
Fixed Point Structure of 
Gradient Flow Exact 

Renormalization Group
Junichi Haruna

(Kyoto University)

2022/7/27 @ ERG2022

Based on arXiv:2201.04111 with Y.Abe(Kobe) and Y.Hamada(KEK)



Outline

• Introduction (2)

• Review of GFERG (7)

• Fixed point structure of GFERG for scalar field 
theories (8)

• Conclusion (2)

2/19



Outline

• Introduction (2)

• Review of GFERG (7)

• Fixed point structure of GFERG for scalar field 
theories (8)

• Conclusion (2)

3/19



Exact Renormalization Group (ERG)

• A framework to study physics under varying the energy 
scale

• The Wilson action 𝑆𝜏 is intuitively defined by 
integrating out higher momentum modes of the fields:

• 𝜏-dependence of the Wilson action 𝑆𝜏 is described by
a differential equation →“ERG equation”

𝑒−𝑆𝜏 ≔ න𝐷𝜙𝑝>Λ𝑒
−𝑆0

(Λ ≔ Λ0𝑒
−𝜏, Λ0: cutoff)
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Wilson-Polchinski equation
• A typical example of the ERG equation:

• This equation defines a renormalization procedure 
non-perturbatively

𝜕𝜏𝑆𝜏 = ඲

𝑝

൝ 2𝑝2 +
𝐷 + 2 − 𝜂𝜏

2
+ 𝑝𝜇

𝜕

𝜕𝑝𝜇
𝜙𝑖 𝑝

𝛿𝑆𝜏
𝛿𝜙𝑖 𝑝

ቋ+ 2𝑝2 + 1 −
𝜂𝜏
2

𝛿2𝑆𝜏
𝛿𝜙𝑖 𝑝 𝛿𝜙𝑖 −𝑝

−
𝛿𝑆𝜏

𝛿𝜙𝑖 𝑝

𝛿𝑆𝜏
𝛿𝜙𝑖 −𝑝

𝑆𝜏 𝑆𝜏 𝑆𝜏𝜕𝜏 = + 𝑆𝜏 𝑆𝜏−

(We work on the dimensionless framework and 𝐷-dimensional Euclidean space)

(𝜂𝜏: anomalous dimension) [J.Polchinski Nucl.Phys.B 231 (1984) 269-295]
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Gauge invariance in ERG
• The Wilson action with the naive UV cutoff is 
inconsistent with gauge invariance

• The gauge transformation mixes higher and lower 
momentum modes:

• Can we define a Wilson action in a manifestly
gauge invariant manner?

𝐴𝜇
𝑎 𝑝 → 𝐴𝜇

𝑎 𝑝 − 𝑝𝜇𝜔
𝑎 𝑝 − 𝑖𝑓𝑎𝑏𝑐න

𝑞

𝜔𝑏 𝑝 − 𝑞 𝐴𝑐 𝑞
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Renormalization and Diffusion
• The solution to the WP equation can be written
in the following form:

• 𝜑′ is a solution to the diffusion equation:

where

• This representation implies that the coarse-graining 
by the diffusion can be used to define an RG flow

𝑒𝑆𝜏 𝜙 = Ƹ𝑠𝜙
−1න𝐷𝜙′ ෑ

𝑥,𝑖

𝛿(𝜙𝑖 𝑥 − 𝑒 Τ𝜏 𝐷−2 2𝑍𝜏
Τ1 2𝜑𝑖

′(𝑡, 𝑥𝑒𝜏)) Ƹ𝑠𝜙′𝑒𝑆𝜏=0[𝜙
′]

( Ƹ𝑠𝜙 ≔ exp −
1

2
𝑥׬

𝛿2

𝛿𝜙𝑖 𝑥
2 :“scrambler")

𝜕𝑡𝜑
′ 𝑡, 𝑥 = 𝜕𝑥

2𝜑′ 𝑡, 𝑥 , 𝜑′ 0, 𝑥 = 𝜙′ 𝑥

𝑡 ≔ 𝑒2𝜏 − 1
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Gradient Flow (GF)
• This one-parameter deformation of fields via
the diffusion equation has been studied
in the context of “gradient flow" 

• The gradient flow is a method to construct composite 
operators without the equal-point singularity

• Correlation functions are UV finite with wave 
function renormalization:

even for the equal point case (e.g. 𝑥1 = 𝑥2)

[F.Capponi,L.Debbio,S.Ehret,R.Pellegrini,A.Rago 1512.02851]

𝑍𝑡
−𝑛/2

𝜑 𝑡, 𝑥1 𝜑 𝑡, 𝑥2 ⋯𝜑 𝑡, 𝑥𝑛 𝜙 < ∞
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Gradient Flow ERG (GFERG)
• GF equation for gauge fields

with 

• 𝑆𝜏 for gauge fields can be defined via the GF equation 

• GFERG defines an RG flow in a gauge-invariant way!

