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Outline:
• your eye is a computer 
• neurons are a bit like spins
• connections to NPRG
• progress on linking biological to 

RG notions of “relevance”



Is anything in 
biology 

“optimal”?



optimal coding:
max(info) + constraints

behavioral
goals



The	re&na	is	a	piece	of	the	central	brain	out	in	the	eye:

H	Wässle,	Nature	Reviews	Neurosci	(2004)	
Baden,	Berens,	Franke,	Roson,	Bethge,	Euler	(2016)
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see also below), ON–OFF32 (G12,13) and ON direction-selective types33 
(G16,25,26,29), JAM-B (ref. 24) (G6) and W3 cells25 (G10), and the OFF 
‘suppressed-by-contrast’ cell34 (G31,32). The allocation of cells to indi-
vidual groups was uniform across space (Fig. 2d) and the fraction of 
the population accounted for by broad response types was consistent 
across experiments (Extended Data Fig. 3e).

As each RGC type is thought to tile the retina, we calculated each 
group’s functional coverage factor based on its average receptive field 
size and its relative abundance (Extended Data Fig. 4; Methods).  
A single RGC type would yield a coverage factor of ∼1 without recep-
tive field overlap, and a coverage factor of ∼2 with 30% overlap.  
A coverage factor !1 may indicate that a type has been artificially split.

The average coverage factor across all RGC groups was 2.0 ± 0.7 
(mean ± s.d. of Gaussian fit, Fig. 2e), broadly consistent with reported 
coverage factors for mouse RGCs (roughly 2–3; see Supplementary 
Table 1 and Supplementary Discussion). Coverage factors higher than 
two may indicate groups consisting of multiple types. For example, 
G12 corresponding to ON–OFF direction-selective cells32, has a cov-
erage factor of 7.7, consistent with four ON–OFF direction-selective 
types, each preferring a different motion direction35 (see below).  

The mixed non-direction-selective groups G17 and G31 probably contain 
more than one type, as supported by multiple distinct morphologies  
and genetic identities (for example, G31,32, Extended Data Fig. 5) or 
response properties (for example, G17, see below).

Taken together, our coverage factor analysis suggests that the number 
of unique functional RGC types in the mouse is substantially above 32, 
probably as high as 40, in particular since classical ipRGCs (that is, M1) 
as well as at least one PV-positive small-field RGC type were largely 
discarded based on their low signal-to-noise ratio (S/N) response to 
our stimuli (see Supplementary Discussion). This is about three times 
the highest number of physiologically defined RGC types to date8 
and about twice the highest anatomical diversity reported in mouse11 
(Supplementary Table 2).

Example RGC types
There are three types of alpha cells known in the mouse retina31: the 
sustained (G5) and transient OFF alpha (G8), and the ON alpha (G24). 
These cells are characterized by their large somata, a feature that we 
used during the post-processing step (Extended Data Fig. 2i–j). For the 
transient OFF and the ON alpha we found similarly responding cells 
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Figure 2 | Functional RGC types of the mouse 
retina. a, Cluster-dendrogram (Methods) 
with groups indicated: n = 28 RGC and n = 4 
‘uncertain’ RGC groups. b, Cluster-mean Ca2+ 
responses to the four stimuli. c, Selected metrics, 
from left to right: region of interest (soma) area, 
receptive field (RF) diameter (2 s.d. of Gaussian), 
direction-selectivity index (DSi) and orientation-
selectivity index (OSi) (Methods). Background-
histograms demarcate all RGCs. d, Experiment 
(left, from Fig. 1a, bottom) with RGCs colour-
coded by group (right). dACs and discarded cells 
not shown. e, Coverage factor (CF) calculated 
from receptive field area of RGC groups, with 
horizontal divisions delineating individual 
clusters (left) and distribution of coverage factors 
across groups (right). Scale bar in d, 50 µm.
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Neurons	“speak”	in	binary	words:
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Brief historical note 

Hodgkin & Huxley (1939) Nature 144:710-711 

Action potential recorded at Marine Biological Association at Plymouth 

Hodgkin & Huxley left Plymouth:  August 30, 1939 
Hitler invaded Poland:  September 1, 1939 

“We published this result in a letter in Nature (1939) with no discussion 
or explanation.  In a full paper (1945) we gave four possible 

explanations, all wrong.” Huxley (2002) J. Physiol. 539:2 8 

Hodgkin & Huxley (1939) Nature 144:710-711 
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Fig. 1 The Ising model greatly
improves the prediction of retinal
activity over the independent
model [72]. A. Neuronal activity
is summarized by a binary word
σ = σ1, . . . ,σN obtained by
binning spikes into 20 ms
windows. B. The frequencies of
all spike words σ of a
subnetwork of N = 10 neurons
are compared between the
experiment (x axis) and the
prediction (y axis) of the
independent model (gray dots)
and the maximum entropy model
with pairwise interactions (black
dots). The straight line represents
identity

where Jij is the Lagrange multiplier associated to 〈σiσj 〉. Remarkably, this model is mathe-
matically equivalent to a disordered Ising model, where hi are external local fields, and Jij

exchange couplings. Ising models were first introduced by Hopfield in the context of neural
networks to describe associative memory [45]. The maximum entropy approach allows for
a direct connection to experiments, since all the parameters hi and Jij are determined from
data.

Maximum entropy distributions consistent with pairwise correlations, as in (27), were
fitted for subnetworks of up to N = 15 neurons [72] by direct summation of the partition
function coupled with gradient descent (25). These models did a surprisingly good job of
predicting the collective firing patterns across the population of all N neurons, as illustrated
in Fig. 1. Importantly, the model of independent neurons makes errors of many orders of
magnitude in predicting relative frequencies of the state σ , despite the fact that pairwise
correlations are weak, and these errors are largely corrected by the maximum entropy model.
The accuracy of the model can be further evaluated by asking how much of the correlative
structure is captured. The overall strength of correlations in the network is measured by the
multi-information [71], defined as the total reduction in entropy relative to the independent

Neural	word	distribu&ons	are	~	power	law:

Mora,	Bialek	(2011)



Standard	approach	to	modeling	neural	ac&vity:	
(pairwise)	maximum	entropy

276 T. Mora, W. Bialek

network, as well as defining the “vocabulary” that the network has at its disposal to use in
representing sensations, thoughts, memories or actions.

