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Climate as an extremely non-ideal engine ...

dissipation

Irreversible he
transport

Energy transformation — Lorenz energy cycle

Baroclinic and barotropic instability

Entropy Production (dissipation, mixing, hydrological cycle)

Geosci. Model Dev., 12, 3805-3834, 2019

1 1 H https://doi.org/10.5194/gmd-12-3805-2019 Geoscientific
Thermodynamic Route to Climate Dynamics © hathor) 2015 Tk i st e Model Development
PHYSICAL REVIEW E 80, 021118 (2009)
Thermodynamic efficiency and entropy production in the climate system TheDiaTo (v1.0) - a new diagnostic tool for water, energy and

entropy budgets in climate models
Valerio Lucarini * Valerio Lembo', Frank Lunkeit', and Valerio Lucarini'>*



Climate as a multiscale system ...

Von der Heydt et al. 2021

Impact events
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Beyond Forcing Scenarios:
Predicting Climate Change through
Response Operators in a Coupled
General Circulation Model

Valerio Lembo?, Valerio Luc Francesco Ragone*

* Broad-band continuum
spectrum, despite
(quasi)-periodic forcing

* Different components
dominant in different
range of frequencies

Pal| Eocene [Oli [ Mio | Pliocene

Pleistocene [ Holocene

* Internally-generated noise,
multiple scales

* Climate variability and climate
change

REVIEWS OF MODERN PHYSICS, VOLUME 92, JULY-SEPTEMBER 2020

S. Hemisphere Ice Sheets | 15

N. Hemisphere Ice Sheets

The physics of climate variability and climate change



Climate as a metastable system

PROCEEDINGS A Dynamical landscape and
mpocepuisimgagiumaips. - MUItistability of a dimate
model

Research 8 ® Georgios Margazoglou', Tobias Grafie?,
o
- Alessandro Laio* and Valerio Lucarini'2

* Competing Warm and Snowball
States (we came out of it about e
600 Mya; then multicellular life) =y

* Tipping Points often associated

with competing steady states
* Example: Atlantic Meridional -

population density [persons per km?]

Overturning Circulation

Circulation Strength

 Parameter.-, rate- and noise-
induced transitions

Circulation strength (Sv)

PHYSICAL REVIEW LETTERS 122, 158701 (2019)

Collapsed state
L 1
Transitions across Melancholia States in a Climate Model: Ot Fre 22 ater g?(s v) 0 -

Reconciling the Deterministic and Stochastic Points of View

Permatont st




Observing the
Climate System

e Lack of
synchronic and
diachronic
coherence in
data collection

* Have to rely on
proxy data for
the past

e Uneven spatial
coverage




Surface Air Temperature (C)
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What is a parametrization?

(x) x = F,(x)+&¥ (x,y)

Full system: Z’=F(Z) 7=
Y

We are interested only in the x
variables

“Optimal” reduction to

? x=F (x)+el{x}

Usually: x are large scale, slow; y
are small scale, fast variables.

coarse graining -> constructing
mesoscopic dynamics

Reaction coordinates: optimal
reduction (thermodynamics
meets variational autoencoders)




STOCHASTIC PARAMETERIZATION

S O I I I e CO I I I I I l e ntS Toward a New View of Weather and Climate Models

JupiTH BerNER, ULRICH AcHATZ, LAURIANE BATTE, Lisa BENGTsSON, ALvARO DE LA CAMARA,
HaNNAH M. ChrisTenseN, MaTTeo Cotanceu, Daniewe R. B. Coteman, DAAN CROMMELIN,
StameN |. DoLapTcHIEV, CHRiSTIAN L. E. FRaNzKE, PETRA FRiEDERICHS, PETER IMKELLER, HEIKKI JARVINEN,
STEPHAN JURICKE, VassiLl KiTsios, FRANGOIs LOTT, VALERIO LucariNi, SauL MarajaN, TiMoTHY N. PALMER,
CeciLe PeNLAND, MIRJANA SAKRADZIJA, JIN-SONG VON STORCH, ANTJE WEISHEIMER,

MicHAEL WENIGER, PauL D. WiLuiams, AND JuN-IcHl Yano

P P a r a m et ri Z a ti O n S Vi a e m p i ri Ca | C | O S u re S Stochastic parameterizations—empirically derived or based on rigorous

mathematical and statistical concepts—have great potential to increase the
predictive capability of next-generation weather and cimate models.