[M.Lüscher,P.Weisz 1101.0963]

𝜕𝑡𝐵𝜇
′ = 𝐷𝜈

′𝐺𝜈𝜇
′ + 𝛼0𝐷𝜇

′𝜕𝜈𝐵𝜈
′

𝐵𝜇
′ 0, 𝑥 = 𝐴𝜇

′ 𝑥

“diffusion" “gauge fixing"

[H.Sonoda and H.Suzuki 2012.03568]

𝑒−𝑆𝜏 𝐴𝜇
𝑎
≔ Ƹ𝑠𝐴

−1න 𝐷𝐴′𝜇
𝑎

ෑ

𝑥′,𝑎,𝜇

𝛿 𝐴𝜇
𝑎 𝑥 − 𝑒𝜏 𝐷−4 𝐵𝜇

′𝑎 𝑡, 𝑥′𝑒𝜏 Ƹ𝑠𝐴′𝑒
−𝑆𝜏=0 𝐴𝜇

′𝑎

( Ƹ𝑠𝐴 ≔ exp −
1

2
𝑥׬

𝛿2

𝛿𝐴𝜇
𝑎 𝑥 𝛿𝐴𝜇

𝑎 𝑥
:“scrambler" for gauge fields)
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Our motivation
• The appropriate gradient flow eq. highly depends on 
details of the theory, such as its symmetry and 
interactions

• The GFERG flow depends on the form of the GF eq.,
and then becomes different for each theory

• This means that the GFERG eq. for general scalar 
field theories is no longer given by the WP eq. 

• Is GFERG consistent with the conventional ERG?
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Our motivation
• The gradient flow equation for the 𝑂 𝑁 non-linear 
sigma model

• But the continuum limits of this model and the linear 
sigma model in three dimension are characterized by 
the same fixed point

• “Does GFERG give the same prediction as the 
conventional ERG for the IR behavior of a theory?"

• These facts strongly motivate us to study
the fixed points and the critical exponents in GFERG

[H.Makino, H.Suzuki 1410.7538]

𝜕𝑡𝜑𝑖 = 𝜕𝑥
2𝜑𝑖 − 𝜑𝑗𝜕𝑥

2𝜑𝑗 𝜑𝑖
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General gradient flow equation
• General form of gradient flow equations

• Counterpart of WP eq. in GFERG (GFERG eq.)

where

𝜕𝜏𝜑𝑖 = 𝜕𝑥
2𝜑𝑖 + ෍

𝑛=𝑛min

∞

න
𝑥1,…,𝑥𝑛

𝑓𝑖
𝑖1,…,𝑖𝑛 𝑥; 𝑥1, … , 𝑥𝑛; 𝜕𝑥1 , … , 𝜕𝑥𝑛 𝜑𝑖1 𝜏, 𝑥1 ⋯𝜑𝑖𝑛 𝜏, 𝑥𝑛

WP part extra terms

𝜕𝜏𝑒
−𝑆𝜏 Φ = (WP part)

+ ෍

𝑛=𝑛min

∞

𝜆𝑛−1 𝜏 න
𝑥,𝑥1,…,𝑥𝑛

𝛿

𝛿𝜙𝑖 𝑥
ቊ𝑓𝑖

𝑖1,…,𝑖𝑛 𝜙𝑖1 𝑥1 +
𝛿

𝛿𝜙𝑖1 𝑥1
×⋯

ቋ× 𝜙𝑖𝑛 𝑥𝑛 +
𝛿

𝛿𝜙𝑖𝑛 𝑥𝑛
𝑒−𝑆𝜏 Φ

𝜆 𝜏 ≔ 𝑒−𝜏 Τ𝐷−2 2𝑍𝜏
− Τ1 2
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Fixed point action
• The fixed point action 𝑆∗ is defined as

• 𝑆∗ satisfies

• Asymptotic behavior of 𝜆 𝜏

• 𝜆 ∞ should vanish from the cluster decomposition 
principle at the fixed point theory

⇒𝑆∗ satisfies the fixed point condition of the WP eq.