For large networks, sampling all 2N words is of course impractical. For many years,
much attention was focused on the behavior of single neurons, and then on pairs. An im-
portant observation is that correlations between any two neurons typically are weak, so that
the correlation coefficient between σi and σj !=i is on the order of 0.1 or less. It is tempting
to conclude that, physicists’ prejudices notwithstanding, neurons are approximately inde-
pendent, and there are no interesting collective effects. As soon as it became possible to
record simultaneously from many neurons, however, it became clear that this was wrong,
and that, for example, larger groups of neurons spike simultaneously much more frequently
than would be expected if spiking were independent in every cell [60]. It is not clear, how-
ever, how to interpret such data. It might be that there are specific sub-circuits in the network
that link special groups of many cells, and it is these groups which dominate the patterns
of simultaneous spiking. Alternatively, the network could be statistically homogeneous, and
simultaneous spiking of many cells could emerge as a collective effect. An important hint is
that while correlations are weak, they are widespread, so that any two neurons that plausibly
are involved in the same task are equally likely to have a significant correlation.

To make this discussion concrete, it is useful to think about the vertebrate retina. The
retina is an ideal place in which to test ideas about correlated activity, because it is possible
to make long and stable recordings of many retinal ganglion cells—the output cells of the
retina, whose axons bundle together to form the optic nerve—as they respond to natural vi-
sual stimuli. In particular, because the retina is approximately flat, one can record from the
output layer of cells by placing a piece of the retina on an array of electrodes that have been
patterned onto to a glass slide, using conventional methods of microfabrication. Such exper-
iments routinely allow measurements on ∼ 100 neurons, in some cases sampling densely
from a small region of the retina, so that this represents a significant fraction of all the cells
in the area covered by the electrode array [55, 74].

The average rate at which neuron i generates spikes is given by r̄i = 〈(1 + σi )/2〉/"τ ,
so that knowing the average rates is the same as knowing the local magnetizations 〈σi〉. The
maximum entropy model consistent with these averages, but with no other constraints, is a
model of independently firing cells, from (21):

P1(σ ) =
∏

i

pi(σi ) = Z−1 exp
[∑

i

hiσi

]
, (26)

where hi is the Lagrange multiplier associated to the average observable 〈σi〉. Although the
independent model may correctly describe the activity of small groups of neurons, it is often
inconsistent with some global properties of the network. For example, in a retina stimulated
by natural movies [72], the distribution of the total number of spikes K = ∑N

i=1(1 + σi )/2
is observed to be approximately exponential [P (K) ≈ e−K/K̄ ], while an independent model
predicts Gaussian tails throughout the relevant range of K . This suggests that correlations
strongly determine the global state of the network.

As the first step beyond an independent model, one can look for the maximum entropy
distribution that is consistent not only with 〈σi〉, but also with pairwise correlation functions
between neurons 〈σiσj 〉. The distribution then takes a familiar form:

P2(σ ) = 1
Z

e−E(σ ), E(σ ) = −
N∑

i=1

hiσi −
∑

i<j

Jijσiσj , (27)

276 T. Mora, W. Bialek

network, as well as defining the “vocabulary” that the network has at its disposal to use in
representing sensations, thoughts, memories or actions.

For large networks, sampling all 2N words is of course impractical. For many years,
much attention was focused on the behavior of single neurons, and then on pairs. An im-
portant observation is that correlations between any two neurons typically are weak, so that
the correlation coefficient between σi and σj !=i is on the order of 0.1 or less. It is tempting
to conclude that, physicists’ prejudices notwithstanding, neurons are approximately inde-
pendent, and there are no interesting collective effects. As soon as it became possible to
record simultaneously from many neurons, however, it became clear that this was wrong,
and that, for example, larger groups of neurons spike simultaneously much more frequently
than would be expected if spiking were independent in every cell [60]. It is not clear, how-
ever, how to interpret such data. It might be that there are specific sub-circuits in the network
that link special groups of many cells, and it is these groups which dominate the patterns
of simultaneous spiking. Alternatively, the network could be statistically homogeneous, and
simultaneous spiking of many cells could emerge as a collective effect. An important hint is
that while correlations are weak, they are widespread, so that any two neurons that plausibly
are involved in the same task are equally likely to have a significant correlation.

To make this discussion concrete, it is useful to think about the vertebrate retina. The
retina is an ideal place in which to test ideas about correlated activity, because it is possible
to make long and stable recordings of many retinal ganglion cells—the output cells of the
retina, whose axons bundle together to form the optic nerve—as they respond to natural vi-
sual stimuli. In particular, because the retina is approximately flat, one can record from the
output layer of cells by placing a piece of the retina on an array of electrodes that have been
patterned onto to a glass slide, using conventional methods of microfabrication. Such exper-
iments routinely allow measurements on ∼ 100 neurons, in some cases sampling densely
from a small region of the retina, so that this represents a significant fraction of all the cells
in the area covered by the electrode array [55, 74].

The average rate at which neuron i generates spikes is given by r̄i = 〈(1 + σi )/2〉/"τ ,
so that knowing the average rates is the same as knowing the local magnetizations 〈σi〉. The
maximum entropy model consistent with these averages, but with no other constraints, is a
model of independently firing cells, from (21):

P1(σ ) =
∏

i

pi(σi ) = Z−1 exp
[∑

i

hiσi

]
, (26)

where hi is the Lagrange multiplier associated to the average observable 〈σi〉. Although the
independent model may correctly describe the activity of small groups of neurons, it is often
inconsistent with some global properties of the network. For example, in a retina stimulated
by natural movies [72], the distribution of the total number of spikes K = ∑N

i=1(1 + σi )/2
is observed to be approximately exponential [P (K) ≈ e−K/K̄ ], while an independent model
predicts Gaussian tails throughout the relevant range of K . This suggests that correlations
strongly determine the global state of the network.

