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Exact Renormalization Group (ERG)

e A framework to study physics under varying the energy
scale

e The Wilson action S, is intuitively defined by
integrating out higher momentum modes of the fields:

—Sr .— -S
e = ]D¢p>Ae 0

(A :=Aye™%, Ay cutoff)

« t—dependence of the Wilson action S; is described by
a differential equation = “ERG equation”
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Wilson-Polchinski equation

« A typical example of the ERG equation:

D+2—17, 9 5S,
aTST — f{[(ZPZ + 5 1 ) + Pu E‘ d)i(p) 5¢i(p)

’ +(2 2+1_’71)< i - SHTC >}
o 2 )\60;()6¢p:(=p)  6¢;(p) 5¢;(—p)
000 00

e This equation defines a renormalization procedure
non—-perturbatively

(n,: anomalous dimension) [J.Polchinski Muc/.Phys.B 231 (1984) 269-295]

(We work on the dimensionless framework and D-dimensional Euclidean space)
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Gauge invariance in ERG

e The Wilson action with the naive UV cutoff is
inconsistent with gauge invariance

e The gauge transformation mixes higher and lower
momentum modes:

A8 (p) > A%(p) — pre®(p) — if E f 0P (p — A Q)
q

e Can we define a Wilson action in a manifestly
gauge invariant manner?
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Renormalization and Diffusion

e The solution to the WP equation can be written
in the following form:

591 = 551 [ Do’ [ [ 8(640) — e @ D/221/ 2], xe™)) 8 Se=l
X1

A 62 . &€ ”»
(84 = exp (—%fx 6¢i(x)2> : “scrambler”)

¢ is a solution to the diffusion equation:

0:'(t,x) = 079 (t,x), ¢'(0,x) = ¢'(x)
where t:=e?T —1
e This representation implies that the coarse—graining
by the diffusion can be used to define an RG flow
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Gradient Flow (GF)

e This one—-parameter deformation of fields via
the diffusion equation has been studied
in the context of “gradient flow”

e The gradient flow is a method to construct composite
operators without the equal-point singularity

e Correlation functions are UV finite with wave
function renormalization:

-Mn/2
Z7" (8, x) @ (8, %2) -+ @t %))y < 00
even for the equal point case (e.g. x; = x,)
[F.Capponi,L.Debbio,S.Ehret,R.Pellegrini,A.Rago 1512.02851]
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Gradient Flow ERG (GFERG)

e GF equation for gauge fields [M. Liischer, P.Weisz 1101.0963]
d:B,, = D),Gy, + ayD;0,B,
%_I \ﬂ_l

“diffusion” “gauge fixing”
with B, (0,x) = A4, (x)

« S. for gauge fields can be defined via the GF equation
[H. Sonoda and H. Suzuki 2012.03568]

e~StlA] .= 571 j[DA’ﬁ] 1_[ ) (Aﬁ(x) — eT(D_“)Bﬁ“(t,x’eT)) § e~ Se=0l Al
x!,a,u

(3, =exp|—=[ o
A= ST y sag(06a2 ()

]2 “scrambler” for gauge fields)

e GFERG defines an RG flow in a gauge-invariant way!
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Outline

e Fixed point structure of GFERG for scalar field
theories (8)
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Our motivation

e The appropriate gradient flow eq. highly depends on
details of the theory, such as its symmetry and
interactions

e The GFERG flow depends on the form of the GF eq.,
and then becomes different for each theory

e This means that the GFERG eq. for general scalar
field theories is no longer given by the WP eq.

e Is GFERG consistent with the conventional ERG?
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Our motivation

« The gradient flow equation for the O(N) non-linear
sigma model

0.; = 029; — (9;020;)p;

[H.Makino, H.Suzuki 1410.7538]

e But the continuum limits of this model and the I|inear
sigma model in three dimension are characterized by
the same fixed point