* Vertical transport of momentum
at the boundary of the boundary layer as a function of ....
* Evaporation over ocean given ....

* These formulas are deterministic functions of the larger scale

variables:
I =M
e ... or tables are used ‘ {x} (x)‘

* Recent push towards stochastic parametrizations (Palmer
and Williams 2009, Franzke et al. 2015; Berner et al. 2017)

* Infinite spectral gap (homogeneization theory),
parametrization is deterministic plus white noise (Pavliotis

and Stewart 2008) ‘F{x} = M(x) +G(t)‘
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Mori-Zwanzig Projection

x=F (x) +eW (x,y)

y=Fy(y)+'8Wy(x’y)

 Explicit expression for the three terms a (deterministic), b

(stochastic), ¢ (memory)- 2" order expansion
a b C

* Full system:

dX

—7 = Ix(X) +eD(X) + eS{X} + < M{X}

ournal of Statistical Mechanics: Theory and Experiment
An IOP and SISSA

and SISSA journal

Deterministic v/ @

tat Phys (2013) 151:850-860
DOI 10.1007/s10955-013-0726-8

St O C h a Stl C \/ b Disentangling multi-level systems: Multi-level Dynamical Systems: Connecting the Ruelle

averaging, correlations and memory Response Theory and the Mori-Zwanzig Approach

Jeroen Wouters an d Valerio Lucarini
K . o e Jeroen Wouters - Valerio Lucarini
Meteorologisches Institut, University of Hamburg, KlimaCampus,
i am| , Germany
s@zmaw.de and valerio.lucarini@zmaw.de

Grindelberg 7, 20144 Hamburg, Germany



Diagrams: 15t & 2"9 order “fastons”
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Top-Down vs Bottom Up

COUPLED SYSTEM

Ensemble of hidden vairables

Partial observations

Response Theory

EMR

Dyson expansion .
Memory Equation

Linear Regressions

Spectral Decomposition Ito integration

Chaos ARTICLE

scitation.orgfjournalicha

Reduced-order models for coupled dynamical

systems: Data-driven methods and the Koopman
operator

Cite as: Chaos 31, 053116 (2021); doi: 10.1063/5.003949¢
Submitted: 3 December 2020 - Accepted: 26 April 2021 -

e o, == Multilevel Stochastic Model
Valerio Lucarini,'* Mickaél D. Chekroun,”* ) and Michael Ghil“*®

Manuel Santos Gutiérrez,'
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Theories of Climate: Linking Variability and Response

Hasselmann programme (1976)
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Regimes of Climate Response

A. Smooth response
Response Theory (Ruelle 1998, 2009; Majda and Hairer 2010)

Defining the sensitivity of the climate to perturbations; constructing
the time-dependent measure of the pullback attractor.

B. High sensitivity
Ruelle-Pollicott Resonances (Ruelle 1986; Pollicott 1985)

Radius of expansion controlled by spectral gap; rough dependence of
statistics on parameters when gap shrinks (Chekroun et al. 2014)

C. Critical Transitions
Freidlin & Wentzell (1984) meet Grebogi, Ott & York (1983)

Noise-induced transitions; Boundary crisis of the high-dimensional
attractor (Ott 2002)



General Linear Response Formulas - Measures

dx = F(x)dt + Z(x)dW + G (x)g(t)dt + y¥ (x)p(t)dW, x € RP

Ruelle '98
Majda & Hairer 2010

Fokker-Planck Equation .
Lop=-V-(Fp)+ EVZ: =xTp)

0ep = Lop +eg(t)Lip +yp(t)Lp + h.o.t. Lip =-V-(Gp)
L'p= 2V (9T + wil)p)
Perturbative Expansion

P = Po + Epl(t) + )/p,]_(t) + h.o.t. LOIOO =0

t t
p, (1) =j dse*o =) g(s)Lip, P'1(E) =j dseto=)p(s) L' pg
0 0

Santos Gutierrez and L., arXiv:2205.08896 (2022)



General Linear Response Formulas - Observables

dx(t) = F(x)dt + Z(x)dW + G (x)g(t)dt + y¥Y(x)p(t)dW

(D) = (D)y + (D), (t) + (D), (t) + h.o.t.
Fluctuation-Dissipation Theorem
@10 =[G =91 G'(s) =) {cTes o)
@10 =GPl () =) {cTestTo)