As the first step beyond an independent model, one can look for the maximum entropy
distribution that is consistent not only with 〈σi〉, but also with pairwise correlation functions
between neurons 〈σiσj 〉. The distribution then takes a familiar form:

P2(σ ) = 1
Z

e−E(σ ), E(σ ) = −
N∑

i=1

hiσi −
∑

i<j

Jijσiσj , (27)

Are Biological Systems Poised at Criticality? 279

Fig. 2 Divergence of the heat
capacity is a classical signature
of criticality. This plot represents
the heat capacity versus
temperature for Ising models of
retinal activity for increasing
population sizes N [82]. The
“N = 20, rand,” and N = 120
curves were obtained by inferring
Ising models for fictitious
networks whose correlations
were randomly drawn from real
data. Error bars show the
standard deviation when
choosing different subsets of N
neurons among the 40 available

observed networks of N ≤ 40 cells are very similar to networks that are generated by mean
spike probabilities and correlations chosen at random from the observed distributions of
these quantities. This raises the possibility that criticality could be diagnosed directly from
the distribution of pairwise correlations, rather than their precise arrangement across cells.
More concretely, it gives us a path to simulate what we expect to see from larger networks,
assuming that the cells that have been recorded from in this experiment are typical of the
larger population of cells in the neighborhood. The result for N = 120 thus obtained (i.e.
from fitting the Ising model to an artificial network of random correlations with the same
statistics as the experiment) is an even clearer demonstration that the system is operating
near a critical point in its parameter space, as shown by the peak in specific heat getting
closer to the natural temperature kBT = 1, shown in the top curve of Fig. 2. The range of
network sizes in the current data does not allow us describe the precise nature of the transi-
tion (second-order, spin-glass, etc.) from finite-size scaling arguments, nor does the form of
the couplings. This is due in part to the fact that the inferred networks are disordered but far
from random, and may not fall into previously studied classes of models.

This diverging heat capacity is further evidence that the system is near a critical point,
but one might be worried that this is an artifact of the model or of the fitting procedure. As
we have seen in Sect. 2, the critical properties of the distribution P (σ ) can be also explored
directly, without recourse to the maximum entropy approximation, by plotting the proba-
bility of firing patterns versus their rank. Figure 3, which shows such plots for increasing
network sizes, reveals good agreement with Zipf’s law, especially for larger N .

Some of the inferred couplings Jij were negative, indicating an effective mutual inhibi-
tion between two cells. We know from spin glass theory [62] that negative couplings can
lead to frustration and the emergence of many locally stable, or metastable, states. Formally,
a metastable state is defined as a state whose energy is lower than any of its adjacent states,
where adjacency is defined by single spin flips. Said differently, metastable states are local
“peaks” in the probability landscape. In the retina responding to natural movies, up to four
metastable states were reported in the population (N = 40). These states appeared at precise

Find								that	reproduces	observed	
pairwise	correlaEons
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Fig. 1 The Ising model greatly
improves the prediction of retinal
activity over the independent
model [72]. A. Neuronal activity
is summarized by a binary word
σ = σ1, . . . ,σN obtained by
binning spikes into 20 ms
windows. B. The frequencies of
all spike words σ of a
subnetwork of N = 10 neurons
are compared between the
experiment (x axis) and the
prediction (y axis) of the
independent model (gray dots)
and the maximum entropy model
with pairwise interactions (black
dots). The straight line represents
identity

where Jij is the Lagrange multiplier associated to 〈σiσj 〉. Remarkably, this model is mathe-
matically equivalent to a disordered Ising model, where hi are external local fields, and Jij

exchange couplings. Ising models were first introduced by Hopfield in the context of neural
networks to describe associative memory [45]. The maximum entropy approach allows for
a direct connection to experiments, since all the parameters hi and Jij are determined from
data.

Maximum entropy distributions consistent with pairwise correlations, as in (27), were
fitted for subnetworks of up to N = 15 neurons [72] by direct summation of the partition
function coupled with gradient descent (25). These models did a surprisingly good job of
predicting the collective firing patterns across the population of all N neurons, as illustrated
in Fig. 1. Importantly, the model of independent neurons makes errors of many orders of
magnitude in predicting relative frequencies of the state σ , despite the fact that pairwise
correlations are weak, and these errors are largely corrected by the maximum entropy model.
The accuracy of the model can be further evaluated by asking how much of the correlative
structure is captured. The overall strength of correlations in the network is measured by the
multi-information [71], defined as the total reduction in entropy relative to the independent

Jij

Introduce	ficEEous	temperature	to	
calculate	specific	heat	-	“real”	system	
sits	at	T=1

Mora	+	Bialek		PRL	(2011)	
Tkačik,	Mora,	Marre,	Amodei,	SEP,	Berry,	Bialek	PNAS	(2015)





Processing	delays	mean	the	brain		
has	to	make	predic&ons:



Berry,	Brivanlou,	Jordan,	and	Meister	(1999)	
Olveczky,	Baccus,	Meister	(2003)	

Schwartz,	Taylor,	Fisher,	Harris,	Berry	(2007)	
Schwartz,	Harris,	Shrom,	Berry	(2007)	

Trenholm,	Schwab,	Balasubramanian,	Awatramani	(2013)

fixational eye movements10. A neuron that subserves this function
should respond to local motion on the retina, but only if the motion
trajectory differs from that in a large surrounding region. Neurons
capable of such computations have been described in the visual
cortex11,12 and superior colliculus13,14 of mammals, and also in the
optic tectum of birds15. However, given that the fixational eye
movements in the two eyes differ16, extraction of object motion
probably happens before the visual pathways from the two eyes
merge. Here we show that the segregation of object motion and
image motion induced by eye movements happens in the retina.

The retina senses differential motion
We recorded the spike trains of ganglion cells in the isolated retina of
salamander and rabbit. The stimulus display was divided into a
small ‘object’ region overlying the receptive field centre of the
ganglion cell and a surrounding large ‘background’ region covering
the rest of the retina (Fig. 1a). Both object and background were
given a visual texture by a simple stripe grating. The background
grating jittered laterally with a random walk trajectory, similar to
that of fixational eye movements (Fig. 1b). The object grating also
jittered in a random walk with the same statistics, either coherently
with the background, or incoherently with a different trajectory.
The coherent condition simulated the global image motion on the

retina that results when viewing a stationary scene in the presence of
eye movements only (‘Eye Only’ condition). The incoherent con-
dition simulated, in addition, local motion of an object within that
scene (‘Eye þ Object’ condition).