« “Does GFERG give the same prediction as the
conventional ERG for the IR behavior of a theory?”

e These facts strongly motivate us to study
the fixed points and the critical exponents in GFERG
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General gradient flow equation

 General form of gradient flow equations

T(pl - a)%gol + z f ll ln(‘x; X1y v X1 aX1' O aXn)cpil (T, xl) (pin(T' xn)

xl xn \

N=Nmin Y

WP part extra fterms

« Counterpart of WP eq. in GFERG (GFERG eq.)
aTe—Sr[q’] = (WP part)

_ 0 igyoin 0
+ z A 1(T)—];c,x1 IIIII xn5¢i(x){]§ (¢i1(x1)+5¢i1(x1)>><

o
- = T[ ]
X <¢Ln(xn) + 5¢in(xn)>}e Stl®
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Fixed point action

e The fixed point action S* is defined as
0.S* =0 and S* := lim §;

T—C0

« §* satisfies
0 = (WP part)+ Z AN 1( )f (x) {f; 1,---,n<¢i1(x1)+6¢_ (x1)>x...

o)
) —S*[®]
X <¢ln(xn) + 6¢in(xn)>}e SLe

e Asymptotic behavior of A(7) )
A1) ~ exp(—=t(D — 2 +1)/2) 2 =—logZ,

* A(o0) should vanish from the cluster decomposition
principle at the fixed point theory ((¢(x)p(0)) ~ x~(P=2+m)

T=00

=S* satisfies the fixed point condition of the WP eq.
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RG flow around fixed point

e Let us study the t-dependence of S, affter a long time
T =1, > 1 so that A(7y) ~ e ToD=24M)/2 « 1

e Consider perfurbating S. from a fixed point §*
at T =1y OS

Sp, = S* + z §ch0,
A

|5c4| « 1

O4: 0 complete set of operators
(defined in the next slide) Sz, =S* +8c40,
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Solution in the T = 00 limit

 We have two small quantities: §c4, Ay = e To(P=2+m)/2

e Solution to the GFERG eq. up to the leading order

S, =S5"+ z (5CAexAT’ _ ﬂgmin_l (e—(nmin—l)(D—2+n)r'/2 _ exAr') hA) 0,
A

where 1 =175+ 1 0,

04: eigenoperators of the linearized WP eq.
around S*
x,: eigenvalue of 04
Npin: Minimum order of the non-linear terms
in the GF eq.

h4: some constant
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Scaling dimension

(relevant)

e*aT or
« Scaling Dimension dj, o~ (Mmin-1(D+2-1)/2 7'

dy = max(xg, —(ny — DD — 2 +n)/2)

(irrelevant)

x4 = 0 (relevant or marignal) = dy = x4

x4 < 0 (irrelevant) = dy = —min(|xy|,(n,, — 1D —2+1n)/2)

 d, of relevant or marginal operators are x,
= GFREG gives the same prediction as the WP equation
for the IR behavior of a theory.
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Conclusion

e Studied the fixed point structure of the GFERG
equation associated with a general gradient flow
equation for scalar field theories

e Showed that the fixed points are the same as those of
the Wilson-Polchinski equation in general

* Discussed that the GFERG equation has a similar RG
flow structure around a fixed point to the WP
equation

» GFERG gives the same prediction as the conventional
ERG for the IR behavior of a theory

Thank you!
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Future Direction

e (Non-abelian) gauge theory

e Gravity and asymptotic safety
“Wilson action with manifest diffeomorphism

invariance”

e Scalar field theories with a non-trivial target space

in two dimensions
e.g.) O(N) NL sigma model, CPY~' model

e Effects of topological terms in QFT
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GFERG is ERG?

e GFERG is NOT considered to be a kind of ERG
but an alternative framework to study the low—energy
physics in the Wilsonian sense

 Reasons:

|. The scaling dimensions are different from those of
the WP equation
(Different renormalization schemes should provide
the same scaling dimensions within ERG by a field
redefinition)

