Essential Renormalisation Group

Kevin Falls (UdelaR, Montevideo)

July 27, 2022

Kevin Falls (UdelaR, Montevideo)

July 27, 2022 1/20

Introduction

- Based on *Essential renormalisation group* (to appear in Sci-Post) with Alessio Baldazzi and Riccardo Ben Alì Zinati.
- We have proposed a new scheme for the Exact Renormalisation Group (ERG) motivated by the desire of reducing the complexity of practical computations inspired by works of Giovanni Jona-Lasinio, Franz Wegner and Steven Weinberg in the 70's.
- The key idea: Physical systems can be described by many different mathematical models due to our freedom to make a change of variables.
- Mathematical models therefore fall into equivalence classes with each member of a class describing the same physics written in terms of different variables.
- Weinberg '79: There are two types of coupling constants, *inessential couplings* that change as we move within an equivalence class and *essential couplings* that are invariants of the class and enter expressions for observables.

・ロト ・回ト ・ヨト ・ヨト

Classical frame transformation

• For a *classical* (non-stochastic) model based on an action $S[\phi]$ an infinitesimal *active frame transformation* has the form

$$S[\phi] \to S'[\phi] = S[\phi + \epsilon \Phi[\phi]] = S[\phi] + \epsilon \int_x \Phi[\phi](x) \frac{\delta}{\delta \phi(x)} S[\phi],$$

where $\Phi[\phi]$ is a local function of the field e.g.

$$\Phi(x) = A \phi(x) + B \phi^3(x) + C \partial^2 \phi(x) + D \phi(x) (\partial_\mu \phi(x))^2 \dots$$

• The transformation can be recognised as a Lie derivative of a scalar on configuration space. If we expand $S[\phi]$ in some basis $S[\phi] = c_n O_n[\phi]$ the couplings c_n will change $c_n \rightarrow c'_n(c)$

A D A A B A A B A A B A

Introduction

Classical inessential couplings and redundant operators

• A coupling $g_i = g_i(c)$ has a conjugate operator \mathcal{O}_i where

$$\frac{\partial}{\partial g_i} S[\phi] = \mathcal{O}_i[\phi]$$

• By definition an inessential coupling is one where the conjugate operator is of the form of an active frame transformation

$$\frac{\partial}{\partial \zeta_{\alpha}} S[\phi] = \int_{x} \Phi_{\alpha}[\phi](x) \frac{\delta}{\delta \phi(x)} S[\phi],$$

e.g.

$$\Phi_1(x) = \phi(x), \quad \Phi_3(x) = \phi^3(x), \quad \Phi_{1,2}(x) = \partial^2 \phi$$

• We call the operator conjugate to an inessential coupling a *redundant operator*.

・ロット (雪) (き) (き)

Frame transformations of the microscopic action.

 In quantum field theory (QFT) we are interested in computing expectation values of operators by averaging over all values of the field

$$\langle \mathcal{O}[\hat{\phi}] \rangle \equiv \mathcal{N} \int_{\mathcal{M}} \prod_{x} \mathrm{d}\hat{\phi}(x) e^{-S[\hat{\phi}]} \mathcal{O}[\hat{\phi}],$$

where $\mathcal{N}^{-1} = \int (\mathrm{d}\hat{\chi}) e^{-S_{\hat{\chi}}[\hat{\chi}]}$.

• We can make a change of variables which keeps expectation values unchanged

$$\langle \mathcal{O}[\hat{\phi}] \rangle = \int_{\mathcal{M}} \prod_{x} \mathrm{d}(\hat{\phi}(x) + \epsilon \hat{\Phi}[\hat{\phi}](x)) e^{-S[\hat{\phi} + \epsilon \hat{\Phi}[\hat{\phi}]} \mathcal{O}[\hat{\phi} + \epsilon \hat{\Phi}[\hat{\phi}]]$$

Introduction

Inessential couplings of the microscopic action.

