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Introduction: computing universal quantities with FRG

Systems near a quantum or classical continuous phase transition exhibit
universality.

Functional renormalization group (FRG) has been able to reliably determine
quantitatively universal quantities near strongly-coupled phase transitions:

critical exponents; [e.g. among many: most recently De Polsi et al., PRE ’20]

amplitude ratios; [Berges et al., PR ’02; Rançon et al., PRE ’13; De Polsi et al., PRE ’21]

universal scaling functions. [e.g. Rose et al., PRB ’15; Rose and Dupuis PRB ’17]

Our work: go beyond and compute
operator product expansion (OPE)
coefficients in O(𝑁) theories.
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Motivation: Operator Product Expansion

UV divergences→ product of operators singular at short distance:
e.g. for a scalar field 𝜙: lim𝑦→𝑥⟨𝜑(𝑥)𝜑(𝑦)⟩ = ∞ ⟶ 𝜑(𝑥)𝜑(𝑦)|𝑦→𝑥 ≠ 𝜑(𝑥)2.

Operator Product Expansion (OPE):

for 𝑦 → 𝑥, 𝑂𝑖(𝑥)𝑂𝑗(𝑦) = ∑𝑘 𝑓
𝑖𝑗𝑘(𝑥 − 𝑦)⏟
𝑐 number

local operators
⏞𝑂𝑘(𝑥)

sum over all local operators 𝑂𝑘;

singularities included in 𝑓 𝑖𝑗𝑘:
Wilson coefficients;

valid when inserted in correlation
functions.

[Wilson ’69, Kadanoff ’70]

𝑂𝑖(𝑥)

𝑂𝑗(𝑦)

𝑂(𝑧)

Verified to all orders in perturbation theory and in conformal field theories.

Félix Rose (Max Planck, Garching) OPE coefficients from the FRG ERG2022 — July 27, 2022 3 / 10



Applications of OPE

Renormalization theory [Brandt, Ann Phys ’67], chromodynamics [Novikov et al., PR ’78].

Ultracold gases: thermodynamic relations for 3𝑑 interacting fermions.
[Braaten and Platter, PRL ’08]

OPE: 𝜓†
𝜎(𝐑 − 1

2
𝐫)𝜓𝜎(𝐑 + 1

2
𝐫) = ∑𝑖 𝐶𝑖(𝐫)𝑂𝑖(𝐑).

Operator identity: 𝐶𝑖(𝐫)
determined by evaluating
with few-body scattering
states.

Result:
𝜓†
𝜎(𝐑 −

1
2
𝐫)𝜓𝜎(𝐑 +

1
2
𝐫) = 𝜓†

𝜎𝜓𝜎(𝐑)

+ 𝐫 ⋅ [𝜓†
𝜎
↔
𝛁𝜓𝜎](𝐑) −

𝑟
8𝜋

𝑔2𝜓†
↑𝜓

†
↓𝜓↑𝜓↓(𝐑) + 𝑂(𝑟2).

𝑔: contact interaction.

E.g.: high-frequency tail of momentum distribution, 𝜌𝜎(𝐤) ∼ 𝐶/𝑘4.
𝐶 = ∫𝐑⟨𝑔

2𝜓†
↑𝜓

†
↓𝜓↑𝜓↓⟩: Tan contact, ∂𝑎⟨𝐻̂⟩ = (ℏ2/4𝜋𝑚𝑎2)𝐶. [Tan, Ann Phys ’08]
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OPE in conformal field theories

In conformal field theories (CFT), OPE is the basis for conformal bootstrap (CB).
[Poland et al., RMP ’19]

CFT: invariant under transforms that preserve angles. Then:

⟨𝑂𝑖(𝑥)𝑂𝑗(𝑦)⟩ =
𝛿𝑖𝑗

|𝑥 − 𝑦|2Δ𝑖
,

⟨𝑂𝑖(𝑥1)𝑂𝑗(𝑥2)𝑂𝑘(𝑥3)⟩ =
𝑐𝑖𝑗𝑘

𝑥
Δ𝑖+Δ𝑗−Δ𝑘
12 𝑥

Δ𝑗+Δ𝑘−Δ𝑖
23 𝑥

Δ𝑖+Δ𝑘−Δ𝑗
13

.

Δ𝑖: scaling dimension.

𝑥12 = |𝑥1 − 𝑥2|.

𝑐𝑖𝑗𝑘: OPE coefficient!

OPE in CFTs

𝑂𝑖(𝑥)𝑂𝑗(𝑦) = ∑
𝑘

𝑐𝑖𝑗𝑘
|𝑥 − 𝑦|Δ𝑖+Δ𝑗−Δ𝑘

𝑂𝑘(𝑥) + spinful fields.

NB: true even for 𝑑 > 2. [Di Francesco, Mathieu, Sénéchal, CFT, Springer]
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The O(𝑁) model

Similar to 𝜑4 theory. 𝝋: 𝑁-component real field.

