Sextic tensor field theories

Sabine Harribey

Based on JHEP 06 (2020) 065 [2007:04603] with D.Benedetti, N.Delporte and R.Sinha and on arXiv:2109.08034

ERG 2022, Berlin - July $27^{\text {th }} 2022$

Tensor models: from random geometry to melonic CFTs

- First introduced in zero dimension: random geometry and quantum gravity [Gurau, Bonzom, Rivasseau, ...]
- Strongly coupled QFTs and holography : SYK model without disorder [Witten, Klebanov, Tarnopolsky, ...]
- Tensor models in higher dimension: new class of CFTs, analytically accessible \rightarrow Melonic CFTs

Tensor models: from random geometry to melonic CFTs

- First introduced in zero dimension: random geometry and quantum gravity [Gurau, Bonzom, Rivasseau, ...]
- Strongly coupled QFTs and holography : SYK model without disorder [Witten, Klebanov, Tarnopolsky, ...]
- Tensor models in higher dimension: new class of CFTs, analytically accessible \rightarrow Melonic CFTs
- Rigorous renormalization study
- Computation of CFT data
- Long-range $O(N)^{3}$ bosonic tensor model with quartic interactions Razvan's talk

Tensor models: from random geometry to melonic CFTs

- First introduced in zero dimension: random geometry and quantum gravity [Gurau, Bonzom, Rivasseau, ...]
- Strongly coupled QFTs and holography : SYK model without disorder [Witten, Klebanov, Tarnopolsky, ...]
- Tensor models in higher dimension: new class of CFTs, analytically accessible \rightarrow Melonic CFTs
- Rigorous renormalization study
- Computation of CFT data
- Long-range $O(N)^{3}$ bosonic tensor model with quartic interactions Razvan's talk
\Rightarrow What about sextic interactions?

Outline

(1) Models and large- N limit
(2) Divergences and renormalization
(3) $1 / N$ corrections

Sextic $U(N)^{3}$ model

- Complex field $\phi_{a b c}, \bar{\phi}_{a b c}, U(N)^{3}$ symmetry

$$
S[\phi, \bar{\phi}]=\int d^{d} x \bar{\phi}_{a b c}\left(-\partial_{\mu} \partial^{\mu}\right)^{\zeta} \phi_{a b c}+S_{\mathrm{int}}[\phi, \bar{\phi}]
$$

- $\zeta=1$: short-range
- $0<\zeta<1$: long-range

Large- N expansion

- Factor N per face of color $0 i$
- Large- N expansion:
- Melons with wheel vertices
- Double-tadpoles with any vertex

Power counting and renormalization scheme

- Marginality:
- Short-range: $d=3$
- Long-range: $\zeta=d / 3, d<3$
- Two and four-point functions: power divergent
- Six-point functions: log divergent
- Choice of scheme
- Short-range: $d=3-\epsilon$
- Long-range: $\zeta=\frac{d+\epsilon}{3}$
- Subtraction at non-zero external momentum

Schwinger-Dyson equation: short-range

- Closed equation for G : characteristic of tensor models at large N

$$
G(p)^{-1}=C(p)^{-1}-\Sigma(p),
$$

Schwinger-Dyson equation: short-range

- Closed equation for G : characteristic of tensor models at large N

$$
G(p)^{-1}=C(p)^{-1}-\Sigma(p),
$$

- UV: free scaling regime
- IR: anomalous scaling $G(p)^{-1} \sim p^{2 \Delta}$ with $\Delta=d / 3$
- Wave function renormalization: $\phi=\phi_{R} \sqrt{Z}$
- Z such that $\left.\lim _{\epsilon \rightarrow 0} \frac{d C_{R}^{(2)}(p)}{d p^{2}}\right|_{p^{2}=\mu^{2}}=1$

$$
Z=1-\mu^{-4 \epsilon} \frac{\lambda_{1}^{2} \pi^{2}}{6(4 \pi)^{6} \epsilon}
$$