𝜆 𝜏 ∼ exp −𝜏 𝐷 − 2 + 𝜂 /2

0 = (WP part) + ෍

𝑛=𝑛min

∞

𝜆𝑛−1(∞)න
𝑥,𝑥1,…,𝑥𝑛

𝛿

𝛿𝜙𝑖 𝑥
ቊ𝑓𝑖

𝑖1,…,𝑖𝑛 𝜙𝑖1 𝑥1 +
𝛿

𝛿𝜙𝑖1 𝑥1
×⋯

ቋ× 𝜙𝑖𝑛 𝑥𝑛 +
𝛿

𝛿𝜙𝑖𝑛 𝑥𝑛
𝑒−𝑆

∗ Φ

𝜂

2
≔

𝑑

𝑑𝜏
log𝑍𝜏 ቚ

𝜏=∞

𝜕𝜏𝑆
∗ = 0 and 𝑆∗ ≔ lim

𝜏→∞
𝑆𝜏
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RG flow around fixed point
• Let us study the 𝜏-dependence of 𝑆𝜏 after a long time
𝜏 = 𝜏0 ≫ 1 so that 𝜆 𝜏0 ∼ 𝑒−𝜏0 𝐷−2+𝜂 /2 ≪ 1

• Consider perturbating 𝑆𝜏 from a fixed point 𝑆∗

at 𝜏 = 𝜏0 as

𝑆𝜏0 = 𝑆∗ +෍

𝐴

𝛿𝑐𝐴𝒪𝐴

𝛿𝑐𝐴 ≪ 1

𝒪𝐴: a complete set of operators
(defined in the next slide)
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Solution in the 𝜏 → ∞ limit

• We have two small quantities: 𝛿𝑐𝐴, 𝜆0 ≔ 𝑒−𝜏0 𝐷−2+𝜂 /2

• Solution to the GFERG eq. up to the leading order

where 𝜏 = 𝜏0 + 𝜏′

𝑆𝜏 = 𝑆∗ +෍

𝐴

𝛿𝑐𝐴𝑒𝑥𝐴𝜏
′
− 𝜆0

𝑛min−1 𝑒− Τ𝑛min−1 𝐷−2+𝜂 𝜏′ 2 − 𝑒𝑥𝐴𝜏
′
ℎ𝐴 𝒪𝐴

𝒪𝐴: eigenoperators of the linearized WP eq.
around 𝑆∗

𝑥𝐴: eigenvalue of 𝒪𝐴
𝑛min: minimum order of the non-linear terms

in the GF eq.

ℎ𝐴: some constant
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Scaling dimension

• Scaling Dimension 𝑑𝐴

• 𝑑𝐴 of relevant or marginal operators are 𝑥𝐴
⇒ GFREG gives the same prediction as the WP equation 
for the IR behavior of a theory.

𝑑𝐴 = max 𝑥𝐴, − 𝑛𝑚 − 1 (𝐷 − 2 + 𝜂)/2

𝑥𝐴 ≥ 0 (relevant or marignal) ⟹

𝑥𝐴 < 0 (irrelevant) ⟹

𝑑𝐴 = 𝑥𝐴

𝑑𝐴 = −min( 𝑥𝐴 , 𝑛𝑚 − 1 𝐷 − 2 + 𝜂 /2)
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Conclusion
• Studied the fixed point structure of the GFERG 
equation associated with a general gradient flow 
equation for scalar field theories

• Showed that the fixed points are the same as those of 
the Wilson-Polchinski equation in general

• Discussed that the GFERG equation has a similar RG 
flow structure around a fixed point to the WP 
equation

• GFERG gives the same prediction as the conventional 
ERG for the IR behavior of a theory

Thank you!
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Back up
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Future Direction
• (Non-abelian) gauge theory

• Gravity and asymptotic safety
“Wilson action with manifest diffeomorphism 
invariance"

• Scalar field theories with a non-trivial target space
in two dimensions
e.g.) 𝑂 𝑁 NL sigma model, 𝑪𝑷𝑁−1 model