In both the salamander and rabbit retina we found ganglion cells
that were highly selective for motion within the scene (Fig. 2): these
neurons responded vigorously to the Eye þ Object condition
(Fig. 2a), but were almost completely suppressed under the Eye
Only condition (Fig. 2b), even though their receptive field centres
experienced the same stimulus under both conditions. When the
background region was uniformly grey (‘Object Only’, Fig. 2c), the
responses were similar to the Eye þ Object condition (Fig. 2a),
indicating that an incoherently moving background has little effect
on the centre response. Whereas the stimulus condition in Fig. 2a
simulated an object jittering within the scene, a steady drift of the
object relative to the background also elicited reliable responses
(‘Eye þ Object Drift’, Fig. 2d).

As these ganglion cells are selective for local object motion over
global motion, we will refer to them as OMS (object motion
sensitive) cells, noting that this class comprises several recognized
cell types (for example, ‘ON Brisk Transient’ cells and ‘ON–OFF
Direction Selective’ cells in rabbit, and ‘Fast OFF’ cells in salaman-
der; Fig. 2e). Both retinas contain other cell types that show much

Figure 2 Certain retinal ganglion cells are selective for object motion. a–d, Responses to
15 s of jitter from a rabbit ON Brisk Transient cell and a salamander Fast OFF cell. Each

panel shows a raster plot with spikes on eight identical stimulus trials (top) and a peri-

stimulus time histogram of the firing rate averaged over all trials (bottom). The stimulus

conditions are: Eye þ Object (a), object and background gratings jittered incoherently;
Eye Only (b), object and background jittered coherently with same trajectory as the
object in a; Object Only (c), object jittered as in a, background grey; Eye þ Object Drift (d),

object and background jittered as in b with a steady drift (450mms21) added to the

object region. e, Ratio of firing rates in the coherent (b) and incoherent (a) motion
condition. Data from 6 ON Brisk Transient (ON BT) cells, 11 ON–OFF Direction Selective

(ON–OFF DS) cells, 5 Local Edge Detector (LED) cells, and 7 OFF Brisk Transient (OFF BT)

cells in two rabbit retinas; 41 Fast OFF cells, 8 Weak OFF cells and 8 ON cells in nine

salamander retinas.
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Object motion sensitivity

The	re&na	performs	a	lot	of	complex	computa&ons:

Reversal response
PREDICTIONS IN THE BRAIN306

over a large group of cells (Fig.   22.5A  ). ! us, a 
simple, linear readout circuit that pools over 
many ganglion cells (50 + ) could perfectly dis-
criminate among motion reversal from smooth 
motion, even though such discrimination is not 
possible using individual cells (Schwartz et al., 
  2007  ). For the example of periodic temporal 
sequences, the extreme heterogeneity of indi-
vidual ganglion cell responses means that the 

brain can interpret the stimulus as a violation of 
the expected pattern when “start/end” cells " re 
 and  “start only” cells are silent (Fig.   22.5B  ). 
Similarly, the brain can infer the presence of a 
predicted # ash when a “sustained” cell " res but 
any kind of “start” cell is silent. Finally, all sur-
prising stimuli need not be lumped together. ! e 
unpredictable " rst # ash can be distinguished 
from the equally unpredictable # ash omission by 

      Figure 22.5  Encoding predicted and surprising events. ( A ) ( Upper ) Spike rasters from ! ve simultane-
ously recorded ganglion cells responding to a reversing bar. ( Lower ) Population ! ring rate calculated by 
averaged over trials and cells. Each cell responds both to the smooth motion and the reversal, but the 
smooth motion responses are prolonged and asynchronous while the reversal responses are transient 
and synchronous. ( B ) " ree ganglion cells responding to a periodic # ash sequence (trace above), illus-
trating di$ erent response classes. Firing patterns among di$ erent pairs of cells can uniquely identify 
“start,” “sustained,” and “omitted # ash” sections of the stimulus. ( C ) Space-time representation of an 
object that appears, begins to move, reverses direction, stops, and disappears. We speculate that retinal 
processing divides these events into predictable (blue) and surprising (red) channels of visual informa-
tion encoded by distinct populations of retinal ganglion cells.     
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Detection and prediction of
periodic patterns by the retina
Greg Schwartz1, Rob Harris2, David Shrom1 & Michael J Berry II1

A fundamental task of the brain is detecting patterns in the
environment that enable predictions about the future. Here, we
show that the salamander and mouse retinas can recognize a
wide class of periodic temporal patterns, such that a subset
of ganglion cells fire strongly and specifically in response to
a violation of the periodicity. This sophisticated retinal
processing may provide a substrate for hierarchical pattern
detection in subsequent circuits.

Repetitive trains of sensory stimuli have long been known to elicit
characteristic patterns of voltage on the scalp in humans when they
end. Such an omitted stimulus potential, or mismatch negativity, has
been observed in human EEGs in the visual1,2, auditory3 and somato-
sensory4 domains, as well as in functional magnetic resonance imaging
data5, and has generally been interpreted to signal ‘‘novelty’’1,6,7. Slower
and more cognitive pattern recognition requires attention and is likely
to arise in the neocortex8, whereas faster patterns may be recognized
subcortically9. One group has measured an omitted stimulus potential
from the optic tectum and optic nerve of fish following sequences of
light or dark flashes and concluded that the signal must originate in the
retina10,11. In this study, we measured the omitted stimulus response
directly in retinal ganglion cell spike trains, demonstrating that the
retina contains temporal expectations about the visual world that have
great flexibility and precision.

We presented isolated salamander and mouse retinas with a periodic
sequence of spatially uniform dark flashes at a rate of 12 Hz, while
recording spikes extracellularly with a multielectrode array12 (Supple-
mentary Methods online). Most ganglion cells responded very weakly
to each flash. But when individual flashes were randomly omitted, a
strong burst of spikes resulted (Fig. 1a,b). This response to the
omission of a flash from a periodic sequence bears close resemblance
to signals previously observed in the local field potential1,9–11.