Schwinger-Dyson equation: long-range

- Free propagator reproduces IR scaling
- Only one scaling regime \Rightarrow no wave function renormalization
- SDE solved by ansatz $G(p)=\frac{\mathcal{Z}}{p^{2 d / 3}}$
- \mathcal{Z} coefficient of the full two-point function

$$
\mathcal{Z}=1-\frac{\lambda_{1}^{2}}{4(4 \pi)^{2 d}} \frac{3 \Gamma\left(1-\frac{d}{3}\right) \Gamma\left(\frac{d}{5}\right)^{5}}{d \Gamma\left(\frac{d}{3}\right)^{5} \Gamma\left(5 \frac{d}{6}\right)}
$$

- Finite for $d<3$
\Rightarrow Characteristic feature of long-range models

Four-point function

- Computation of four-point kernel
- No contribution from tadpoles in dimensional regularization
- Four-point function as a series of ladders

- No divergences in the four-point kernel
- Take four-point couplings to zero from the beginning

Beta functions: bare expansion

- Structure known thanks to large- N limit

- Here only up to order 3 in the coupling constants

Fixed points: short-range

- Two interacting fixed points:

$$
\begin{gathered}
\bar{g}_{1}^{*}= \pm \frac{\sqrt{\epsilon}}{\pi} ; \quad \bar{g}_{2}^{*}=\frac{9}{2 \pi}(-1 \mp 2 \sqrt{\epsilon}) ; \quad \bar{g}_{3}^{*}=0 ; \\
\bar{g}_{4}^{*}=\frac{9}{7 \pi}(5 \pm 7 \sqrt{\epsilon}) ; \quad \bar{g}_{5}^{*}=\frac{-109 \mp 126 \sqrt{\epsilon}}{42 \pi} .
\end{gathered}
$$

- Critical exponents:

$$
(4 \epsilon ; 4 \epsilon ; 6 \epsilon ; 14 \epsilon ; 30 \epsilon)
$$

- Infrared stable
- Eigenvalue of multiplicity two: non-diagonalizable stability matrix
- Logarithmic CFT \Rightarrow non-unitary

Fixed points: long-range

- Line of fixed points parametrized by g_{1} :

$$
\begin{gathered}
\bar{g}_{2}^{*}=-9 \bar{g}_{1}+\frac{9 \Gamma(d / 3) \Gamma(2 d / 3)}{\Gamma(-d / 6) \Gamma(d / 6)} ; \quad \bar{g}_{3}^{*}=0 ; \\
\bar{g}_{4}^{*}=9 \bar{g}_{1}-\frac{90}{7} \frac{2 \Gamma(d / 3) \Gamma(2 d / 3)}{\Gamma(-d / 6) \Gamma(d / 6)} ; \\
\bar{g}_{5}^{*}=-3 \bar{g}_{1}+\frac{109 \Gamma(d / 3) \Gamma(2 d / 3)}{21 \Gamma(-d / 6) \Gamma(d / 6)} .
\end{gathered}
$$

- Critical exponents:

$$
\left(\frac{15 \bar{g}_{1}^{2} \alpha}{2} ; \frac{7 \bar{g}_{1}^{2} \alpha}{2} ; \frac{3 \bar{g}_{1}^{2} \alpha}{2} ; \bar{g}_{1}^{2} \alpha\right), \alpha>0
$$

- Infrared stable
- Compatible with unitarity

Spectrum of bilinears

Three-point function of two fields and a primary:

$$
\left\langle\mathcal{O}_{h}\left(x_{0}\right) \phi_{a b c}\left(x_{1}\right) \bar{\phi}_{a b c}\left(x_{2}\right)\right\rangle \equiv v\left(x_{0}, x_{1}, x_{2}\right)
$$

- Bilinears \leftrightarrow eigenfunctions of eigenvalue 1 of the kernel

Spectrum of bilinears

Three-point function of two fields and a primary:

$$
\left\langle\mathcal{O}_{h}\left(x_{0}\right) \phi_{a b c}\left(x_{1}\right) \bar{\phi}_{a b c}\left(x_{2}\right)\right\rangle \equiv v\left(x_{0}, x_{1}, x_{2}\right)
$$

- Bilinears \leftrightarrow eigenfunctions of eigenvalue 1 of the kernel
- Short-range and spin $J=0$

$$
\begin{gathered}
h_{0}=1+\frac{29}{3} \epsilon+\mathcal{O}\left(\epsilon^{2}\right), h_{1}=3+3 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \\
h_{q}=2-\frac{32}{3} \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \\
h_{n}=1+2 n-\frac{\epsilon}{3}+\frac{20}{3 n(n-1)\left(4 n^{2}-1\right)} \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right), n>1 .
\end{gathered}
$$