Free-Forced Fuctuations Dictionary works only for smooth invariant measures

Nonequilibrium deterministic systems require a different formulation: Climatic

Surprises
Santos Gutierrez and L., arXiv:2205.08896 (2022)



Response Theory Meets Koopmanism

Fluctuation-Dissipation Theorem

LLUO eSLgCD>

@), =[6" +g](®)  §'() = 0(s) (T esF ) =—-0(s)
0 Po

Point Spectrum
(Ruelle-Pollicott Resonances)

Koopman operator
Spectral decomposition /
Essential

M
exp(LI7) @= d(7r) exp(Ly7) = ,ZleXp(AjT)Hj + R(7) €5 cctrum
]:

0

M M Neglecti
G'(s) = 0) 3 exp(H)(LT (M), = O() T exp(A7)a)  pogeneracies

M a; = Depends on the observable

1 — 1 — J
x (w) =F[G (s)] = JZZ i — /1,4— Does not depend on the observable
= J

Santos Gutierrez and L., arXiv:2205.08896 (2022)



Equivalence Principle

Equilibrium <~ Nonequilibrium
1 1 M aj E%Efﬁs:(;/loa::als
X (a)) — T[g (S)] — Z - Research
j=2 lw — A;

The problem is reduced to a (possibly infinite) set of harmonic oscillators
... like a collection of Drude-Lorentz oscillator models
a; - oscillator strength for the transition j in quantum mechanics

(Heisenberg 26)

All the classical results (Kramers-Kronig relations, sum rules, etc.) ca
be used to treat and interpret data. s e

19
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L. 2018; Tantet et al. 2018; Santos Gutierrez and L. 2022



Equilibrium Climate Sensitivity

Various Estimates of Climate Sensitivity

Probability density (°C-1)
o o o

555555555555555555555555
p Climate Sensitwity ("C)

ECS =R{x(0)} = : [doRe[(T.)"” ()]
JU

* Long Term Surface Temperature response to CO, doubling

20



Forcing (W/m?)

Equilibrium Climate Sensitivity vs

Transient Climate Response
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Computing the Green Function

* Observable: globally averaged T,
* Forcing: increase of CO, concentration  f(r)

* Linear response: <TS><” fdgG;D o) f(t-0o)
* We perform ensemble experiments
. Concentrationfat t=0 f(t) _ 8®(t)

* Fantastic, we estimate

LT ) (1) =G (1)

...and we predict: <TS><1> fdaG}? o)g(t-o)

» Note: we can use any test forcing pattern f(7) !

22



Projected CO2 levels for IPCC emussuon scenarios
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Step 1: [CO,] Doubling
360 ppm =2 720 ppm

293
292
N =200
= 291 s
= ,
Er'/ 290 =& 0.5 N
0
289
-0.5
0 50 100 150 200
88 Years
0 50 100 150 200

Years

PLASIM
Intermediate
Complexity Model
0O(10°) d.o.f.

Step 2: Climate Change
Prediction - T,

[CO,] 360 ppm — 720 ppm at 1% py
[CO,] is doubled after t= 70 years
We keep [CO,] constant after that

20 40 60 80 100 120 140 160 180 200
Years

(Ts),, (1)= [ oGy (0)s.(t-0)

24



Not only global quantities!

Pattern T increase Forward run Response Theory

35 years

70 years

Iong term ° e _?fm\\wcj"vf/ oW s wlb
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North Atlantic

Effect of AMOC on
local climate

© Natalie Renier, Woods Hole Oceanographic Institution

Lembo et al. Sci Rep. 2020

1000 y

N. Atl. near-surface temperatures: ensemble vs. prediction

Temperature in the .

N. Atlantic (cold blob)
. - A quirky feature of
: climate change

2713750 2000 2250 2500 2750 3000 3250 3500 3750
Years



(@ AMOC: ensemble vs. prediction

Ocean o

Atlantic Meridional
16
Overturning B
. . > 15
Circulation .

e Tipping point ahead!

Years 1000 )

(b) ACC: ensemble vs. prediction

MPI-ESM-LR 1750 2000 2250 2500 2750 3 gﬂso%ss—ooﬂ?}

PLASIM 0
IPCC Class
0(107) d.o.f.
150
Antarctic Circumpolar £
Current 130
Lembo et al. Sci Rep. 2020 120 27




Emergence of Tipping Points

M
Susceptibility: )( (a)) = ) + R o (W)
j=2 lw — A; ’
M ,Bj
Cospectrum:: Py q(w) = ) - 7 + Ry ¢ (w)
= Y
| Tantet et al. 2018; Chekroun et al. 2020
g Spectrum
: ) 3
L / & "
B / /

s

RP
resonances

* Small spectral gap - Re(4,) < 0 — small radius of expansion
* Small spectral gap — amplified response

* Small spectral gap — slow decay correlations < exp[Re(1,) t]
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* As the estimate of
Re(/,) gets closer to O

e The decorrelation time
goes to infinity ...