- Observables $\mathcal{O}[\hat{\phi}]$ transform as scalars on configuration space
- To transform S[\$\overline{\phi}\$] we must take into account that the measure also transforms (i.e. e^{-S[\$\overline{\phi}\$]} is a density)
- Inessential couplings in QFT

$$\frac{\partial}{\partial \zeta} \mathrm{e}^{-S[\hat{\phi}]} = \int_{x} \frac{\delta}{\delta \hat{\phi}(x)} \left(\hat{\Phi}[\hat{\phi}](x) \mathrm{e}^{-S[\hat{\phi}]} \right)$$

Equivalently (Wegner '74)

$$\frac{\partial}{\partial \zeta} S[\hat{\phi}] = \int_{x} \hat{\Phi}[\hat{\phi}](x) \frac{\delta}{\delta \hat{\phi}(x)} S[\hat{\phi}] - \int_{x} \frac{\delta \hat{\Phi}[\hat{\phi}](x)}{\delta \hat{\phi}(x)}$$

the operator on the RHS is a redundant operator of a microscopic action (e.g. the Wilsonian effective action).

Redundant operators of the effective average action

The Effective Average Action is defined by

$$\mathbf{e}^{-\Gamma_{k}\left[\phi\right]} = \int d\hat{\phi} \, \mathbf{e}^{-S\left[\hat{\phi}\right]} \mathbf{e}^{(\hat{\phi}-\phi)\cdot\frac{\delta\Gamma_{k}}{\delta\phi} - \frac{1}{2}(\hat{\phi}-\phi)\cdot R_{k}\cdot(\hat{\phi}-\phi)}$$

We can take a derivative with respect to an inessential coupling

$$\frac{\partial}{\partial \zeta} \mathrm{e}^{-\Gamma_{k}[\phi]} = \int d\hat{\phi} \, \frac{\delta}{\delta\hat{\phi}} \cdot \left(\hat{\Phi}[\hat{\phi}] \mathrm{e}^{-S[\hat{\phi}]}\right) \, \mathrm{e}^{(\hat{\phi}-\phi) \cdot \frac{\delta}{\delta\phi} \Gamma_{k}[\phi] - \frac{1}{2}(\hat{\phi}-\phi) \cdot R_{k} \cdot (\hat{\phi}-\phi)}$$

• One then finds that (Baldazzi, Ben Alì Zinati, KF '21)

$$\frac{\partial}{\partial \zeta} \Gamma_k[\phi] = \Phi_k[\phi] \cdot \frac{\delta}{\delta \phi} \Gamma_k[\phi] - \text{Tr} \frac{1}{\Gamma_k^{(2)}[\phi] + R_k} \cdot \frac{\delta}{\delta \phi} \Phi_k[\phi] \cdot R_k$$

where $\Phi_k[\phi] = \langle \hat{\Phi}[\hat{\phi}] \rangle_{\phi,k}$

Redundant operators for the effective average action

- Instead of changing an inessential coupling in the microscopic action we can keep *S* fixed and modify the source and regulator terms.
- Let's consider a frame for the microscopic action where the field is $\hat{\chi}$ but we couple the sources to a composite operator $\hat{\phi}[\hat{\chi}]$

$$\mathrm{e}^{-\Gamma_{\hat{\phi}}[\phi,R_k]} = \int d\hat{\chi} \, \mathrm{e}^{-S[\hat{\chi}]} \mathrm{e}^{(\hat{\phi}[\hat{\chi}]-\phi)\cdot\frac{\delta\Gamma_k}{\delta\phi} - \frac{1}{2}(\hat{\phi}[\hat{\chi}]-\phi)\cdot R_k \cdot (\hat{\phi}[\hat{\chi}]-\phi)}$$

• If we change the functional form of $\hat{\phi}[\hat{\chi}] \rightarrow \hat{\phi}[\hat{\chi}] - \epsilon \hat{\Phi}[\hat{\chi}]$ then

$$\Gamma_{\hat{\phi}}[\phi, R_k] \to \Gamma_{\hat{\phi}}[\phi, R_k] + \epsilon \Phi_k[\phi] \cdot \frac{\delta}{\delta \phi} \Gamma_{\hat{\phi}}[\phi, R_k] - \epsilon \operatorname{Tr} \frac{1}{\Gamma_{\hat{\phi}}^{(2)}[\phi, R_k] + R_k} \cdot \frac{\delta}{\delta \phi} \Phi_k[\phi] \cdot R_k$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Generalised flow equation

Adopting the *principle of frame invariance*, we can exploit the freedom to change frames along the RG flow by letting φ_k[χ̂], the generalised EAA is then given by

$$\Gamma_k[\phi] = \Gamma_{\hat{\phi}_k}[\phi, R_k]$$

and obeys the Pawlowski's generalised flow equation

$$\left(\partial_t + \Psi_k[\phi] \cdot \frac{\delta}{\delta\phi}\right) \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)}[\phi] + R_k} \left(\partial_t + 2 \cdot \frac{\delta}{\delta\phi} \Psi_k[\phi]\right) \cdot R_k,$$

where $t = \log(k/k_0)$ is the RG time and

$$\Psi_k[\phi] = \langle \partial_t \hat{\phi}_k[\hat{\chi}] \rangle_{\phi, R_k}$$

which we call the RG kernel.

