Glory and misery of the Derivative Expansion: ten years later.

Nicolás Wschebor, ¹

¹Instituto de Física, Facultad de Ingeniería, Universidad de la República J.H.y Reissig 565, 11000 Montevideo, Uruguay,

July 26, 2022

A long, long time ago...

- The ideas discussed in this talk were first presented in the Aussois ERG conference in 2012.
- Delamotte and co-workers had been implementing the Derivative Expansion (DE) in the Ising universality class up to order $\mathcal{O}(\partial^6)$ and he presented the first preliminary results for that.
- Tissier and I presented a two-parts talk reviewing the NPRG/FRG statistical mechanics results.
- In that talk I presented a first non-perturbative estimate of the radius of convergence of the DE and proposed that this was associated with a "small parameter" of the order of $\sim 1/4$.
- Indeed Tighe and Morris had analysed the question even before in the context of perturbation theory. [Morris, Tighe, JHEP 08 (1999)].
- The purpose of this talk is to review the progress made in methodological aspects of the DE applied to statistical mechanics since Aussois-ERG12.
- I do not discuss high orders of DE in other areas such gravity. See for example: [Knorr, SciPost Phys.Core 4 (2021)].

Nicolás Wschebor (U. de la República)

ERG22-Berlin, July 2022

The Derivative Expansion status 10 years ago

Before Aussois:

Broad empirical success of the DE in many applications mostly at order O(∂⁰) or O(∂²).

[Berges, Tetradis, Wetterich, Phys.Rept. 363 (2002)]

- O(∂⁴) only for Ising exponents.
 [Canet, Delamotte, Mouhanna, Vidal, Phys.Rev.B 68 (2003)]
- The expansion parameter was supposed to be of order 1 (an expansion on q²/k² with q² ≤ k²). Sometimes an expansion in η suggested.
- Empirically: Wetterich equation better than Polchinski's.
- Controversies about the choice of regulator [Litim, Phys.Lett.B 486 (2000); Canet, Delamotte, Mouhanna, Vidal, Phys.Rev.D 67 (2003)].

The Derivative Expansion status 10 years ago

Before After Aussois:

 Broad empirical success of the DE in many applications mostly at order O(∂⁰) or O(∂²).

[Berges, Tetradis, Wetterich, Phys.Rept. 363 (2002)]

- $\mathcal{O}(\partial^4) \to \mathcal{O}(\partial^6)$ only for Ising exponents. [Bertrand's talk]
- The expansion parameter was supposed to be of order $1 \rightarrow 1/4$ (an expansion on $\frac{q^2/k^2}{k^2} \rightarrow \frac{q^2}{4k^2}$ with $q^2 \leq k^2$). Sometimes an expansion in η suggested.
- Empirically: Wetterich equation better than Polchinski's. \rightarrow The 1/4 applies only to the 1PI equation!
- Controversies about the choice of regulator remains. [Litim, Phys.Lett.B 486 (2000); Canet, Delamotte, Mouhanna, Vidal, Phys.Rev.D 67 (2003)].
- Puzzling increasing regulator dependence ("conditional convergence").

Outline and main references

- First, we will review the main characteristics of the DE.
- Second, we will describe the main progress since Aussois:
 - The various preliminary ideas were confirmed.
 - The $\mathcal{O}(\partial^4)$ were implemented in $\mathcal{O}(N)$ models.
 - Not only exponents were calculated: also universal amplitude ratios.
 - Controlled error bars were established.
 - The regulator dependence was clarified.
- This talk is the result of the work of several collaborations:
 - ► Convergence in the DE and application in the study of Ising critical exponents at order O(∂⁶):

[Balog, Chaté, Delamotte, Marohnic, NW, PRL 123 (2019)]

- ► Critical exponents at order O(∂⁴) in O(N) models and error bars: [De Polsi, Balog, Tissier, NW, PRE 101 (2020)]
- ► The role of conformal invariance at order O(∂⁴): [Balog, De Polsi, Tissier, NW, PRE 101 (2020)]
- ► Universal amplitude ratios at order O(∂⁴) in O(N) models: [De Polsi, Hernández, NW, PRE 104 (2021)]
- Quantitative understanding of the regulator dependence: [De Polsi, NV ArXiv: 2204.09170, accepted in PRE]