• Effects of topological terms in QFT
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GFERG is ERG?
• GFERG is NOT considered to be a kind of ERG
but an alternative framework to study the low-energy 
physics in the Wilsonian sense

• Reasons:

1. The scaling dimensions are different from those of 
the WP equation
(Different renormalization schemes should provide 
the same scaling dimensions within ERG by a field 
redefinition)

2. The effective couplings do not follow the scaling 
law around fixed points
(They should scales as 𝜆𝐴 → 𝑒𝑥𝐴𝜏𝜆𝐴 under
the coarse-graining of 𝑥 → 𝑥𝑒𝜏)
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Loophole
• Our arguments do not cover the case where 𝜆 𝜏 and 
then the GFERG equation become 𝜏-independent

• 𝜂𝜏 satisfies
𝜂𝜏 = 2 − 𝐷

• Examples: the pure Yang-Mills theory with 𝐷 = 4,
the 𝑂 𝑁 non-linear sigma model with 𝐷 = 2

(Note: the counterpart of 𝜆 𝜏 in the YM theory is 𝑒− Τ𝜏 𝐷−4 2𝑍𝜏
Τ1 2)

• The GFERG equation can be regarded as a ERG equation
in this case
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GF eq. of O(N) NL sigma
• Gradient flow equation

• It obviously preserves the 𝑂 𝑁 symmetry (𝜑𝑖 → 𝑂𝑖𝑗𝜑𝑗) 

• The constraint of the fields (𝜑𝑖
2 = 1) is respected,

i.e., if 𝜑𝑖
2 0, 𝑥 = 𝜙𝑖

2(𝑥) = 1, 𝜑𝑖
2 𝑡, 𝑥 = 1 for ∀𝑡

• The correlation functions of 𝜑𝑖 are UV finite without 
any additional wave function renormalization in two 
dimensions

• If we solve the constraint (𝜙𝑁 = ± 1 − σ𝑎
𝑁−1𝜙𝑎

2
1

2),
the appropriate gradient flow equation is

𝜕𝑡𝜑𝑖 = 𝜕𝑥
2𝜑𝑖 − 𝜑𝑗𝜕𝑥

2𝜑𝑗 𝜑𝑖

𝜕𝑡𝜑𝑎 = 𝜕𝑥
2𝜑𝑎 + 𝜕𝜇𝜑𝑏𝜕𝜇𝜑𝑏 +

𝜑𝑏𝜕𝜇𝜑𝑏
2

1 − 𝜑𝑐
2 𝜑𝑎
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General non-linear sigma model
• Lagrangian

• The Wilson action of GFERG is not covariant
under target space diffeomorphism of the fields

• This expression should be interpreted as one for the 
models embedded in higher-dimensional Euclidean space
with some constraints for the fields

• The appropriate GF equation is required to preserve 
those constraints instead

ℒ =
1

2
𝐺𝑛𝑚 𝜙 𝜕𝜇𝜙𝑛𝜕

𝜇𝜙𝑚

𝑒𝑆𝜏 𝜙 = Ƹ𝑠𝜙
−1න𝐷𝜙′ ෑ

𝑥

𝛿(𝜙𝑖 𝑥 − 𝑒 Τ𝜏 𝐷−2 2𝑍𝜏
Τ1 2𝜑𝑖

′(𝑡, 𝑥𝑒𝜏)) Ƹ𝑠𝜙′𝑒𝑆𝜏=0[𝜙
′]

Ƹ𝑠𝜙 ≔ exp −න
𝑥

𝛿2

𝛿𝜙𝑖 𝑥
2
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Constraints
• Consider a theory whose fields are constrained as 
𝐹 𝜙 = 0
e.g.) the 𝑂 𝑁 NL sigma model: 𝐹 = 𝜙𝑖

2 − 1

• 𝑆𝜏 preserves the constraint in the sense that 
𝐹 𝜆 𝜏 𝜙 = 0 holds in the (modified) correlation 
functions:

(Recall:

)𝑒𝑆𝜏 𝜙 = Ƹ𝑠𝜙
−1න𝐷𝜙′ ෑ

𝑥

𝛿(𝜙𝑖 𝑥 − 𝑒 Τ𝜏 𝐷−2 2𝑍𝜏
Τ1 2𝜑𝑖

′(𝑡, 𝑥𝑒𝜏)) Ƹ𝑠𝜙′𝑒𝑆𝜏=0[𝜙
′]