To characterize the omitted stimulus response (OSR) and determine
what kinds of stimuli evoke it, we performed subsequent experiments
using short flash sequences. Many ganglion cells fired a volley of spikes
at the end of the flash sequence, which was clearly not driven by the last
flash. Often this OSR was much stronger than the response to the first
flash in the sequence. Within the ganglion cell population, several kinds
of responses were observed: ‘start-end’ cells (Fig. 1c,d) fired only at the
beginning and end of the sequence, ‘sustained’ cells fired throughout
the sequence as well as at the end (Fig. 1e), and ‘end-only’ cells fired
only at sequence end (Fig. 1f). All three kinds of responses to the end
of a periodic flash sequence were seen in both salamander and
mouse retinas.

Flash sequences as slow as 6 Hz can elicit an OSR, and the effect is
present up to 20 Hz, the highest frequency tested. The peak firing rate
of the OSR tended to increase as the frequency of the flash sequence
increased. An OSR was apparent after as few as four flashes (Supple-
mentary Fig. 1 online), and a weak response could sometimes be
observed after two flashes. When we used reverse correlation to map
ganglion cell receptive fields, we found that a large fraction of both ON
cells (40/40 ¼ 100% in salamander; 14/23 ¼ 61% in mouse) and OFF
cells (133/317 ¼ 42% in salamander; 29/61 ¼ 48% in mouse) showed
an OSR for dark flashes presented at 12 Hz. Although there was great
heterogeneity, ON/OFF cells tended to have a stronger OSR than pure
OFF cells and medium OFF cells had a stronger OSR than fast OFF or
slow OFF cells (Supplementary Figs. 2 and 3 online).

Rather than simply signaling that the flash sequence had ended, the
OSR was actually predictive of the time at which the next flash should
have occurred. The latency to the time of peak firing depended on the
frequency of the preceding stimulus, shifting by over 100 ms with
respect to the time of the last flash as the frequency of the sequence
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Figure 1 Ganglion cell responses to omitted flashes. (a,b) Firing rate of a
single ganglion cell in salamander (a) or mouse (b) during a sequence of 500
dark flashes of 40-ms duration with random omissions at a mean rate of once
every 16 flashes (see Methods). Responses are aligned with respect to the
time of omitted flashes (dashed line). (c–f) Firing rate of example cells from
salamander (left) and mouse (right) during a sequence of 16 flashes, showing
start-end (c,d), sustained (e) and end-only (f) response types. Flashes had a
duration of 40 ms (salamander) or 24 ms (mouse) and were presented at
12 Hz. Dashed lines show the time of the next expected flash. All cells have
an OFF-type receptive field, except for the one in f, which is ON-type.
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anticipatory spikes are generated in the upstream DSGC. That the initial 
coupling-mediated inputs occurred much farther from the soma than the 
first spikes suggests that coupled inputs alone do not drive spike activity 
in post-junctional cells. Thus, gap junction inputs are likely to become 
effective when they are summed with inputs from other ganglion and/or 
bipolar cells. Such contextual restraints on gap junction signaling could 
allow for strong anticipatory signals to develop without leading to run-
away excitation in the network.

As the measured spikelet currents only represent the fast component 
of the gap junction–mediated priming signal, the total gap junction 
input is expected to be larger. Indeed, spiking responses and EPSCs 
of coupled DSGCs had a distinct slow rising component that was not 
observed in uncoupled DSGCs (EPSC Trise = 118 o 11 ms for coupled 
and 66 o 5 ms for uncoupled DSGCs, n = 11 for coupled and 10 for 
uncoupled DSGCs, P = 0.029; Fig. 2b–d). Consistent with a role for gap 

junctions in the early response component of coupled DSGCs, the initial 
phase of both EPSCs and spiking responses were selectively inhibited 
in the presence of the gap junction antagonist 18B-glycyrrhetinic acid 
(25 MM 18BGA; for spiking responses, $ = 60 o 8 Mm, n = 12, P < 0.001; 
for EPSCs, $ = 125 o 31 Mm, n = 5, P = 0.01; Fig. 2b,c, whereas the 
responses of uncoupled DSGCs were not significantly affected (n = 4, 
P > 0.05; Fig. 2d). Together, these results indicate an important role for 
pre-junctional DSGCs in controlling the initiation of spiking responses 
in their downstream neighbors via gap junctions.

Next, we sought to understand how converging electrical and 
chemical synaptic inputs result in lag normalization in the network. 
To compensate for spatial response lags that increase linearly with 
velocity, the strength of the lateral priming must increase in parallel.  
Indeed, signals mediated through gap junctions are expected to get 
larger with stimulus velocity because the peak firing rate of DSGCs 

Figure 2 Gap junctions between upward coding DSGCs mediate lateral 
excitation. (a) Responses to the leading edge of a bar moving at 600 Mm s−1,  
measured simultaneously from neighboring GFP+ DSGCs. Spike trains are 
shown from the pre-junctional DSGC (C1, black) and EPSCs in the post-
junctional DSGC (C2, red). Yellow bar indicates position of stimulus at  
the position where the first spike was generated in C1. Inset: average  
pre-junctional spike, spike-triggered post-junctional current (average 
spikelet) and the derivative of the post-junctional current (raw data for  
50 consecutive spikes or spikelets are shown in gray). (b,c) Response 
onsets of coupled DSGCs before and after the application of the gap 
junction antagonist 18BGA, 25 MM (the entire ON response waveforms are 
shown in the insets). (d) Responses of uncoupled DSGCs were not affected 
by application of 18BGA. Vertical dashed lines in c indicate the start of 
EPSCs in control and drug conditions. Vertical and horizontal scale bars 
represent 50 Mm and 40 Hz (b), 250 Mm and 100 Hz (b, inset), 12 Mm 
and 25 pA (c), 100 Mm and 100 pA (c, inset), 50 Mm 50 pA (d), and  
75 Mm and 250 pA (d, inset).
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anticipatory spikes are generated in the upstream DSGC. That the initial 
coupling-mediated inputs occurred much farther from the soma than the 
first spikes suggests that coupled inputs alone do not drive spike activity 
in post-junctional cells. Thus, gap junction inputs are likely to become 
effective when they are summed with inputs from other ganglion and/or 
bipolar cells. Such contextual restraints on gap junction signaling could 
allow for strong anticipatory signals to develop without leading to run-
away excitation in the network.