ERG22-Berlin, July 2022

The Derivative Expansion (I)

- Let us first make a small review of the DE.
- Usually, DE is presented as an ansatz for Γ_k .
- Examples: In the Ising universality class:

$$\Gamma_k^{\partial^0}[\phi] = \int d^d x \Big[\frac{U_k(\phi)}{2} + \frac{1}{2} (\partial \phi)^2 \Big].$$
 (1)

$$\Gamma_k^{\partial^2}[\phi] = \int d^d x \Big[\frac{U_k(\phi)}{2} + \frac{1}{2} Z_k(\phi) (\partial \phi)^2 \Big].$$
 (2)

$$\Gamma_k^{\partial^4}[\phi] = \int d^d x \Big[\frac{U_k(\phi)}{2} + \frac{1}{2} Z_k(\phi) (\partial \phi)^2 + \frac{1}{2} W_k^a(\phi) (\partial_\mu \partial_\nu \phi)^2 \\ + \frac{1}{2} \phi W_k^b(\phi) (\partial^2 \phi) (\partial \phi)^2 + \frac{1}{2} W_k^c(\phi) \left((\partial \phi)^2 \right))^2 \Big].$$

(3)

The Derivative Expansion (II)

• In the Ising universality class the order $\mathcal{O}(\partial^6)$ have been studied:

$$\begin{split} \begin{split} & \left[\phi\right] = \int d^d x \Big[\frac{U_k(\phi) + \frac{1}{2} Z_k(\phi) (\partial \phi)^2}{+ \frac{1}{2} W_k^a(\phi) (\partial_\mu \partial_\nu \phi)^2 + \frac{1}{2} \phi W_k^b(\phi) (\partial^2 \phi) (\partial \phi)^2} \\ & + \frac{1}{2} W_k^a(\phi) ((\partial \phi)^2) + \frac{1}{2} \tilde{X}_k^a(\phi) (\partial_\mu \partial_\nu \partial_\rho \phi)^2 \\ & + \frac{1}{2} \phi \tilde{X}_k^b(\phi) (\partial_\mu \partial_\nu \phi) (\partial_\nu \partial_\rho \phi) (\partial_\mu \partial_\rho \phi) \\ & + \frac{1}{2} \phi \tilde{X}_k^c(\phi) (\partial^2 \phi)^3 + \frac{1}{2} \tilde{X}_k^d(\phi) (\partial^2 \phi) + \frac{1}{2} \tilde{X}_k^f(\phi) (\partial \phi)^2 (\partial_\mu \partial_\nu \phi)^2 \\ & + \frac{1}{2} \phi \tilde{X}_k^g(\phi) (\partial^2 \phi) ((\partial \phi)^2)^2 + \frac{1}{96} \tilde{X}_k^h(\phi) ((\partial \phi)^2)^3 \Big]. \end{split}$$

- Considering ansatze is useful for implementation of symmetries.
- However, it does not give clues about the range of validity of DE.
- That is why it is presented here in a somewhat different way.

The Derivative Expansion (III)

- Consider a quantity which requires the knowledge of vertices (or derivatives of them) at zero momenta. Examples: critical exponents.
- That is, external momenta verify : $p_i^2 \ll k^2$
- Exact flow of Γ_k [C.Wetterich, Phys.Lett B301 (1993) 90.]:

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \int_{x,y} \partial_t R_k(x-y) \left(\Gamma_k^{(2)} + R_k \right)_{x,y}^{-1}$$

• The factor $\partial_t R_k$ makes internal momenta limited by :

$$q^2 \lesssim k_{cut}^2$$
 with $k_{cut} \sim k$.

Then, the sector p²_i, q² ≤ k²_{cut} is insensitive to other momenta.
 ⇒ it makes sense to formulate an approximation for this sector alone.