≪ 𝐹 𝜆 𝜏 𝜙 𝜙𝑖1⋯𝜙𝑖𝑛 ≫𝑆𝜏= 0
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Scaling theorem

• 𝑆𝜏 of GFERG satisfies the scaling theorem:

• The solution to the WP equation holds this property

• 𝑆𝜏 describes the response of the system to
the scale transformation (the coarse-graining)

≪ 𝜙𝑖1 𝑝1𝑒
𝜏 ⋯𝜙𝑖𝑛 𝑝𝑛𝑒

𝜏 ≫𝑆𝜏

≪ 𝒪 ≫𝑆≔ 𝐷𝜙׬ Ƹ𝑠𝜙𝒪 𝑒
𝑆 𝜙 ∶ the modified correlation function

= 𝑒− Τ𝜏𝑛 𝐷+2 2𝑍𝜏
Τ𝑛 2ෑ

𝑖=1

𝑛
𝐾 𝑝𝑖𝑒

𝜏

𝐾 𝑝𝑖
≪ 𝜙𝑖1 𝑝1 ⋯𝜙𝑖𝑛 𝑝𝑛 ≫𝑆𝜏=0

[H.Sonoda, H.Suzuki 1901.05169]

𝐾 𝑝𝑖 ≔ 𝑒−𝑝
2
: the cutoff function
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RG invariance of 𝑍

• Partition function

• The GFERG flow preserves the partition function:

• We call 𝑆𝜏 of GFERG the“Wilson" action in the sense 
that it holds this property and satisfies the scaling 
theorem

𝑍 ≔ න𝐷𝜙 𝑒𝑆𝜏=0 𝜙

න𝐷𝜙 𝑒𝑆𝜏 = න𝐷𝜙 𝑒𝑆𝜏=0 = 𝑍
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Details of Solution to GFERG eq.

• Solution to the GFERG equation in the 𝜏 → ∞ limit

෍

𝐴

𝑔𝐴𝒪𝐴 ≔ 𝑒𝑆
∗
න
𝑥,𝑥1,…,𝑥𝑛

𝛿

𝛿𝜙𝑖 𝑥
ቐ𝑓𝑎

𝑖1,…,𝑖𝑛min 𝜙𝑖1 𝑥1 +න
𝑦1

𝒟 𝑥1 − 𝑦1
𝛿

𝛿𝜙𝑖1 𝑦1

𝑛min

𝑒−𝑆
∗

𝑆𝜏 = 𝑆∗ +෍

𝐴

𝛿𝑐𝐴𝑒𝑥𝐴𝜏
′
− 𝜆0

𝑛min−1 𝑒− Τ𝑛min−1 𝐷−2+𝜂 𝜏′ 2 − 𝑒𝑥𝐴𝜏
′
ℎ𝐴 𝒪𝐴

ℎ𝐴 =
𝑔𝐴

𝑥𝐴 + 𝐷 − 2 + 𝜂
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Inclusion of matter fermions

• Wilson action for gauge fields and matter fermions

• 𝜒′ 𝑡, 𝑥 is the solution to the following GF equation:

𝑒𝑆𝜏[𝐴,𝜓,
ഥ𝜓] ≔ Ƹ𝑠𝐴

−1𝑠𝜓
−1න𝐷𝐴′𝐷𝜓′𝐷𝜓′ ෑ

𝑥′′,𝜈,𝑏

𝛿 𝐴𝜈
𝑏 𝑥′′ − 𝑒𝜏𝑔𝜏

−1𝐵𝜈
′𝑏 𝑡, 𝑥′′𝑒𝜏

× 𝛿 𝜓 𝑥′′ − 𝑒 Τ𝜏 𝐷−1 2𝑍𝜏
Τ1 2𝜒′ 𝑡, 𝑥′′𝑒𝜏 𝛿 ത𝜓 𝑥′′ − 𝑒 Τ𝜏 𝐷−1 2𝑍𝜏

Τ1 2 ҧ𝜒′ 𝑡, 𝑥′′𝑒𝜏

× Ƹ𝑠𝐴′ Ƹ𝑠𝜓′𝑒𝑆𝜏=0[𝐴
′,𝜓′,ഥ𝜓′]

