r/lpy
s =
Planck-scale transition region ..combine to define an effective spacetime...
k:i>l£nnpz G~ 5i)m e
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. m/mpl — I
. mc/mpl ~ 1.18 ;
B m/mp =2

large-distance analytical solution (solid)

effective metric smoothly interpolating between
UV & IR (dashed)

2mGoo(T) . reminiscent of Dymnikova spacetime
o r resulting from iterative RG-improvement in
[Platania; 2019]
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m/mpl
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horizon structure of the effective
spacetime for different masses
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Evaporation of the Quantum Black Hole

Black-hole temperature [Hawking, 1975; Gibbons & Perry, 1978; Hawking, 1978]

T = fi(ry)

T4 (outer event horizon) simple zero of f, in
A particular m > meit
Stefan-Boltzmann law

A(m) horizon area

m(t) = —o A(m)Tau(m)?

mass-loss per unit proper time
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m g .
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'
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...reached after infinitely long period of time
cold black-hole remnant... for evaporation

results qualitatively consistent with [Bonanno & Reuter, 2000] where RG-improvement was not iterated & different scale-identification was used
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Summary & Conclusion

New way to study the effect of quantum fluctuations of gravity on classical spacetimes which...

...iIs based on iterative RG-improvement combined with scale-identification from the decoupling
mechanism.

...provides a complete dynamical model for quantum-corrected gravitational collapse, followed by
static phase and subsequent evaporation.

...iIs in qualitative agreement with previous RG-improvements using different implementation
schemes and scale-identifications

...consistently reproduces features of corresponding solutions in higher-derivative gravity
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