Operator product expansion coefficients from the nonperturbative functional renormalization group

MAX PLANCK INSTITUTE OF QUANTUM OPTICS

Félix Rose In collaboration with C. Pagani (Mainz) and N. Dupuis (Paris)

11th International Conference on the Exact Renormalization Group 2022, Berlin

July 27, 2022

Introduction: computing universal quantities with FRG

Systems near a quantum or classical continuous phase transition exhibit universality.

Functional renormalization group (FRG) has been able to reliably determine quantitatively universal quantities near strongly-coupled phase transitions:

- critical exponents; [e.g. among many: most recently De Polsi et al., PRE '20]
- amplitude ratios; [Berges et al., PR '02; Rançon et al., PRE '13; De Polsi et al., PRE '21]
- universal scaling functions. [e.g. Rose et al., PRB '15; Rose and Dupuis PRB '17]

Our work: go beyond and compute operator product expansion (OPE) coefficients in O(N) theories.

Motivation: Operator Product Expansion

UV divergences \rightarrow product of operators singular at short distance: e.g. for a scalar field ϕ : $\lim_{y \to x} \langle \varphi(x)\varphi(y) \rangle = \infty \longrightarrow \varphi(x)\varphi(y)|_{y \to x} \neq \varphi(x)^2$.

Operator Product Expansion (OPE):

for
$$y \to x$$
, $O_i(x)O_j(y) = \sum_k \underbrace{f^{ijk}(x-y)}_{c \text{ number}} O_k(x)$

- sum over all local operators O_k;
- singularities included in f^{ijk}:
 Wilson coefficients;
- valid when inserted in correlation functions.

Verified to all orders in perturbation theory and in conformal field theories.

Applications of OPE

Renormalization theory [Brandt, Ann Phys '67], chromodynamics [Novikov et al., PR '78].

Ultracold gases: thermodynamic relations for 3*d* interacting fermions.

[Braaten and Platter, PRL '08]

OPE:
$$\psi_{\sigma}^{\dagger}(\mathbf{R} - \frac{1}{2}\mathbf{r})\psi_{\sigma}(\mathbf{R} + \frac{1}{2}\mathbf{r}) = \sum_{i} C_{i}(\mathbf{r})O_{i}(\mathbf{R}).$$

Operator identity: $C_i(\mathbf{r})$ determined by evaluating with few-body scattering states.

Result:

$$\psi_{\sigma}^{\dagger}(\mathbf{R} - \frac{1}{2}\mathbf{r})\psi_{\sigma}(\mathbf{R} + \frac{1}{2}\mathbf{r}) = \psi_{\sigma}^{\dagger}\psi_{\sigma}(\mathbf{R})$$

+ $\mathbf{r} \cdot [\psi_{\sigma}^{\dagger} \overleftrightarrow{\nabla} \psi_{\sigma}](\mathbf{R}) - \frac{r}{8\pi}g^{2}\psi_{\uparrow}^{\dagger}\psi_{\downarrow}^{\dagger}\psi_{\uparrow}\psi_{\downarrow}(\mathbf{R}) + O(r^{2}).$
g: contact interaction.

E.g.: high-frequency tail of momentum distribution, $\rho_{\sigma}(\mathbf{k}) \sim C/k^4$. $C = \int_{\mathbf{k}} \langle g^2 \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\uparrow} \psi_{\downarrow} \rangle$: Tan contact, $\partial_a \langle \hat{H} \rangle = (\hbar^2/4\pi m a^2)C$. [Tan, Ann Phys '08]

OPE in conformal field theories

In conformal field theories (CFT), OPE is the basis for conformal bootstrap (CB). [Poland et al., RMP '19]

CFT: invariant under transforms that preserve angles. Then:

$$\begin{split} \langle O_i(x)O_j(y)\rangle &= \frac{\delta_{ij}}{|x-y|^{2\Delta_i}},\\ \langle O_i(x_1)O_j(x_2)O_k(x_3)\rangle &= \frac{C_{ijk}}{x_{12}^{\Delta_i+\Delta_j-\Delta_k}x_{23}^{\Delta_j+\Delta_k-\Delta_j}x_{13}^{\Delta_i+\Delta_k-\Delta_j}}. \end{split}$$

• Δ_i : scaling dimension.

•
$$x_{12} = |x_1 - x_2|$$
.

$$O_i(x)O_j(y) = \sum_k \frac{C_{ijk}}{|x - y|^{\Delta_i + \Delta_j - \Delta_k}} O_k(x) + \text{spinful fields.}$$

NB: true even for d > 2.