Ƹ𝑠𝜓 ≔ exp 𝑥׬−
𝛿𝐿

𝛿𝜓 𝑥

𝛿𝐿

𝛿ഥ𝜓 𝑥
: scrambler for fermions

𝜕𝑡𝜒
′ 𝑡, 𝑥 = 𝐷𝜇𝐷𝜇 − 𝛼0𝜕𝜇𝐵𝜇

′𝑎 𝑡, 𝑥 𝑇𝑎 𝜒′ 𝑡, 𝑥 , 𝜒′ 0, 𝑥 = 𝜓′(𝑥)

[Y.Miyakawa and H.Suzuki 2106.11142]
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Chiral symmetry

• 𝑆𝜏 is NOT invariant under the chiral transformation

due to the scrambler Ƹ𝑠𝜓 ≔ exp 𝑥׬−
𝛿𝐿

𝛿𝜓 𝑥

𝛿𝐿

𝛿ഥ𝜓 𝑥

• It is invariant under the modified chiral symmetry 
generated by 

where ො𝛾5 is the generator of the ordinary one:

𝜓 𝑥 → 1 + 𝑖𝛼𝛾5 𝜓 𝑥

෠𝛤5 ≔ Ƹ𝑠𝜓
−1 ො𝛾5 Ƹ𝑠𝜓,

ො𝛾5 ≔ න
𝑥

𝛾5𝜓 𝑥
𝛿𝐿

𝛿𝜓 𝑥
+ ത𝜓 𝑥 𝛾5

𝛿𝐿

𝛿 ത𝜓 𝑥
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Modified chiral symmetry

• ෠𝛤5 acts on 𝑆𝜏 as

• When 𝑆𝜏 is the bilinear in the fermion field as

the modified chiral symmetry ( ෠𝛤5𝑒
𝑆𝜏 = 0) implies the 

Ginsparg-Wilson relation:

(Recall that we work on the dimensionless framework)

𝑒−𝑆𝜏 ෠𝛤5𝑒
𝑆𝜏 = න

𝑥

𝛿𝑅𝑆𝜏
𝛿𝜓

𝛾5𝜓+ ത𝜓𝛾5
𝛿𝐿𝑆𝜏

𝛿 ത𝜓
− 2

𝛿𝑅𝑆𝜏
𝛿𝜓

𝛾5
𝛿𝐿𝑆𝜏

𝛿 ത𝜓
+ 2tr 𝛾5

𝛿𝐿
𝛿𝜓

𝛿𝑅𝑆𝜏

𝛿 ത𝜓

𝑆𝜏 = −න
𝑥

ത𝜓 𝑥 𝐷𝜓 𝑥 ⋯ ,

𝛾5𝐷 + 𝐷𝛾5 + 2𝐷𝛾5𝐷 = 0
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Gauge fixing in QED
• When perform a perturbative calculation,
we should consider the gauge fixing and the ghosts

• If we introduce the ghosts ҧ𝑐 𝑥 , 𝑐 𝑥 and suppose they 
decouples from 𝐴𝜇 and 𝜓, the GFERG equation requires

where 𝑆𝜏 = 𝑆 𝐴,𝜓 + 𝑆gh
• The Ward-Takahashi identity requires

should be invariant the modified gauge transformation

𝑆gh = න
𝑥

ҧ𝑐 𝑥
𝜕2

𝐸 −𝑒−2𝜏𝜕2 − 𝜕2
𝑐 𝑥

𝑆𝜏
inv ≔ 𝑆𝜏 +

1

2
න
𝑥

1

𝜉𝐸 −𝑒−2𝜏𝜕2 𝑒2𝜕
2
− 𝜕2

𝜕𝜇𝐴𝜇 𝑥
2

𝜉: the gauge fixing parameter

𝐸 𝑥 : an arbitrary function analytic at 𝑥 = 0

[Y.Miyakawa, H.Sonoda and H.Suzuki 2111.15529]
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Modified gauge invariance

• 𝑆𝜏
inv is required to be invariant under

the modified gauge transformation:

• 𝑆𝜏 is required to transform under it as

𝛿𝐴𝜇 𝑥 =
𝜉𝐸 −𝑒−2𝜏𝜕2 𝑒2𝜕

2
− 𝜕2

𝜉𝐸 −𝑒−2𝜏𝜕2 𝑒2𝜕
2 𝜕𝜇𝜔 𝑥 ,

𝛿𝜓 𝑥 = 𝑖𝑒𝜔 𝑥 𝜓 𝑥 ,

𝛿𝑆𝜏 = න
𝑥

𝐴𝜇 𝑥
𝜕2

𝜉𝐸 −𝑒−2𝜏𝜕2 𝑒2𝜕
2 𝜕𝜇𝜔 𝑥

𝛿 ത𝜓 𝑥 = −𝑖𝑒𝜔 𝑥 ത𝜓 𝑥
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1PI effective action