2. The effective couplings do not follow the scaling
low around fixed points
(They should scales as 14 — e¥4aT}4 under
the coarse-graining of x — xe?)
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Loophole

e Qur arguments do not cover the case where A(t) and
then the GFERG equation become t-independent

* n, satisfies
Ne=2-D

e Examples: the pure Yang-Mills theory with D = 4,
the O(N) non-linear sigma model with D =2

(Note: the counterpart of A(z) in the YM theory is 8—1(0—4)/225/2)

e The GFERG equation can be regarded as a ERG equation
in this case
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GF eq. of O(N) NL sigma

e Gradient flow equation
0.0 = 02¢; — (9;020;)p;
» It obviously preserves the O(N) symmetry (¢; = 0;;¢;)

e The constraint of the fields (¢€ = 1) is respected,
i.e., if @?(0,x) = (x) =1, p?(t,x) =1 for Vvt

* The correlation functions of ¢; are UV finite without
any additional wave function renormalization in two
dimensions

1
- If we solve the constraint (¢n = (1 -3V "1¢2)?),
the appropriate gradient flow equation is

2
(QObaufpb) ><Pa

0t = 0504 + | 0,010, 0, + i
1— PDc
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General non-Ilinear sigma model

 Lagrangian 1
L= EG"’"(¢)0u¢n0“¢m

e The Wilson action of GFERG is not covariant
under target space diffeomorphism of the fields

eStldl = 551 J D¢’ 1_[5(¢i(x) — e™0-2)/271/ 20(t, xe™)) 3 4 e5r=0l¢’]
X

52
$p = exp <—L5¢i(x)2>

e This expression should be interpreted as one for the
models embedded in higher-dimensional Euclidean space
with some constraints for the fields

e The appropriate GF equation is required to preserve
those constraints instead
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Constraints

e Consider a theory whose fields are constrained as

Fl¢] =0
e.g.) the O(N) NL sigma model: F = ¢f —1

« S. preserves the constraint in the sense that
F[A(t)¢] = 0 holds in the (modified) correlation
functions:

L FlA(@)dlpi, - P, »>s.=0
(Recal | :

5191 = 551 [ Dy’ [ [06i) = 727221 2 (t,xe™) 8 pe5ewol®') )
X

26/19



Scaling theorem

« 5. of GFERG satisfies the scaling theorem:
[H. Sonoda, H.Suzuki 1901.05169]

KL @i, (pre?) - ¢; (pre®) s,

n
_ K(p;e®)
= g GG KG) < Pu@) b Pn) s,
i=1 ¥

K 0 >»g=[D¢p 5450 eS1!: the modified correlation function
K(p,) := eP°: the cutoff function

e The solution to the WP equation holds this property

e 5. describes the response of the system to
the scale transformation (the coarse-graining)

27/19



RG invariance of Z
e Partition function

YA — fD¢ eST=O[¢]

e The GFERG flow preserves the partition function:

fqu est = fqu est=0 = 7

* We call S, of GFERG the “Wilson” action in the sense
that it holds this property and satisfies the scaling
theorem
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Details of Solution to GFERG eq.

e Solution to the GFERG equation in the T > o0 limit

S, =S+ Z (5CAexAT' . /‘[gmin—l (e—(nmin—l)(D—2+n)T'/2 _ exAT’) hA) 0,
A

w9
Son=es [ 2 (g ek [ DGy st] e
2 X,X1,0Xn 5¢i(x) ! V1 5¢i1 (Y1)
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Inclusion of matter fermions

[Y.Miyakawa and H.Suzuki 2106. |1142]
e Wilson action for gauge fields and matter fermions

eStlAY Y] — $itsyt j DA'DY’' Dy’ 1—[ ) (Aﬁ(x”) — eTgT‘lB{,b(t,x”eT))

x"" v,b

X S (l/)(x") _ eT(D—l)/ZZ%/ZX/(t,xner)) 5 (l/j(x”) _ QT(D_l)/ZZ%/Z)Z’(t, xl/er))