Two versions of the Derivative Expansion

- One approximation very used : Expand vertices in this sector as a polynomial in momenta ⇔ a finite number of derivatives in direct space (Derivative Expansion).
- The expansion of any vertex at order s in momenta can be extracted from the ansatz of the Derivative Expansion Γ^{δs}_k [φ].
- However: Many terms in FRG equations obtained in such a way are sub-leading in the momentum expansion.
- For this reason we have two different implementations of the DE:
 - Ansatz version: just put all the terms from the ansatz.
 - Strict version: Limit all the products of vertices to a given order of the momentum expansion. Example: at order O(∂²):

Results of DE in the Ising universality class (I)

- The DE can be employed to calculate many properties of the model.
- As an example, in order to test its quality we compare here the most relevant critical exponents.
- Those exponents are known for this universality class almost exactly from recent Conformal Boostrap methods.
- Without approximations: results should not depend on the regulator profile $R_k(q)$.
- However, within the DE, the results depends on the choice of $R_k(q)$.
- In practice, many profiles are used. Here we consider the families:

$$W_k(q^2) = \frac{\alpha Z_k k^2 y}{(\exp(y) - 1)}$$

$$\Theta_k^n(q^2) = \frac{\alpha Z_k k^2 (1 - y)^n \theta(1 - y)}{E_k(q^2)} \quad n \in \mathbb{N}$$

$$E_k(q^2) = \frac{\alpha Z_k k^2 \exp(-y)}{(-y)}$$

with $y = q^2/k^2$ and Z_k an appropriate running renormalization factor.

ERG22-Berlin, July 2022

Results of DE in the Ising universality class (II)

- α is optimized according to the Principle of Minimal Sensitivity. That is: we choose α to be in an extrema for a given exponent.
- We compare the results of various orders of the strict DE.

Table: 3D Ising critical exponents for exponential regulator at various orders s.

	u	η	ω
LPA	0.64956	0	0.654
$O(\partial^2)$	0.6308(27)	0.0387(55)	0.870(55)
$O(\partial^4)$	0.62989(25)	0.0362(12)	0.832(14)
$O(\partial^6)$	0.63012(16)	0.0361(11)	
Conf. Boots.	0.629971(4)	0.0362978(20)	0.82968(23)

Table: DE results from [Balog, Chaté, Delamotte, Bertrand, Marohnic and NW, PRL 123 (2019); De Polsi, Balog, Tissier, NW, PRE101 (2020)]. Results compared to CB [Kos, Poland and Simmons-Duffin (JHEP 1608, 2016); D.Simmons-Duffin, JHEP03, 086 (2017)].

イロト イポト イヨト イヨト

Results of DE in the Ising universality class (III)

• The results seem to alternate around the "exact" value:

Figure: Exponent values $\nu(\alpha)$ and $\eta(\alpha)$ at different orders of the DE for exponential regulator. Vertical lines indicate α_{PMS} .

• This is another justification for using the Principle of Minimal Sensitivity.

ERG22-Berlin, July 2022

Results for O(N) models (I)

- Ising exponents are just an example.
- Not only exponents but also Universal Amplitude ratios have been calculated at order $\mathcal{O}(\partial^4)$ for O(N) models.
- The employed truncation (in the strict sense!) is: [De Polsi, Balog, Tissier, NW, PRE 101 (2020)]

$$\begin{aligned} -\frac{\partial}{k}^{4}[\phi] &= \int_{x} \left\{ U_{k}(\rho) + \frac{1}{2} Z_{k}(\rho) (\partial_{\mu} \phi^{a})^{2} + \frac{1}{4} Y_{k}(\rho) (\partial_{\mu} \rho)^{2} \right. \\ &+ \frac{W_{1}(\rho)}{2} (\partial_{\mu} \partial_{\nu} \phi^{a})^{2} + \frac{W_{2}(\rho)}{2} (\phi^{a} \partial_{\mu} \partial_{\nu} \phi^{a})^{2} \\ &+ W_{3}(\rho) \partial_{\mu} \rho \partial_{\nu} \phi^{a} \partial_{\mu} \partial_{\nu} \phi^{a} + \frac{W_{4}(\rho)}{2} \phi^{b} \partial_{\mu} \phi^{a} \partial_{\nu} \phi^{a} \partial_{\mu} \partial_{\nu} \phi^{b} \\ &+ \frac{W_{5}(\rho)}{2} \varphi^{a} \partial_{\mu} \rho \partial_{\nu} \rho \partial_{\mu} \partial_{\nu} \varphi^{a} + \frac{W_{6}(\rho)}{4} \left((\partial_{\mu} \varphi^{a})^{2} \right)^{2} \\ &+ \frac{W_{7}(\rho)}{4} (\partial_{\mu} \phi^{a} \partial_{\nu} \phi^{a})^{2} + \frac{W_{8}(\rho)}{2} \partial_{\mu} \phi^{a} \partial_{\nu} \varphi^{a} \partial_{\mu} \rho \partial_{\nu} \rho \\ &+ \frac{W_{9}(\rho)}{2} (\partial_{\mu} \varphi^{a})^{2} (\partial_{\nu} \rho)^{2} + \frac{W_{10}(\rho)}{4} \left((\partial_{\mu} \rho)^{2} \right)^{2} + \mathcal{O}(\partial^{6}) \right\}. \end{aligned}$$