Auto-correlation of Eq MST

101}

102

Tantet et al. 2018
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What can be found between the two

climate states?

240

220

20

B0 -
540

CQO, Conc. (ppm)

co2

1080, . =

1440 o
21605500

Smooth Resp

. B. High Sensitivit
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global mean surface temperature (°C)
-50 0 50
I I I N B N N N B

_________

an
-
""""
-
e

Climate model
{(RPierrehumbert, 2002)
(TN T TN T Y Y T T
223 243 263 283 303 323 '
global mean surface temperature (K) 750 Ma

* The multistability of the Earth’s climate was discovered when studying
the possible effects of the nuclear winter

e Budyko, Sellers in the late ‘60 realized that a prolonged nuclear winter
might lead to a global glaciation

e Ghil (1976): bifurcation and potential theory

* The community was very skeptical of this... but in early "90s paleo
evidences emerged for SB state in the Neoproterozoic (650 mya)

 Beware critical transitions!

32



Evolution
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Energy balance model

dar _71-0
dt / 0
dT S
C—=(1-a,(T))=-(A+BT
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Bifurcations

Surface Temperature

TIPPING
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Competing Attractors and Melancholia State

* Dissipative system, co-existing attr. Q,, Q,. basins By, B, W

* M State I, attracts orbits initialised on basin boundary 6B
between basins B, and B,

 If near I, state, uncertainty on final Q, or Q, state 210
* Loss of Predictability of the second kind a |la Lorenz =
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A somewhat simple climate model

OPEN ACCESS
10P Publishing | London Mathematical Society Nonlinearity
Nonlinearity 30 (2017) R32-R66 hitps://doi.org/10.1088/1361-6544/aa6b11

Invited Article

Edge states in the climate system:
exploring global instabilities and critical

transitions

Valerio Lucarini'>* and Tamas Bodai'2

! Department of Mathematics and Statistics, University of Reading, Reading,
United Kingdom

2 Centre for the Mathematics of Planet Earth, University of Reading,

Reading, United Kingdom
3 CEN, Meteorological Institute, University of Hamburg, Hamburg, Germany

E-mail: v.lucarini@reading.ac.uk \/
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CrossMark
sy i s Ice-albedo feedback
Abstract

Multistability is a ubiquitous feature in systems of geophysical relevance
and provides key challenges for our ability to predict a system’s response to
perturbations. Near critical transitions small causes can lead to large effects

* Turbulent atmosphere coupled to diffusive ocean
* [ce appears as surface temperature is below 0° C
* |[ce-albedo effect



Tracklng the M State (in 10* dimensions)
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A closer look at the boundary

* |s the basin boundary smooth?
* |t is folded, indeed fractal.

* 1024 simulations between two
trajectories near the boundary

* Instability on the Melancholia
states vs across it

W

Rough basin boundaries in high dimension: Can
we classify them experimentally?

Cite as: Chaos 30, 103105 (2020); doi: 10.1063/5.0002577 1
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Published Online: 6 October 2020 Vew Onis Expost Chskon
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ABSTRACT

‘We show that a known condition for having rough basin boundaries in bistable 2D maps holds for high-dimensional bistable systems that
Ppossess a unique nonattracting chaotic set embedded in their basin boundaries. The condition for roughness is that the cross-boundary
Lyapunov exp A, on the ting set is not the maximal one. Furthermore, we provide a formula for the generally noninteger
co-dimension of the rough basin boundary, which can be viewed as a generalization of the Kantz-Grassberger formula. This co-dimension
that can be at most unitv can be thought of as a partial co-dimension. and. so. it can be matched with a Lvapunov exponent. We show in
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From Multistability to Metastability

* No noise: initial condition -> | Biology o
asym ptotic state Epigenetic landscape punctuated equilibrium

e Classificatory; no jumps; sor
of boring

e “Dynamical Landscape”
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initial state