As the measured spikelet currents only represent the fast component 
of the gap junction–mediated priming signal, the total gap junction 
input is expected to be larger. Indeed, spiking responses and EPSCs 
of coupled DSGCs had a distinct slow rising component that was not 
observed in uncoupled DSGCs (EPSC Trise = 118 o 11 ms for coupled 
and 66 o 5 ms for uncoupled DSGCs, n = 11 for coupled and 10 for 
uncoupled DSGCs, P = 0.029; Fig. 2b–d). Consistent with a role for gap 

junctions in the early response component of coupled DSGCs, the initial 
phase of both EPSCs and spiking responses were selectively inhibited 
in the presence of the gap junction antagonist 18B-glycyrrhetinic acid 
(25 MM 18BGA; for spiking responses, $ = 60 o 8 Mm, n = 12, P < 0.001; 
for EPSCs, $ = 125 o 31 Mm, n = 5, P = 0.01; Fig. 2b,c, whereas the 
responses of uncoupled DSGCs were not significantly affected (n = 4, 
P > 0.05; Fig. 2d). Together, these results indicate an important role for 
pre-junctional DSGCs in controlling the initiation of spiking responses 
in their downstream neighbors via gap junctions.

Next, we sought to understand how converging electrical and 
chemical synaptic inputs result in lag normalization in the network. 
To compensate for spatial response lags that increase linearly with 
velocity, the strength of the lateral priming must increase in parallel.  
Indeed, signals mediated through gap junctions are expected to get 
larger with stimulus velocity because the peak firing rate of DSGCs 

Figure 2 Gap junctions between upward coding DSGCs mediate lateral 
excitation. (a) Responses to the leading edge of a bar moving at 600 Mm s−1,  
measured simultaneously from neighboring GFP+ DSGCs. Spike trains are 
shown from the pre-junctional DSGC (C1, black) and EPSCs in the post-
junctional DSGC (C2, red). Yellow bar indicates position of stimulus at  
the position where the first spike was generated in C1. Inset: average  
pre-junctional spike, spike-triggered post-junctional current (average 
spikelet) and the derivative of the post-junctional current (raw data for  
50 consecutive spikes or spikelets are shown in gray). (b,c) Response 
onsets of coupled DSGCs before and after the application of the gap 
junction antagonist 18BGA, 25 MM (the entire ON response waveforms are 
shown in the insets). (d) Responses of uncoupled DSGCs were not affected 
by application of 18BGA. Vertical dashed lines in c indicate the start of 
EPSCs in control and drug conditions. Vertical and horizontal scale bars 
represent 50 Mm and 40 Hz (b), 250 Mm and 100 Hz (b, inset), 12 Mm 
and 25 pA (c), 100 Mm and 100 pA (c, inset), 50 Mm 50 pA (d), and  
75 Mm and 250 pA (d, inset).
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Gaussian	IB	is	analytically	tractable:

min	MI max	MI

How	you	coarse-grain	a	signal	 	depends	on	what	you	wish	to	recover	from	the	coarse-graining𝑋

Tishby,	Pereira,	Bialek	(1999)		
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Given the ubiquitous need to find simplifying structure in complex models and data, a synthesis of the ideas
present in IB and RG could yield powerful new analysis methods and theoretical insight.

IB and RG are motivated by different problems—IB is typically thought of as a data analysis tool, while
RG is an analytical tool. Yet both describe coarsening schemes which, as we demonstrate here, can be
exactly identified with each other. What purpose does this connection serve? In RG, not all coarsening
schemes are created equal. For a given notion of emergent structure, such as the patterning of the degrees of
freedom within a particular phase, one needs to properly define the RG procedure to capture that structure.
Frequently, this emergent property is complicated, and one does not know a priori how it arises from the
microscopic degrees of freedom, or indeed how to coarsen them to reveal the appropriate low-dimensional
structure. IB can be thought of as a way of picking an RG scheme in which the notion of relevance is defined
by the practitioner, and collective modes pertinent to that structure are discovered and not guessed at. In a
sense, IB formalizes the problem of picking an RG scheme that preserves relevant collective behavior, while
also generalizing what is meant by relevance.

Probability-theoretic investigations of RG methods are not a recent development [14]. One early paper
by Jona-Lasinio used limit theorems from probability theory to argue the equivalence of older,
field-theoretic RG formalism due to Gell–Mann and Low with the modern view due to Kadanoff and
Wilson [15]. Recent work [13, 16–20] has focused on connections of RG to information theory. Since the
general goal in RG is to remove information about some modes or system states through coarsening, an
effective characterization of RG explains how the information loss due to coarsening generates the RG flow
or relates to existing notions of emergence. Moreover, like the probabilistic viewpoint promoted by
Jona-Lasinio, the information-theoretic viewpoint enjoys a healthy separation from physical context. The
hope is that, by removing assumptions about the particular organization or interpretation of the degrees of
freedom in the system, RG methods can be generalized and made applicable to problems outside of a
traditional physics setting [5, 21]. This viewpoint also has the potential to enrich traditional RG
applications, as Koch-Janusz et al point out [12]. Their neural-network implementation of an IB-like
coarsening scheme was able to ‘discover’ the relevant, large-scale modes of the dimer model, whose
thermodynamics are completely entropic, and whose collective modes do not resemble the initial degrees of
freedom. More recently, Gordon et al built upon this scheme to formally connect notions of ‘relevance’
between IB and RG [13].