Results for O(N) models (II)

- For details and universal amplitude ratios: see De Polsi's talk!
- A second example: O(4)Table: Results for various methods with appropriate error bars for O(4) in d = 3. Year: 2020

	u	η	ω
LPA	0.805	0	0.737
$O(\partial^2)$	0.749(8)	0.0389(56)	0.731(34)
$O(\partial^4)$	0.7478(9)	0.0360(12)	0.761(12)
CB [1,2]	0.7472(87)	0.0378(32)	0.817(30)
MC [3,4]	0.7477(8)	0.0360(4)	0.765
6-loop <i>d</i> = 3 [5]	0.741(6)	0.0350(45)	0.774(20)
ϵ -expansion, ϵ^5 [5]	0.737(8)	0.036(4)	0.795(30)
ϵ -expansion, ϵ^{6} [6]	0.7397(35)	0.0366(4)	0.794(9)

Kos et al., JHEP 11 (2015).
 Echeverri et al., JHEP 09 (2016).
 Deng, PRE 73 (2006).
 Hasenbusch, J.Phys.A 34 (2001).
 Guida, Zinn-Justin, J. Phys. A31 (1998).
 Kompaniets, PRD 96 (2017).

• DE gives the most precise field-theoretical results for ν and ω .

ERG22-Berlin, July 2022

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Results for O(N) models (II)

- For details and universal amplitude ratios: see De Polsi's talk!
- A second example: O(4)

Table: Results for various methods with appropriate error bars for O(4) in d = 3. Year: 2020 2022

0	u	η	ω
LPA	0.805	0	0.737
$O(\partial^2)$	0.749(8)	0.0389(56)	0.731(34)
$O(\partial^4)$	0.7478(9)	0.0360(12)	0.761(12)
CB [1,2]	0.7472(87)	0.0378(32)	0.817(30)
MC [3,4]	0.7477(8)	0.0360(4)	0.765
6-loop <i>d</i> = 3 [5]	0.741(6)	0.0350(45)	0.774(20)
ϵ -expansion, ϵ^5 [5]	0.737(8)	0.036(4)	0.795(30)
ϵ -expansion, ϵ^{6} [6]	0.7397(35)	0.0366(4)	0.794(9)
MC [7] (new!!!)	0.74817(20)	0.03624(8)	0.755(5)

Kos et al., JHEP 11 (2015). [2] Echeverri et al., JHEP 09 (2016). [3] Deng, PRE 73 (2006). [4] Hasenbusch,
 J.Phys.A 34 (2001). [5] Guida, Zinn-Justin, J. Phys. A31 (1998). [6] Kompaniets, PRD 96 (2017). [7] Hasenbusch,
 PRB 105 (2022).

• DE MC gives the most precise field-theoretical results.

ERG22-Berlin, July 2022

July 26, 2022 13 / 28

Derivative Expansion: successful but why?

- The DE seems to have a large amount of successes [Dupuis et al., Phys.Rept. 910 (2021)]
 - It gives qualitatively good results in many tested situations;
 - ► Reasonable quantitative results are obtained in many models at order ∂²;
 - In O(N) models:
 - Critical exponents known at order ∂^4 for many N.
 - Critical exponents known at order ∂^6 in the Ising (N=1) case.
 - Universal amplitude ratios known at order ∂^4 for many N.
 - Gives results that compete with best field theoretical estimates.

Question: Why Derivative Expansion should work?