The Earth is well known to be, in the current astronomical configuration, in a regime where two
asymptotic states can be realized. The warm state we live in is in competition with the ice-covered snowball
state. The bistability exists as a result of the positive ice-albedo feedback. In a previous investigation
performed on a intenmediate complexity climate model we identified the unstable climate states
(melancholia states) separating the coexisting climates, and studied their dynamical and geometrical
properties. The melancholia states are ice covered up to the midlatitudes and attract trajectories initialized

on the basin boundary. In this Letter, we study how stochastically perturbing the parameter controlling the
ﬁ n al St at e intensity of the incoming solar radiation impacts the stability of the climate. We detect transitions between
the warm and the snowball state and analyze in detail the properties of the noise-induced escapes from the
corresponding basins of attraction. We determine the most probable paths for the transitions and find
evidence that the melancholia states act as gateways, similarly to saddle points in an energy lindscape.

DOI: 10.1103/PhysRevLet.122.158701




Graham, Hamm, Tel ... theory
* SDE: dx; = F;(x)dr + OS(X)ijd"Vj.

 Hasselmann’s (1976) programme: stochastic climate modelling

* Hypoelliptic diffusion:
* noise propagates via interaction with drift term (Hérmander)

* Ansatz: 1V (x) ~ Z(z) exp(—2®(x)/0?)

®(a) is the quasi-potential; depends on drift F and volatility s

* Local minima of @ are attractors; saddles are M states

Orthogonal decomposition of drift: Fi(x) = Ri(x) — Cij(x)0;®(x)

 One can frame stochastic resonance for this setting (L. PRE 2019)




Noise-induced Transitions

* In the weak-noise limit, escapes from attractors take
place through the M state(s)

* Paths: instantons (variational formulation)
* Instantons obey a “strange equation”

=R + (@0 R)

To
* Tis controlled by local quasi-potential difterences

o AT 0)

o2

o)

* Distribution of escape times: P(p) = A<p> exp < P)

e &(x)is constant on attractors and M-states



Exploring the Dynamical Landscape

Non equilibrium/
Irreversible systems

C(¢)% = pu(l+ 0%)1((}5)%(1 - a(0,Ts)) — O(Ts)

= Dy[Ts] + x[Ts, T,
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 We have here the W= C and the C=2W instantons

« The distributions peak at/near the attractors W and C
M State is a saddle, instantons cross it



Outside the Comfort Zone

PROCEEDINGS A Dynamical landscape and
opaisocetypubisingorgjoumatisia MUITIStability of a climate
model
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We apply two independent data analysis
Margazoglou Sbjecthreas: T s e e
et aI 2021 dimatology, statical physics, analyse their interplay. First, d rawing from the theory
: mathematcal modefling of quasi-potentials, and viewing the state space as an
Keywords: we infer the relative likelihood of the identified
dimate modelling, meltistability, multistable dimate states and investigate the most
quasi-potertial theary, non-equilibriem likely transition trajectories as well as the expected
fata-dsi hod transition times between them. Second, harnessing
prem o ' techniques from data science, and specifically
manifold leaming manifold leaming, we characiesize the data landscape

Using now a full climate model, same used for performing
climate change projections with response theory
O(10)> degrees of freedom



PLASIM Model

e NoO \| MoSt - Model Starter (16.00) - University of Hamburg

Hodel
PUMA

SAM
Planet Simulator
Earth [ | Mars|| NeSPEC

NWPD

Modules NPRINT

ML Ocean NSYNC

LSG Ocean 02 360.0

Sea Ice =
EPSYNC 60.0

Yeestarion GS0LO | 1365.0

Parallelism

< # of CPUs

[ 1] Instances

Sea-Ice
thermodynamic

Resolution
Latitudes
Levels

Options

[ pebug mode

Write Output
Run with GUI

Simulation

[ 1] Start year
[ 19| Years to run

e Earth-like climate model

* Used for present climate, paleoclimate, exoplanets
* Most processes included

Active hydrological cycle



Setup A

* Atmosphere and Ocean can transport heat
 We get W and SB competing climate states
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Setup B

* Only the Atmosphere can transport heat
* There competing climate states - serendipitous discovery
* In the 2D projection no sign of local minimum of ®
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Machine Learning Magic (1)
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Local dimension via statistics of first vs second neighbour to the reference point

Topography of ® (maxima, minima, saddles) via Density Peak Estimator

We can estimate ® as a function of a large number of variables (no a-priori choice)

Probability density is estimated implicitly on the embedding manifold

53
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Machine Learning Magic (2)

Snow ball state
L T 1 T 0 T
tﬂ two states —4— [®
» three =tates g 205+ ~ -

- - - ~

1 1 1 1 1 1 1 1 4 1 1 1 1 1

05 1 15 2 25 3 35 4 45 0 s 1 is5 2 25 3
res. imef<res. Sme=> res. imef<res. tme>

In Setup B we find automatically the C state from a stochastic trajectory
We can reconstruct the average properties of the competing climates
Exclude spurious metastable states through statistics of permanence times
Huge potential for analysing climate data

Assess metastablity at different confidence levels .