Essential schemes

- By construction the freedom to choose Ψ_k[φ] is exactly the freedom to choose the flow of the inessential couplings.
- We can think of the flow equation as an equation of motion in a gauge theory where frame transformations are the gauge transformations.
- Conditions which fix the inessential couplings are the analogy of gauge fixing conditions.
- Essential schemes: We allow all possible terms in $\Psi_k[\phi]$ and fix all inessential couplings.

Minimal essential scheme

• To generalise the standard scheme we can include all possible terms in ψ_t

$$\Psi_k[\varphi] = \sum_{\alpha} \gamma_{\alpha}(k) \Phi_{\alpha}[\varphi],$$

where $\Phi_{\alpha}[\varphi]$ form a basis of linearly independent local operators.

- We can then apply renormalisation conditions to fix every inessential coupling ζ_{α}
- There is not a unique way to do this whether a coupling is inessential or essential depends on which part of theory space we are in.

Minimal essential scheme

• We can fix the inessential couplings at the Gaussian fixed point by setting to zero terms of the form

 $-\Phi_{\alpha}\cdot\partial^{2}\phi$

• This will fix inessential couplings provided $\Upsilon_{\alpha\beta}$ is invertible where

$$\Phi_{\alpha}[\phi] \cdot \frac{\delta}{\delta\phi} \Gamma_{k}[\phi] - \operatorname{Tr} \frac{1}{\Gamma_{k}^{(2)}[\phi] + R_{k}} \cdot \frac{\delta}{\delta\phi} \Phi_{\alpha}[\phi] \cdot R_{k} = -\sum_{\beta} \Upsilon_{\alpha\beta} \Phi_{\beta} \cdot \partial^{2}\phi + \sum_{a} v_{\alpha a} O_{a}[\phi]$$

イロン イヨン イヨン イヨン

Properties of the minimal essential scheme

- The minimal essential scheme puts a restriction on which physical theories we can have access to.
- However, it is intuitively clear that this restriction has a physical meaning: we can have access to theories which share the kinematics of the Gaussian fixed point (see also Diego Buccio, Roberto Percacci 2207.10596).
- This is seen clearly since when evaluated on any constant field configuration the propagator has the form

$$\frac{1}{\Gamma_k^{(2)}[\tilde{\phi}] + R(p^2)} = \frac{1}{p^2 + V_k^{(2)}(\tilde{\phi}) + R_k(p^2)},$$

- $\bullet\,$ One should bear in mind that this is not the propagator for the physical field $\chi\,$ however.
- What the minimal essential scheme assumes is that the propagator can be brought into this form by a change of variables.

Order ∂^2

• At order ∂^2 in the standard scheme we have

$$\Gamma_{k} = \int \mathrm{d}^{d} x \left\{ V_{k}(\phi) + \frac{1}{2} z_{k}(\phi) \partial_{\mu} \phi \partial_{\mu} \phi \right\}$$

and $\Psi_k = -\frac{1}{2}\eta_k \phi$. We can fix one renormalisation condition e.g. $z_k(0) = 1$.