The problem of the small parameter (I)

• A priori no small parameter:

 $p \iff$ order of magnitude of external momenta. $q \iff$ momenta circulating in the loop. $M_k \iff$ gap of the regulated theory.

• The gap has two components:

• A direct contribution from the regulator $\sim k$.

• A contribution
$$m_k^2 \propto \Gamma_k^{(2)}(p=0)$$
.

• If $p, m_k \ll M_k \sim k$, the expansion parameter is:

where:

- θ is a numerical coefficient a priori \sim 1;
- k_{cut} is expected to be $\sim k$.

 $\lambda = \theta \frac{q^2}{M^2}$

The problem of the small parameter (II)

- Given that $q \lesssim k_{cut} \sim k \sim M_k$ one expects naively $\lambda \sim 1$.
- But then why does it work?
- Useful: for momenta $p \lesssim k_{cut}$, the regulated critical theory looks as a massive theory with mass gap M_k

$$\Gamma_k^{(n)}(p,m_k)\sim\Gamma_{k=0}^{(n)}(p,M_k).$$

The massive scalar theory at small momenta (I).

- Before considering a critical model let us recall the behaviour of a massive theory with mass M at small momenta.
- Let's present the case of $\Gamma^{(2)}(p)$ (all $\Gamma^{(n)}(p)$ can be studied similarly).
- Consider the expansion

$$\frac{\Gamma^{(2)}(p)}{\Gamma^{(2)}(0)} = 1 + \frac{p^2}{M^2} + \sum_{n=2}^{\infty} c_n \left(\frac{p^2}{M^2}\right)^n$$

- The coefficients c_n are universal in the critical regime $M \ll \Lambda$.
- How are the coefficients c_n ? \rightarrow Already known! (with some precision...)

The massive scalar theory at small momenta (II).

coefficient	$d=3, \ T>T_c$	$d = 3, T < T_c$
	HT / ϵ / fixed dim.	LT/ ϵ / fixed dim.
<i>c</i> ₂	-(3.0 - 7.1)×10 ⁻⁴	$\simeq -10^{-2}$
C 3	$(0.5 - 1.3) imes 10^{-5}$	$\simeq 4 imes 10^{-3}$
C 4	-(0.3 - 0.6) ×10 ⁻⁶	

Table: Estimates for high-temperature phase for N = 1. (from [Pelissetto, Vicari, Phys. Rept. 368, 549 (2002)]).

- Various observations:
 - The coefficients alternates.
 - ▶ $|c_2| \gg |c_3| \gg |c_4|$.
 - $|c_2| \ll 1$ (it is abnormally small!).
- One can estimate the radius of convergence of the series.
- It is at the first multi-particle singularity in the complex p^2 plane.

The massive scalar theory at small momenta (III).

- Let us represent the singularities in the complex plane of correlation functions.
- The Minkowskian extension of the massive model being unitary one knows the position of singularities.
- To simplify let us consider the connected correlation function $G^{(2)}(p^2)$:

The massive scalar theory at small momenta (III).

- Let us represent the singularities in the complex plane of correlation functions.
- The Minkowskian extension of the massive model being unitary one knows the position of singularities.
- To simplify let us consider the connected correlation function $\frac{G^{(2)}(p^2)}{\Gamma^{(2)}(p^2)}$:

The massive scalar theory at small momenta (III).

- Let us represent the singularities in the complex plane of correlation functions.
- The Minkowskian extension of the massive model being unitary one knows the position of singularities.
- To simplify let us consider the connected correlation function $G^{(2)}(p^2) \Gamma^{(2)}(p^2)$:

The massive scalar theory at small momenta (IV).

- In the symmetric phase, it is at $p^2 \simeq -9M^2$.
 - (\simeq **3***M* is the energy of the lightest 3-particle state).

- Consequently: $c_{n+1} \simeq -\frac{1}{9}c_n$ for large *n*.
- Bad news: The 1/9 expansion parameter is too optimistic:
 - ▶ In models with three-liner interactions and/or external field → the multi-particle threshold is at $p^2 \approx -4M^2$.

at one loop
$$\rightarrow$$

• Even with quartic interactions, higher vertices include thresholds at $p^2 \approx -4M^2$:

- Good news: The 1/4 is largely model independent.
- For the critical Ising universality class the parameter turns out to be in between 1/9 and 1/4. More good news: the leading coefficients are very small! (~ η).