!/ AN
X §A,§¢,eST=O[A ’lp ’lp ]

6L 6L

$y = exp (— fx&/)(x) 617J(x)): scrambler for fermions

 ¥'(t,x) is the solution to the following GF equation:

d:x' (t,x) = [DMDH — aoauBﬁa(t, )T x'(t,%), x'(0,x) =¢'(x)
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Chiral symmetry

« S is NOT invariant under the chiral transformation

Y(x) » (1 +iays)yP(x)
A _ or, J3
due to the scrambler §, := exp( fx 5Y(x) 517,(95))

e It is invariant under the modified chiral symmetry
generated by

where y- is the generator of the ordinary one:

. oy,
Vs = jx)/sl/)(x) 5U(x)

_ )
+ l/)(X))/s 51/366')
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Modified chiral symmetry

[t acts on S, as

OpS; _ 0.5, OpS; 0;5;
+ —— 2 —
x51/))/5¢ 1/))/561/) 51/))/551/)

* When S, is the bilinear in the fermion field as

5, == f T,

the modified chiral symmetry ([teSt=0) implies the
Ginsparg-Wilson relation:

5L 5RS‘L'

—Sr i oSt — ZL TR
e 5€ V55¢ 50

+-2tr[

(Recall that we work on the dimensionless framework)
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Gauge fixing in QED

[Y.Miyakawa, H.Sonoda and H.Suzuki 2111.15529]

When perform a perturbative calculation,
we should consider the gouge fixing and the ghosts

If we introduce the ghosts E(xe,c%x) and suppose they
decouples from.Aﬂ and ¥, the GFERG equation requires

where Sy = S[A, ] =S¢y

2
= — c(x)
The Ward-Takahashj idenTiﬁ%'Fé&h??%§'az

should be invariant the modified gauge transformation

A : (3.4 (x))2
T Ty LEE(—e2792)e20% — g2 \' KK

&: the gauge fixing parameter
E(x): an arbitrary function analytic at x =0
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Modified gauge invariance

« SIV is required to be invariant under
the modified gauge transformation:
gE(_e—ZTGZ)eZGZ — 92
SzE(_e—ZTaZ)ezaZ
6 (x) = lew(x)P(x),
§P(x) = —iew(x)P(x)

5A,(x) =

S. is required to transform under it as
62
EE(—e2792)e 2072

5S, = J A, (x) d,w(x)

d,w(x),
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|IPI effective action

[H. Sonoda and H.Suzuki 2201.04448]

» The generating functional I'[A,, ¥, ¥] for
one-particle irreducible diagrams is defined as

_ _ 1 _
m&w%wyzamwwwhjlﬂﬁfw@f+ﬂ¢—¢ﬂ¢—wy

where A,, 1 and Y are set to be the solutions to

6;S, —  _ OrS
L z',qu.:: yb +i _R-_T
oY oY

T

A, =A
u u 4_‘5[4M

W=+

* [7 is invariant under the ordinary gauge
transformation, while SI™V is invariant under
the modified one
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Unused Sl ides



Summary of today’s talk

e We study the fixed point structure of
“Gradient Flow Exact Renormalization Group” (GFERG),
a new framework to define the Wilson action
via a gradient flow equation

 We consider the GFERG equation associated with
a general gradient flow equation for scalar field
theories

e We show that the fixed points are the same as those
of the Wilson-Polchinski equation in general

e Furthermore, we discuss that the GFERG equation has
a similar RG flow structure around a fixed point to
the WP equation
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Our work

e We study the fixed points of the general GFERG eq.
for scalar fields
—> The fixed points of the WP eq. appear
in the T > o limit along the GFERG flow

* We show the GFERG eq. has a similar RG flow structure
around a fixed point
—> Scaling dimensions of relevant or marginal
operators are the same, while those of irrelevant
operators can be different