• The generating functional 𝛤[𝒜𝜇 , 𝛹, ഥ𝛹] for
one-particle irreducible diagrams is defined as

where 𝐴𝜇 , 𝜓 and ത𝜓 are set to be the solutions to

• 𝛤𝜏 is invariant under the ordinary gauge 
transformation, while 𝑆𝜏

inv is invariant under
the modified one

𝛤𝜏 𝒜𝜇 , 𝛹, ഥ𝛹 ≔ 𝑆𝜏 𝐴𝜇, 𝜓, ത𝜓 + න
𝑥

1

2
𝐴𝜇 −𝒜𝜇

2
+ 𝑖 ത𝜓 − ഥ𝛹 𝜓 −𝛹 ,

𝒜𝜇 = 𝐴𝜇 +
𝛿𝑆𝜏
𝛿𝐴𝜇

, 𝛹 = 𝜓 + 𝑖
𝛿𝐿𝑆𝜏
𝛿𝜓

, ഥ𝛹 = ത𝜓 + 𝑖
𝛿𝑅𝑆𝜏

𝛿 ത𝜓

[H.Sonoda and H.Suzuki 2201.04448]
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Unused Slides
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Summary of today's talk
• We study the fixed point structure of
“Gradient Flow Exact Renormalization Group" (GFERG),
a new framework to define the Wilson action
via a gradient flow equation

• We consider the GFERG equation associated with
a general gradient flow equation for scalar field 
theories

• We show that the fixed points are the same as those 
of the Wilson-Polchinski equation in general

• Furthermore, we discuss that the GFERG equation has
a similar RG flow structure around a fixed point to 
the WP equation
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Our work
• We study the fixed points of the general GFERG eq. 
for scalar fields
→ The fixed points of the WP eq. appear

in the 𝜏 → ∞ limit along the GFERG flow

• We show the GFERG eq. has a similar RG flow structure
around a fixed point
→ Scaling dimensions of relevant or marginal 

operators are the same, while those of irrelevant
operators can be different

• GFERG gives the same prediction as the conventional 
ERG for the IR behavior of a theory
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Gradient Flow (GF)
• This one-parameter deformation of fields via
the diffusion equation has been studied
in the context of “gradient flow" 

• The gradient flow is a method to construct composite 
operators without the equal-point singularity

• Correlation functions are UV finite with wave 
function renormalization:

even for the equal point case (e.g. 𝑥1 = 𝑥2)

[F.Capponi,L.Debbio,S.Ehret,R.Pellegrini,A.Rago 1512.02851]

𝑍𝑡
−𝑛/2

𝜑 𝑡1, 𝑥1 𝜑 𝑡2, 𝑥2 ⋯𝜑 𝑡𝑛, 𝑥𝑛 𝜙 < ∞
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GFERG equation
• We get the counterpart of the WP equation
by differentiating 𝑆𝜏 with respect to 𝜏:

• This equation is called “the GFERG equation"

• It includes higher-functional derivatives more than two.
(The WP equation includes up to a second derivative)

𝜕𝜏𝑒
−𝑆𝜏 =

න
𝑥

𝛿

𝛿𝐴𝜇
𝑎 𝑥

−2𝐷𝜈𝐹𝜈𝜇
𝑎 − 2𝛼0𝐷𝜇𝜕𝜈𝐴𝜈

𝑎 −
𝐷 − 2 + 𝜂𝜏

2
+ 𝑥𝜇

𝜕

𝜕𝑥𝜇
𝐴𝜇
𝑎

𝐴→𝐴+ 𝛿/𝛿𝐴

𝑒−𝑆𝜏
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Recent Studies
• Inclusion of matter fermions, the chiral symmetry
and the axial anomaly

• Gauge fixing, ghosts and perturbative analysis around 
the Gaussian fixed point in QED

• GFERG equation for the 1PI effective action and
gauge symmetry in QED

[H.Sonoda and H.Suzuki 2201.04448]

[Y.Miyakawa and H.Suzuki 2106.11142]

[Y.Miyakawa, H.Sonoda and H.Suzuki 2111.15529]

[Y.Miyakawa 2201.08181]
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Vanishing 𝜆

• The connected two point function at the fixed point
theory

• It should become zero when 𝑥 → ∞
→ 𝐷 − 2 + 𝜂 > 0 is required 
→ 𝜆 ∞ ( ) and the extra terms vanish

and only the WP part survives
⇒ 𝑆∗ satisfies the fixed point condition of

the WP eq.