Nicolás Wschebor (U. de la República)

A small parameter for the DE (I)

- Let us now extend the previous results to the regularized theory.
- Before that, an important point: all good results presented for the DE are based on the PMS.
- For other values of α the DE behaves much worst.
- So, the extension from the convergence on the massive theory to the regularized critical theory depends strongly on α .
- Even if the PMS procedure is well founded phenomenologically we would like to avoid "external" elements to the DE.
- One way to justify the PMS is based on conformal invariance [Balog, De Polsi, Tissier, NW, PRE 101 (2020)]
- We now show that:
 - Successive orders of the DE are controlled by an expansion parameter.
 - This parameter is small (~ 1/4) only in an interval of values of α for each regulator family.
 - PMS values of α tend to be in that interval when the order of the DE is increased.

A small parameter for the DE (II)

- We consider a regulator profile $R_k(q)$ smooth enough for the DE to be defined (up to a certain order).
- Let us admit that the regulated theory is well approximated by a massive theory for momenta q < k_{cut}. What is the mass M_k?
- Let's define $R_k(q^2) = \alpha Z_k \left(k^2 zq^2 + wq^4/k^2 + \dots \right)$.
- In the critical regime

$$\Gamma^{(2)}(q) + R_k(q) = Z_k \left(\frac{\alpha k^2 + q^2 - \alpha z q^2 + \mathcal{O}(q^4)}{2} \right)$$
(5)

where we employed the property (usually correct) that

$$m_k^2 = |\Gamma^{(2)}(q=0)| \ll R_k(0) = \alpha Z_k k^2.$$
 (6)

• As a consequence, M_k is well approximated by

$$M_k^2 = \frac{\alpha k^2}{1 - \alpha z}.$$

• That is, the mass gap depend on α !

A small parameter for the DE (III)

• One can go back to the expansion parameter which is:

$$\lambda_1 = \frac{k_{cut}^2}{4M_k^2} = \frac{1 - \alpha z}{4\alpha\beta},\tag{8}$$

where we defined $k_{cut}^2 = k^2/\beta$.

That is:

- Fixing precisely β is delicate.
- One criterion: to consider the the point where $\partial_t R_k(q)$ extrapolates to zero:

$$\partial_t R_k(q) = \frac{\alpha k^2 Z_k \left(2 - \eta_k + \eta_k z \frac{q^2}{k^2} - w(2 + \eta_k) \frac{q^4}{k^4} + \dots \right).$$
(9)

• That is,
$$k_{cut}^2 \approx \frac{k^2}{2\sqrt{w}} \Leftrightarrow \beta \approx \sqrt{w}$$
. (In fact, we employ $\beta = 2\sqrt{w}$)

A small parameter for the DE (IV)

- In order for the previous reasoning to be correct we need also that q^4 -terms to be smaller than terms of order q^2 .
- This gives rise to a second expansion parameter:

$$\lambda_2 = \frac{\alpha w k_{cut}^4 / k^2}{(1 - \alpha z) k_{cut}^2} = \frac{\alpha w}{\beta (1 - \alpha z)}.$$
 (10)

Let us represent both parameters together (for Wetterich regulator W_k):

A small parameter for the DE (V)

- This fixes without assuming PMS the optimum choice of α at large orders of the DE.
- There is a relatively small interval of α where DE has a small parameter.
- How this estimate compares to PMS values?

A key progress: Error bars

- The small parameter $\sim 1/4$ allows the estimate of error bars.
- Shortly: the error is divided, at least, by a factor 1/4 on successive orders.
- When a quantity alternates one improves the error bars. [Balog, De Polsi, Tissier, NW, PRE 101 (2020); Peli, PRE 103 (2021).]
- These error bars have been tested very carefully.
- They show accurate and precise for critical exponents and universal amplitude ratios in all tested O(N) models.
 See De Polsi's talk for more details!
- Also tested in more involved model as the Z₄ model. [Chlebicki, Sánchez, Jakubczyk, NW, ArXiv: 2204.02089]]
 See Sánchez talk for more details!

Error bars can and must be included in our results.