[Di Francesco, Mathieu, Sénéchal, CFT, Springer]

The O(N) model

Similar to φ^4 theory. φ : *N*-component real field.

$$S[\boldsymbol{\varphi}] = \int d^d x \left\{ \frac{1}{2} \left(\partial_{\mu} \boldsymbol{\varphi} \right)^2 + r_0 \boldsymbol{\varphi}^2 + u_0 (\boldsymbol{\varphi}^2)^2 \right\}$$

Phase transition controlled by the Wilson-Fisher fixed point for d < 4.

• N = 1, 2, 3: universality classes of physical systems (Ising, XY, Heisenberg).

N = ∞: exact results.

At the phase transition: emergent conformal invariance!

Most relevant operators: $O_1 \propto \varphi_i, O_2 \propto \varphi^2$. $\Delta_1 = (d - 2 + \eta)/2, \Delta_2 = d - 1/v$.

• Monte-Carlo; [Caselle et al. PRD '15; Hasenbusch, PRB '20]

- 4 c expansion; [Dey et al., JHEP '17; Carmi et al., SciPost '21]
- Conformal Bootstrap; [Kos et al. JHEP '16; Cappeli et al., JHEP '19]
- FRG. (Us !)

Coefficient $C_{112} = ?$

c_{112} coefficient with FRG

 $\begin{array}{l} c_{112} \text{ can be deduced from correlation functions:} \\ \text{for } |p_1| \gg |p_2|, \langle O_1(p_1)O_1(p_2)O_2(-p_1 - p_2) \rangle = \frac{c_{112} \times \text{const.}}{|p_1|^{d-\Delta_2} |p_2|^{d-2\Delta_1}} \end{array}$

Strategy: composite operators \rightarrow add source *h*. [Rose, Léonard and Dupuis, PRB '15] $\mathcal{Z}[J, h] = \int \mathcal{D}[\varphi] e^{-S[\varphi] + \int_{X} (J\varphi + h\varphi^2)} \rightarrow Legendre transf.: \Gamma[\phi, h].$

$$\langle \varphi_i(p_1)\varphi_i(p_2)\varphi^2(-p_1-p_2)\rangle = -\overline{G(p_1)} \Gamma_{ii}^{(2,1)}(p_1,p_2) G(p_2)$$

Setting $p_2 = 0, p_1 = p \rightarrow 0$:
$$\Gamma_{ii}^{(2,1)} = \delta^3 \Gamma / \delta \phi_i \delta \phi_i \delta h|_{\phi=const,h=0}: \text{ vertex}$$

$$C_{112} = \text{const.} \times \lim_{p \to 0} \frac{\Gamma_{ii}^{(2,1)}(p,0)}{|p|^{\Delta_2 - 2\Delta_1}}$$

Momentum dependence → BMW scheme [Blaizot, Méndez-Galain and Wschebor, PLB '06]

• First determine G(p) and $\chi_s = \langle \boldsymbol{\varphi}^2 \boldsymbol{\varphi}^2 \rangle \rightarrow \text{normalization of operators, } \Delta_i$.

• Then
$$\Gamma_{ii}^{(2,1)}(p,0) = \partial_{\phi_i} \Gamma_i^{(1,1)}(p) \to c_{112}$$

Results: c_{112} in the Ising model vs. d

Ising model: universality class of N = 1.

Known values:

- *d* = 2, exact solution;
- *d* = 4, mean-field.
- 2 < d < 4:
 - Monte-Carlo, Conformal bootstrap: numerically exact, but expensive;
 - ε = 4 d expansion: requires resummation and d = 2 result.

Results: c_{112} in the 3d O(N) model vs. N

Large N:

$$c_{112} = \frac{2}{\pi} \frac{1}{\sqrt{N}} + \frac{24}{\pi^3} \frac{1}{N^{3/2}} + O\left(\frac{1}{N^{5/2}}\right)$$

→ rescaling: $\sqrt{N}c_{112}$.

[Lang and Rühl, Nucl. Phys. B '92]

- N = 1, 2, 3: agreement with CB and MC.
- N ≥ 10: agreement with large N results to next-to-leading order.
- Failure of ϵ expansion.

Conclusion

- FRG scheme to compute OPE coefficients via 3-point vertices;
- application to c₁₁₂(d, N) for O(N) model;
- excellent agreement with results when known;
- versatility: tuning *d* and *N* is easy;
- perspectives: more complicated theories?

Read more in Phys. Rev. D 105, 065020 (2022)!

Thanks for your attention!

C. Pagani

Collaborators:

N. Dupuis

Principle of minimum sensitivity