In contrast to most RG formulations which require an explicit notion of how the modes of the system
should be ordered, the IB approach defines the relevance of a feature by the information it carries about a
specified relevance variable. To be concrete, let X be a random variable, called the ‘input’, which we wish to
coarsen. Then, let Y be another random variable, called the ‘relevance variable’, which has some statistical
interaction with the input X. IB defines a non-deterministically coarsened version of X, X̃, which is optimal
in the sense that the mutual information (MI) between X̃ and Y is maximized. Because X̃ is defined as a
non-deterministic coarsening of X, an exact correspondence between RG and IB demands that the RG
scheme uses what is known as a ‘soft’ cutoff. This means, for example, that the ubiquitous perturbative
momentum shell approach put forth by Wilson cannot be mapped exactly onto IB under the interpretation
of X̃ as some coarse-grained variable. The trade-off between degree of coarsening, indicated by I(X̃; X) and
the amount of relevant information retained I(X̃; Y) is controlled by a continuous variable, denoted β.
Formally, the non-deterministic map which yields X̃ from X is found by optimizing the IB objective
function,

Pβ(x̃|x) = argminP(̃x|x) I(X; X̃) − βI(X̃; Y). (1)

For large values of β, the compressed representation x̃ is more detailed and retains a greater deal of
predictive information about Y. Conversely, for smaller β, relatively few features are kept, in favor of
reducing I(X̃; X) (increasing compression/coarsening). The formalism investigated here is the one originally
laid out in 2000 by Tisbhy et al [1], but since then a number of thematically similar IB schemes have been
proposed [22–24]. IB methods have been employed extensively in computer science, specifically toward
artificial neural networks and machine learning [6–11]. In theoretical neuroscience, Palmer et al have
demonstrated using IB that the retina optimally encodes the future state of some time-correlated stimuli,
suggesting that prediction is a biological function instantiated early on in the visual stream [4, 25, 26]. IB
has also been applied in studies of other complex systems, for instance to efficiently discover important
reaction coordinates in large MD simulations [27], and to rigorously demonstrate hierarchical structure in
the behavior of Drosophila over long timescales [28].

From a broad perspective, there are some basic similarities between RG and IB. Both frameworks entail
a coarsening procedure by which the irrelevant aspects of a system description are discarded in order to
generate a lower-dimensional, ‘effective’ picture. Further, the Lagrange multiplier β in IB, which
parameterizes the level of detail retained, can be seen as roughly analogous to the scale cutoff present in
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structure. IB can be thought of as a way of picking an RG scheme in which the notion of relevance is defined
by the practitioner, and collective modes pertinent to that structure are discovered and not guessed at. In a
sense, IB formalizes the problem of picking an RG scheme that preserves relevant collective behavior, while
also generalizing what is meant by relevance.

Probability-theoretic investigations of RG methods are not a recent development [14]. One early paper
by Jona-Lasinio used limit theorems from probability theory to argue the equivalence of older,
field-theoretic RG formalism due to Gell–Mann and Low with the modern view due to Kadanoff and
Wilson [15]. Recent work [13, 16–20] has focused on connections of RG to information theory. Since the
general goal in RG is to remove information about some modes or system states through coarsening, an
effective characterization of RG explains how the information loss due to coarsening generates the RG flow
or relates to existing notions of emergence. Moreover, like the probabilistic viewpoint promoted by
Jona-Lasinio, the information-theoretic viewpoint enjoys a healthy separation from physical context. The
hope is that, by removing assumptions about the particular organization or interpretation of the degrees of
freedom in the system, RG methods can be generalized and made applicable to problems outside of a
traditional physics setting [5, 21]. This viewpoint also has the potential to enrich traditional RG
applications, as Koch-Janusz et al point out [12]. Their neural-network implementation of an IB-like
coarsening scheme was able to ‘discover’ the relevant, large-scale modes of the dimer model, whose
thermodynamics are completely entropic, and whose collective modes do not resemble the initial degrees of
freedom. More recently, Gordon et al built upon this scheme to formally connect notions of ‘relevance’
between IB and RG [13].

In contrast to most RG formulations which require an explicit notion of how the modes of the system
should be ordered, the IB approach defines the relevance of a feature by the information it carries about a
specified relevance variable. To be concrete, let X be a random variable, called the ‘input’, which we wish to
coarsen. Then, let Y be another random variable, called the ‘relevance variable’, which has some statistical
interaction with the input X. IB defines a non-deterministically coarsened version of X, X̃, which is optimal
in the sense that the mutual information (MI) between X̃ and Y is maximized. Because X̃ is defined as a
non-deterministic coarsening of X, an exact correspondence between RG and IB demands that the RG
scheme uses what is known as a ‘soft’ cutoff. This means, for example, that the ubiquitous perturbative
momentum shell approach put forth by Wilson cannot be mapped exactly onto IB under the interpretation
of X̃ as some coarse-grained variable. The trade-off between degree of coarsening, indicated by I(X̃; X) and
the amount of relevant information retained I(X̃; Y) is controlled by a continuous variable, denoted β.
Formally, the non-deterministic map which yields X̃ from X is found by optimizing the IB objective
function,

Pβ(x̃|x) = argminP(̃x|x) I(X; X̃) − βI(X̃; Y). (1)

For large values of β, the compressed representation x̃ is more detailed and retains a greater deal of
predictive information about Y. Conversely, for smaller β, relatively few features are kept, in favor of
reducing I(X̃; X) (increasing compression/coarsening). The formalism investigated here is the one originally
laid out in 2000 by Tisbhy et al [1], but since then a number of thematically similar IB schemes have been
proposed [22–24]. IB methods have been employed extensively in computer science, specifically toward
artificial neural networks and machine learning [6–11]. In theoretical neuroscience, Palmer et al have
demonstrated using IB that the retina optimally encodes the future state of some time-correlated stimuli,
suggesting that prediction is a biological function instantiated early on in the visual stream [4, 25, 26]. IB
has also been applied in studies of other complex systems, for instance to efficiently discover important
reaction coordinates in large MD simulations [27], and to rigorously demonstrate hierarchical structure in
the behavior of Drosophila over long timescales [28].

From a broad perspective, there are some basic similarities between RG and IB. Both frameworks entail
a coarsening procedure by which the irrelevant aspects of a system description are discarded in order to
generate a lower-dimensional, ‘effective’ picture. Further, the Lagrange multiplier β in IB, which
parameterizes the level of detail retained, can be seen as roughly analogous to the scale cutoff present in
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Given the ubiquitous need to find simplifying structure in complex models and data, a synthesis of the ideas
present in IB and RG could yield powerful new analysis methods and theoretical insight.