• The fixed points of the WP eq. appear
in the 𝜏 → ∞ limit along the GFERG flow

𝜙 𝑥 𝜙 0 connected ∝
1

𝑥𝐷−2+𝜂

𝜆 𝜏 ∼ 𝑒−𝜏 𝐷−2+𝜂 /2
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𝑂 𝑁 non-linear sigma model 
• Let us illustrate our results with
the 𝑂 𝑁 non-linear sigma model in 4 − 𝜖 dimensions

• Lagrangian

• Its continuum theory is characterized by
Wilson-Fisher fixed point in 4 − 𝜖 dimensions

ℒ =
1

2𝑔
𝜕𝜇𝜙𝑖

2
, 𝜙𝑖

2 = 1

𝑆WF
∗ = න

𝑥

1

2
𝜕𝜇𝜙𝑖

2
+
𝑚∗
2

2
𝜙𝑖
2 +

𝜆∗
8

𝜙𝑖
2 2

+ 𝑂(𝜖2)

𝑚∗
2 ≔ −

𝜖

4

𝑁 + 2

𝑁 + 8
, 𝜆∗ ≔ 𝜖

8𝜋2

𝑁 + 8

[K.Wilson, M.Fisher Phys.Rev.Lett. 28 (1972) 240-243]
[S.Dutta, B.Sathiapalan, H.Sonoda 2003.02773]
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GFERG of 𝑂 𝑁 NL sigma model
• Gradient flow equation 

• GFERG equation

𝜕𝜏𝜑𝑖 = 𝜕𝑥
2𝜑𝑖 − 𝜑𝑗𝜕𝑥

2𝜑𝑗 𝜑𝑖

𝜕𝜏𝑒
−𝑆𝜏 Φ = (WP part)

−𝜆2 𝜏 න
𝑥

𝛿

𝛿𝜙𝑖 𝑥
൭ 𝜙𝑗 𝑥 +

𝛿

𝛿𝜙𝑗 𝑥

× ൱𝜕𝑥
2 𝜙𝑗 𝑥 +

𝛿

𝛿𝜙𝑗 𝑥
𝜙𝑖 𝑥 +

𝛿

𝛿𝜙𝑖 𝑥
𝑒−𝑆𝜏 Φ

[H.Makino, H.Suzuki 1410.7538]
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Fixed point, Scaling dimension
• Anomalous dimension at WF fixed point

→

• Scaling dimensions

-

-

𝜂

2
=

𝑁 + 2

𝑁 + 8 2

𝜖2

2
+ 𝑂 𝜖3

𝜆 𝜏 ∼ exp −
𝜏

2
2 − 𝜖 +

𝑁 + 2

𝑁 + 8 2
𝜖2 → 0 (𝜏 → ∞)

𝒪1 =
1

2
𝜙𝑖
2 → 𝑑1 = max 2 −

𝑁 + 2

𝑁 + 8
𝜖,− 𝐷 − 2 + 𝜂 = 2 −

𝑁 + 2

𝑁 + 8
𝜖 > 0

(critical exponent 𝜈−1 ≔ 𝑑1)

𝒪2 =
1

8
𝜙𝑖
2 2

−
𝑁 + 2

64𝜋2
𝜙𝑖
2 → 𝑑2 = max −𝜖,− 𝐷 − 2 + 𝜂 = −𝜖 < 0
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Material
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𝑆∗

𝒪1𝒪2
𝑒𝑥𝐴𝜏

′

𝑒𝑥𝐴𝜏
′
or

𝑒− Τ𝑛min−1 𝐷+2−𝜂 2 𝜏′

(relevant)

(irrelevant)
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𝑆∗

𝒪1𝒪2

𝑆𝜏0 = 𝑆∗ + 𝛿𝑐𝐴𝒪𝐴
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