* GFERG gives the same prediction as the conventional
ERG for the IR behavior of a theory
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Gradient Flow (GF)

e This one—-parameter deformation of fields via
the diffusion equation has been studied
in the context of “gradient flow”

e The gradient flow is a method to construct composite
operators without the equal-point singularity

e Correlation functions are UV finite with wave
function renormalization:

—n/2
Z; M (1, %) @ (2, %) -+ @ En, Xn))p < 00
even for the equal point case (e.g. x; = x,)

[F.Capponi, L.Debbio, S.Ehret,R.Pellegrini,A.Rago 1512.02851]
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GFERG equation

e We get the counterpart of the WP equation
by differentiating S, with respect to t:

0,e 5T =
) D—2+n, 0 ) ]
j —2D,E4 —ZaDaAa—< + x*— | A2 e ot
a vivu o~u“Yvity u
X 6’4“ () 2 OxH A-A+ 8/6A

e This equation is called “the GFERG equation”

e It includes higher—-functional derivatives more than two.
(The WP equation includes up to a second derivative)
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Recent Studies

e Inclusion of matter fermions, the chiral symmetry

and the axial anomaly
[Y.Miyakawa and H.Suzuki 2106. |1142]

LY. Miyakawa 2201.08181]

 Gauge fixing, ghosts and perturbative analysis around

the Gaussian fixed point in QED
[Y.Miyakawa, H.Sonoda and H.Suzuki 2111, 15529]

e GFERG equation for the IPI effective action and

gauge symmetry in QED
[H. Sonoda and H. Suzuki 2201.04448]
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Vanishing A

e The connected two point function at the fixed point

theory
1

(P(x)®(0))connected X D—2+7

e« It should become zero when [x]| » o
= D—24+1n>0 is required
= A(o0) (A(r) ~ e~ ™P=24M/2) gnd the extra terms vanish
and only the WP part survives
= S* satisfies the fixed point condition of
the WP eq.

e The fixed points of the WP eq. appear
in the T > 00 |imit along the GFERG flow
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O(N) non-linear sigma model

 Let us illustrate our results with
the O(N) non—linear sigma model in 4 —¢ dimensions

 Lagrangian
1 2
L= E(augbi) , (¢p)° =1

e Its continuum theory is characterized by
Wilson—-Fisher fixed point in 4 —¢€ dimensions

1 e A
Sive = | 3(0,0)° + 75707 + 5 (42)" + 0(e)

eN + 2 812

[K.Wilson, M.Fisher Phys.Rev.lertt. 28 (1972) 240-243]
[S.Dutta, B.Sathiapalan, H.Sonoda 2003.02773]
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GFERG of O(N) NL sigma model

e Gradient flow equation

0:¢; = 02¢; — (0029, );
[H.Makino, H.Suzuki 1410.7538]

 GFERG equation
d,.e~5®] = (WP part)

) )
—AZ(T)L(qui(x) <<¢j(x) + 5¢j(x)>

)
X 0 <¢j(x) + 5¢j(x)> <¢i(x) +

5 _Sr[(b]
6¢i<x)>> ’
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Fixed point, Scaling dimension

e Anomalous dimension at WF fixed point

n N+2 €? ;
2 (N +8)2 2 +0(e%)

T N + 2 5
N A(T) ~ exp —5(2—6+(N+8)26) -0 (1> )

« Scaling dimensions

1 N +2
_01:§¢i - d1=maX 2_N+8

(critical exponent v=1:=d,)

1 2 N+2
-0 :g(qblz) 6472

N + 2
N+ 8

e,—(D—2+n)>=2— e>0

¢i2 - dp = max(—e,—(D — 2 +77)) =—€e<0
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Material



(relevant)

!/
e*AT or

e~ (Mmin—1)(D+2-1)/2 7' (irrelevant)
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