A complex dynamical landscape

Climate Dynamics
https://doi.org/10.1007/500382-019-04926-7

)

Check for
updates

Co-existing climate attractors in a coupled aquaplanet
M. Brunetti'® . J. Kasparian - C. Vérard?

Received: 8 March 2019 / Accepted: 2 August 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

The first step in exploring the properties of dynamical systems like the Earth climate is to identify the different phase space
regions where the trajectories asymptotically evolve, called ‘attractors’. In a given system, multiple attractors can co-exist
under the effec http://orcid.org/0000-0001-8199-223x Undaries of their basins of attraction, small changes produce large effects.
Therefore, they are key regions for understanding the system response to perturbations. Here we prove the existence of
up to five attractors in a simplified climate system where the planet is entirely covered by the ocean (aquaplanet). These
attractors range from a snowball to a hot state without sea ice, and their exact number depends on the details of the coupled
atmosphere—ocean—sea ice configuration. We characterise each attractor by describing the associated climate feedbacks, by
using the principal component analysis, and by measuring quantities borrowed from the study of dynamical systems, namely
instantaneous dimension and persistence.

Brunetti et al. Clim. Dyn. 2020
Ragon et al. Clim. Dyn. 2022

Five competing attractors!

v’ A

Conjecture: itinerancy between competing metastable states

explains ultralong climate variability

Also: Lewis et al. 2007 JGR; Abbott et al. 2011 JGR



Multiple scales of Multistability

Ice Age Temperature Changes
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“Big whorls have little whorls
7 7. That feed on their velocity,
. “. And little whorls have lesser
| " whorls, and so on to viscosity”

1 Lewis F. Richardson, 192(36



Conclusions

Climate as nonequilibrium statistical
mechanical system
Advancing Hasselmann’s programme
Response theory for smooth response

* Predict climate change
High sensitivity and mixing rate

* Nearing Tipping Points
Multistability and Tipping points

* Melancholia State, gate for the transitions

Multiscale multistability in a hierarchy of models and tipping points
Ultralong climate variability: itinerancy between metastable states?
Linking natural history (realized trajectory) with the many “possibles”

Running the movie again life might take different form (Gould 1989)



Bibliography

Lucarini V., L. Serdukova, G. Margazoglou, Lévy-noise versus Gaussian-noise-
induced Transitions in the Ghil-Sellers Energy Balance Model, Nonlin. Processes
Geophys. Discuss. https://doi.org/10.5194/npg-2021-34 (2021)

Margazoglou, G., T. Grafke, A. Laio, V. Lucarini, Dynamical Landscape and
Multistability of the Earth's Climate, Proc. R. Soc. A 20210019 (2021)

Ghil M., V. Lucarini, The Physics of Climate Variability and Climate Change, Rev.
Mod. Phys. 92 035002 (2020)

Lucarini V., T. Bodai, Transitions across Melancholia States in a Climate Model:

Reconciling the Deterministic and Stochastic Points of view. Phys. Rev. Lett. 122,
158701 (2019)

Lucarini V., T. Bodai, Global Stability Properties of the Climate: Melancholia States,
Invariant Measures, and Phase Transitions, Nonlinearity 33 R59 (2020)

Tantet A., V. Lucarini, F. Lunkeit, H. Dijkstra, Crisis of the Chaotic Attractor of a
Climate Model: A Transfer Operator Approach, Nonlinearity 31, 2221 (2018)

Lucarini V., T. Bodai, Edge States in the Climate System: Exploring Global
Instabilities and Critical Transitions, Nonlinearity 30, R32-R66 (2017)

Lucarini V., R. Blender, C. Herbert, S. Pascale, F. Ragone, and J. Wouters,
Mathematical and Physical Ideas for Climate Science, Rev. Geo. 50, 809 (2014)



https://doi.org/10.5194/npg-2021-34

Thanks for your attention!