ERG22-Berlin, July 202

Image: A math a math

Conclusions (I)

- In the last ten years a qualitative change in the results of the Derivative Expansion has taken place.
- For low momentum properties it has been shown to be a robust and accurate approximation scheme that, moreover, becomes precise at large enough orders.
- The existence of a small parameter makes it a controlled approximation for a very broad set of models. (error bars!!!).
- We presented here some examples of applications in Statistical Mechanics but the application is much broader.
- In many cases we became the most precise field-theoretical method.

Conclusions (II)

What is the program for the next ten years?

• DE only works for small momenta.

 \rightarrow The same analysis can be extended for arbitrary momenta. In that case, one needs the more sophisticated BMW approximation. \rightarrow The present analysis must be implemented in the BMW

approximation scheme and corresponding error bars estimated.

- In the DE a huge set of applications can be implemented in the next few years with controlled error bars.
- Most of the results presented here are not rigorous. Can we made them mathematically rigorous?
- In particular, all the regime of momenta q >> k_{cut} was neglected. Is it important for the convergence?

A small parameter for the DE (V).

- Let us now compare to the results coming from the solution at DE6.
- In the NPRG the expansion for the $\Gamma_k^{(2)}(p,\phi) + R_k(0)$ is:

$$\frac{\Gamma_k^{(2)}(p,\phi) + R_k(0)}{\Gamma_k^{(2)}(0,\phi) + R_k(0)} = 1 + \frac{Z_k p^2 + W_k^a p^4 + X_k^a p^6}{U_k'' + R_k(0)}$$

$$\xrightarrow{k \to 0} 1 + \frac{p^2}{m_{\text{eff}}^2} + \frac{w_a^* v^{*\prime\prime}}{z^{*2}} \frac{p^4}{m_{\text{eff}}^4} + \frac{x_a^* v^{*\prime\prime^2}}{z^{*3}} \frac{p^6}{m_{\text{eff}}^6}$$

- Here u^*, z^*, w^*_a, x^*_a are the dimensionless functions of $\tilde{\phi}$ at the fixed point.
- $m_{\text{eff}}^2 = k^2 v^{*''}/z^*$ with $v^{*''} = u^{*''} + R_k(0)/Z_k^0 k^2$.
- The coefficients are now functions of the external field dimensionless $\tilde{\phi}.$

A small parameter for the DE (VI).

• Let us now compare successive orders:

Figure: The ratio $r = x_a^* u^{*''}/(w_a^* z^*)$ as a function of $\tilde{\rho} = \tilde{\phi}^2/2$. The line r = 0.25 is a guide for the eyes.

• At large fields the successive orders seem dominated by the $p^2 = -4m_{eff}^2$ pole.

• At lower fields the ratio of successive seems to verify |r| < 1/4.

ERG22-Berlin, July 2022

The massive scalar theory at small momenta (II).

coefficient	$d=3,\ T>T_c$	$d=2, T>T_c$	$d = 3, T < T_c$
	HT / ϵ / fixed dim.	quasi-exact	LT/ ϵ / fixed dim.
<i>c</i> ₂	-(3.0 - 7.1)×10 ⁻⁴	-7.936×10 ⁻⁴	$\simeq -10^{-2}$
C 3	$(0.5 - 1.3) \times 10^{-5}$	$1.096 imes 10^{-5}$	\simeq 4 $ imes$ 10 $^{-3}$
<i>C</i> ₄	-(0.3 - 0.6) ×10 ⁻⁶	$-0.3127 imes 10^{-6}$	
C 5		0.1267×10^{-7}	
c_6		-0.6300×10 ⁻⁹	

Table: Estimates for high-temperature phase for N = 1. (from [Pelissetto, Vicari, Phys. Rept. 368, 549 (2002)]).

- One observes that $1 \gg |c_2| \gg |c_3| \gg |c_4| \gg |c_5| \gg |c_6|$.
- One can estimate the radius of convergence of the series.
- It is at the first multi-particle singularity in the complex p^2 plane.
- The Minkowskian extension of the massive model being unitary one knows the position of singularities.
- In the symmetric phase, it is at $p^2 \simeq -9M^2$.

 $(\simeq 3M$ is the energy of the lightest 3-particle state).