Appearance of complex dimensions

- Small $\epsilon>0$: real dimensions
- For $\epsilon>0.02819, h_{0}$ and h_{q} merge and become complex

- Similar situation for long-range case
- Instabilities when complex dimensions of the form $d / 2+\mathrm{i} r[$ Kim et al., Benedetti]

$1 / N$ corrections

- Start with a generic multi-scalar model with sextic interactions

$$
\begin{aligned}
S[\phi] & =\int d^{d} x\left[\frac{1}{2} \bar{\phi}_{\mathrm{a}}(x)\left(-\partial^{2}\right)^{\zeta} \phi_{\mathrm{a}}(x)\right. \\
& \left.+\frac{1}{(3!)^{2}} \lambda_{\mathrm{abc} ; \text { def }} \phi_{\mathrm{a}}(x) \phi_{\mathrm{b}}(x) \phi_{\mathrm{c}}(x) \bar{\phi}_{\mathrm{d}}(x) \bar{\phi}_{\mathrm{e}}(x) \bar{\phi}_{\mathrm{f}}(x)\right]
\end{aligned}
$$

- Compute beta functions
- Specify to desired symmetry group

$1 / N$ corrections

- Start with a generic multi-scalar model with sextic interactions

$$
\begin{aligned}
S[\phi] & =\int d^{d} x\left[\frac{1}{2} \bar{\phi}_{\mathrm{a}}(x)\left(-\partial^{2}\right)^{\zeta} \phi_{\mathrm{a}}(x)\right. \\
& \left.+\frac{1}{(3!)^{2}} \lambda_{\mathrm{abc} ; \text { def }} \phi_{\mathrm{a}}(x) \phi_{\mathrm{b}}(x) \phi_{\mathrm{c}}(x) \bar{\phi}_{\mathrm{d}}(x) \bar{\phi}_{\mathrm{e}}(x) \bar{\phi}_{\mathrm{f}}(x)\right]
\end{aligned}
$$

- Compute beta functions
- Specify to desired symmetry group
- Short-range
- Two infrared stable fixed points
- Diagonalizable stability matrix
- Non-unitary

$1 / N$ corrections

- Start with a generic multi-scalar model with sextic interactions

$$
\begin{aligned}
S[\phi] & =\int d^{d} x\left[\frac{1}{2} \bar{\phi}_{\mathrm{a}}(x)\left(-\partial^{2}\right)^{\zeta} \phi_{\mathrm{a}}(x)\right. \\
& \left.+\frac{1}{(3!)^{2}} \lambda_{\mathrm{abc} ; \text { def }} \phi_{\mathrm{a}}(x) \phi_{\mathrm{b}}(x) \phi_{\mathrm{c}}(x) \bar{\phi}_{\mathrm{d}}(x) \bar{\phi}_{\mathrm{e}}(x) \bar{\phi}_{\mathrm{f}}(x)\right]
\end{aligned}
$$

- Compute beta functions
- Specify to desired symmetry group
- Short-range
- Two infrared stable fixed points
- Diagonalizable stability matrix
- Non-unitary
- Long-range
- Non-perturbative in $\epsilon \Rightarrow$ No precursor of the large- N fixed point

Conclusion and perspectives

- Rigorous RG study of tensor models with sextic interactions
- Short-range: IR stable fixed point but non-unitary
- Long-range: IR stable line of fixed points and hints of unitarity
- Model with $O(N)^{5}$ symmetry: trivial fixed points
- Role of order of interactions and order of the tensors

Conclusion and perspectives

- Rigorous RG study of tensor models with sextic interactions
- Short-range: IR stable fixed point but non-unitary
- Long-range: IR stable line of fixed points and hints of unitarity
- Model with $O(N)^{5}$ symmetry: trivial fixed points
- Role of order of interactions and order of the tensors
- SR: properties of logarithmic CFT
- LR: Study of CFT data \rightarrow further hints of unitarity?
- What about higher order interactions?