 In the minimal essential scheme we can eliminate all inessential couplings by setting z_k(φ) = 1 for all values of the field. So the action is given by

$$\Gamma_{k} = \int \mathrm{d}^{d} x \left\{ V_{k}(\phi) + \frac{1}{2} \partial_{\mu} \phi \partial_{\mu} \phi \right\}$$

- To close the equations we take $\Psi_k = F_k(\phi)$.
- While the number of equations that one has to solve is the same the equation is linear in *F_k* in the essential scheme.
- So we trade a non-linear dependence on z_k for a linear one F_k .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Application to the 3D Ising model

- As a first application of the essential scheme we have studied the Wilson Fisher fixed point in *d* = 3 dimensions.
- To find a fixed point we go to dimensionless variables in units of k and then look for k independent solutions. So $F_k = k^{1/2} f_t(\varphi)$ and $V_k = k^3 v_t(\varphi)$ where $\varphi = \phi/k^{1/2}$.
- For the cutoff $R(p^2/k^2) = (1 p^2/k^2)\Theta(1 p^2/k^2)$ we then have the differential equations

$$3v(\varphi) - \frac{1}{2}\varphi v^{(1)}(\varphi) + f(\varphi)v^{(1)}(\varphi) = \frac{1 + \frac{2}{5}f^{(1)}(\varphi)}{1 + v^{(2)}(\varphi)}, \quad (1a)$$
$$-f^{(1)}(\varphi) = \frac{1}{2}\frac{\left[v^{(3)}(\varphi)\right]^2}{\left[1 + v^{(2)}(\varphi)\right]^4}.$$

- To find physical fixed points of the Ising model we impose the symmetry $\varphi \rightarrow -\varphi$ and look for solutions which exist for all values of the field
- We find just two solutions: The free fixed point where v = const. and the interacting Wilson Fisher fixed point.

Wilson Fisher Fixed point

The potential at the Wilson Fisher Fixed point can be found numerically

Figure: Potential and RG kernel at the Wilson Fisher Fixed point

Kevin Falls (UdelaR, Montevideo)

(4) E > (4) E

Wilson Fisher Fixed point

- The critical exponent $\theta = 1/\nu$ is identified with the sole relevant exponent associated to an even perturbation.
- The critical exponent $\theta = (5 \eta)/2$ is identified with the sole relevant exponent associated to an odd perturbation.
- We obtain

 $\nu = 0.6271$, $\eta = 0.0470$

 At the same order (s = 2) the standard scheme obtains (after applying the principle of minimum sensitivity (PMS)) Canet et al. 2003 10.1103/PhysRevD.67.065004

 $\nu = 0.6260$, $\eta = 0.0470$

(The best estimates from the conformal bootstrap El-Showk et al. (2014) are $\nu=0.629971$ and $\eta=0.036298.)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Application to the Ising model: Summary

- Using the essential scheme there is a large reduction in the complexity of the calculation at order s = 2 in comparison to the standard scheme .
- The values of the universal exponents are comparable to standard scheme
- Going to higher orders in the derivative expansion there are further reductions in the number of "potentials" that appear in the action
- At order s = 4 for example the essential form of the action is

$$\Gamma_{k} = \int_{x} \left\{ V_{k}(\phi) + \frac{1}{2} \partial_{\mu} \phi \partial_{\mu} \phi + W_{k}(\phi) \left(\partial_{\mu} \phi \partial_{\mu} \phi \right)^{2} \right\},\$$

which involves only two potentials while in the standard scheme we would have five.

• To close the equations we set

$$\Psi_{k}(x) = F_{0}(\phi) - F_{2,a}(\phi)\partial^{2}\phi + \phi F_{2,b}(\phi)(\partial_{\mu}\phi \partial_{\mu}\phi).$$

$$\frac{| \text{ standard } \text{ essential} | \\ \hline \frac{\text{LPA}}{\partial^{2}} \frac{1}{2} \frac{1}{\partial^{4}} \\ \frac{\partial^{4}}{5} \frac{5}{2} \\ \frac{\partial^{6}}{\partial^{6}} \frac{13}{4} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \hline \end{bmatrix}$$

Generalisability

- The ideas are not limited to scalar field theories: We can use essential schemes in any application of the FRG since there will always be inessential couplings.
- The minimal essential scheme for quantum gravity can have some profound implications for the asymptotic safety scenario: we can ensure that there are no ghost poles in the propagator (Alessio Baldazzi, KF 2107.00671;Alessio Baldazzi, KF, Renata Ferrero 2112.02118; Benjamin Knorr 2204.08564)
- Talk by Oleg Melichev today.

Conclusions

- Using the freedom to perform general changes of variables one can apply renormalisation conditions that fix the values of inessential couplings.
- This reduces the complexity of calculations allowing access to physical quantities with less effort.
- Message: Since inessential couplings can take quite arbitrary values we can specify their values instead of computing their flow.

Try it!

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))