𝑆[𝝋] = ∫d𝑑𝑥 {
1
2
(∂𝜇𝝋)2 + 𝑟0𝝋2 + 𝑢0(𝝋2)2}

Phase transition controlled by the Wilson-Fisher fixed point for 𝑑 < 4.

𝑁 = 1, 2, 3: universality classes of physical systems (Ising, XY, Heisenberg).

𝑁 = ∞: exact results.

At the phase transition: emergent conformal invariance!

Most relevant operators: 𝑂1 ∝ 𝜑𝑖, 𝑂2 ∝ 𝝋2. Δ1 = (𝑑 − 2 + 𝜂)/2, Δ2 = 𝑑 − 1/𝜈.

Question
Coefficient 𝑐112 = ?

4 − 𝜖 expansion; [Dey et al., JHEP ’17; Carmi et al., SciPost ’21]

Monte-Carlo; [Caselle et al. PRD ’15; Hasenbusch, PRB ’20]

Conformal Bootstrap; [Kos et al. JHEP ’16; Cappeli et al., JHEP
’19]

FRG. (Us !)
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𝑐112 coefficient with FRG

𝑐112 can be deduced from correlation functions: [Pagani and Sonoda, PRD ’20]

for |𝑝1| ≫ |𝑝2|, ⟨𝑂1(𝑝1)𝑂1(𝑝2)𝑂2(−𝑝1 − 𝑝2)⟩ =
𝑐112×const.

|𝑝1|𝑑−Δ2|𝑝2|𝑑−2Δ1

Strategy: composite operators→ add source ℎ. [Rose, Léonard and Dupuis, PRB ’15]

𝒵[𝐽, ℎ] = ∫𝒟[𝜑] e−𝑆[𝜑]+∫𝑥(𝐽𝜑+ℎ𝜑
2) → Legendre transf.: Γ[𝜙, ℎ].

⟨𝜑𝑖(𝑝1)𝜑𝑖(𝑝2)𝜑2(−𝑝1 − 𝑝2)⟩ = −
𝐺: propagator

⏞𝐺(𝑝1) Γ
(2,1)
𝑖𝑖 (𝑝1, 𝑝2)⏟

Γ(2,1)𝑖𝑖 =𝛿3Γ/𝛿𝜙𝑖𝛿𝜙𝑖𝛿ℎ|𝝓=const,ℎ=0: vertex

𝐺(𝑝2)

Setting 𝑝2 = 0, 𝑝1 = 𝑝 → 0:

𝑐112 = const. × lim𝑝→0
Γ(2,1)𝑖𝑖 (𝑝, 0)
|𝑝|Δ2−2Δ1

Momentum dependence→ BMW scheme [Blaizot, Méndez-Galain and Wschebor, PLB ’06]

First determine 𝐺(𝑝) and 𝜒𝑠 = ⟨𝝋2𝝋2⟩ → normalization of operators, Δ𝑖.

Then Γ(2,1)𝑖𝑖 (𝑝, 0) = ∂𝜙𝑖Γ
(1,1)
𝑖 (𝑝) → 𝑐112.
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Results: 𝑐112 in the Ising model vs. 𝑑

Ising model: universality class of 𝑁 = 1.

Known values:

𝑑 = 2, exact solution;

𝑑 = 4, mean-field.

2 < 𝑑 < 4:

Monte-Carlo, Conformal
bootstrap: numerically
exact, but expensive;

𝜖 = 4 − 𝑑 expansion:
requires resummation
and 𝑑 = 2 result.
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𝜖 exp. 𝑂(𝜖2)
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Results: 𝑐112 in the 3𝑑 O(𝑁) model vs. 𝑁

Large 𝑁: 𝑐112 = 2

𝜋

1

√𝑁
+ 24

𝜋3
1

𝑁3/2
+ 𝑂( 1

𝑁5/2
) [Lang and Rühl, Nucl. Phys. B ’92]

→ rescaling: √𝑁𝑐112.
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√𝑁
𝑐 1
12

𝜖 exp. 𝑂(𝜖) MC

𝜖 exp. 𝑂(𝜖2) CB

𝜖 exp. resum. FRG

Large-𝑁 𝑂(𝑁−3/2)

𝑁 = 1, 2, 3: agreement
with CB and MC.

𝑁 ≳ 10: agreement with
large 𝑁 results to
next-to-leading order.

Failure of 𝜖 expansion.
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Conclusion

FRG scheme to compute OPE coefficients via 3-point vertices;

application to 𝑐112(𝑑, 𝑁) for O(𝑁) model;

excellent agreement with results when known;

versatility: tuning 𝑑 and 𝑁 is easy;

perspectives: more complicated theories?

Read more in Phys. Rev. D 105, 065020 (2022)!

Thanks for your attention!

Collaborators:

C. Pagani
N. Dupuis
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Principle of minimum sensitivity
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