IB and RG are motivated by different problems—IB is typically thought of as a data analysis tool, while
RG is an analytical tool. Yet both describe coarsening schemes which, as we demonstrate here, can be
exactly identified with each other. What purpose does this connection serve? In RG, not all coarsening
schemes are created equal. For a given notion of emergent structure, such as the patterning of the degrees of
freedom within a particular phase, one needs to properly define the RG procedure to capture that structure.
Frequently, this emergent property is complicated, and one does not know a priori how it arises from the
microscopic degrees of freedom, or indeed how to coarsen them to reveal the appropriate low-dimensional
structure. IB can be thought of as a way of picking an RG scheme in which the notion of relevance is defined
by the practitioner, and collective modes pertinent to that structure are discovered and not guessed at. In a
sense, IB formalizes the problem of picking an RG scheme that preserves relevant collective behavior, while
also generalizing what is meant by relevance.

Probability-theoretic investigations of RG methods are not a recent development [14]. One early paper
by Jona-Lasinio used limit theorems from probability theory to argue the equivalence of older,
field-theoretic RG formalism due to Gell–Mann and Low with the modern view due to Kadanoff and
Wilson [15]. Recent work [13, 16–20] has focused on connections of RG to information theory. Since the
general goal in RG is to remove information about some modes or system states through coarsening, an
effective characterization of RG explains how the information loss due to coarsening generates the RG flow
or relates to existing notions of emergence. Moreover, like the probabilistic viewpoint promoted by
Jona-Lasinio, the information-theoretic viewpoint enjoys a healthy separation from physical context. The
hope is that, by removing assumptions about the particular organization or interpretation of the degrees of
freedom in the system, RG methods can be generalized and made applicable to problems outside of a
traditional physics setting [5, 21]. This viewpoint also has the potential to enrich traditional RG
applications, as Koch-Janusz et al point out [12]. Their neural-network implementation of an IB-like
coarsening scheme was able to ‘discover’ the relevant, large-scale modes of the dimer model, whose
thermodynamics are completely entropic, and whose collective modes do not resemble the initial degrees of
freedom. More recently, Gordon et al built upon this scheme to formally connect notions of ‘relevance’
between IB and RG [13].

In contrast to most RG formulations which require an explicit notion of how the modes of the system
should be ordered, the IB approach defines the relevance of a feature by the information it carries about a
specified relevance variable. To be concrete, let X be a random variable, called the ‘input’, which we wish to
coarsen. Then, let Y be another random variable, called the ‘relevance variable’, which has some statistical
interaction with the input X. IB defines a non-deterministically coarsened version of X, X̃, which is optimal
in the sense that the mutual information (MI) between X̃ and Y is maximized. Because X̃ is defined as a
non-deterministic coarsening of X, an exact correspondence between RG and IB demands that the RG
scheme uses what is known as a ‘soft’ cutoff. This means, for example, that the ubiquitous perturbative
momentum shell approach put forth by Wilson cannot be mapped exactly onto IB under the interpretation
of X̃ as some coarse-grained variable. The trade-off between degree of coarsening, indicated by I(X̃; X) and
the amount of relevant information retained I(X̃; Y) is controlled by a continuous variable, denoted β.
Formally, the non-deterministic map which yields X̃ from X is found by optimizing the IB objective
function,

Pβ(x̃|x) = argminP(̃x|x) I(X; X̃) − βI(X̃; Y). (1)

For large values of β, the compressed representation x̃ is more detailed and retains a greater deal of
predictive information about Y. Conversely, for smaller β, relatively few features are kept, in favor of
reducing I(X̃; X) (increasing compression/coarsening). The formalism investigated here is the one originally
laid out in 2000 by Tisbhy et al [1], but since then a number of thematically similar IB schemes have been
proposed [22–24]. IB methods have been employed extensively in computer science, specifically toward
artificial neural networks and machine learning [6–11]. In theoretical neuroscience, Palmer et al have
demonstrated using IB that the retina optimally encodes the future state of some time-correlated stimuli,
suggesting that prediction is a biological function instantiated early on in the visual stream [4, 25, 26]. IB
has also been applied in studies of other complex systems, for instance to efficiently discover important
reaction coordinates in large MD simulations [27], and to rigorously demonstrate hierarchical structure in
the behavior of Drosophila over long timescales [28].

From a broad perspective, there are some basic similarities between RG and IB. Both frameworks entail
a coarsening procedure by which the irrelevant aspects of a system description are discarded in order to
generate a lower-dimensional, ‘effective’ picture. Further, the Lagrange multiplier β in IB, which
parameterizes the level of detail retained, can be seen as roughly analogous to the scale cutoff present in
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Spiking patterns sit close to the bound:
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Retinal populations saturate the bound:

1
0
1...
1
0

wpresent
sfuture

spast

1
0
1...
1
0

wpresent

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

 

N = 1
N = 2
N = 3
N = 4
N = 5
N = 6
N = 7

Palmer	et	al.	PNAS	(2015)	
Salisbury	and	Palmer	JSP	(2016)	

Sederberg,	MacLean,	Palmer	PNAS	(2018)



Re&nal	popula&ons	have	as	much	predic&ve	info		
as	they	possibly	could:

Palmer	et	al.	PNAS	(2015)	
Salisbury	and	Palmer	JSP	(2016)	

Sederberg,	MacLean,	Palmer	PNAS	(2018)	
Salisbury,	Marre,	Palmer	(in	prep.)

−500 0 500

po
sit

ion
 (μ

m
)

time (ms)

futurepast
a)

−500 0 500
0

2

4

6

fir
ing

 ra
te

 (s
pik

es
/s)

time (ms)

b)

c)

150100500
0

0.05

0.1

0.15

Δt (ms)

Δt

d)

(b
its

)

(bits)

(b
its

)

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

 

N = 1
N = 2
N = 3
N = 4
N = 5
N = 6
N = 7
group A

group A, N = 5

Ipast

I f
u
tu

re
I f

u
tu

re

200

400

600

800

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

 

N = 1
N = 2
N = 3
N = 4
N = 5
N = 6
N = 7

salamander rat

<latexit sha1_base64="5AC47IaBPOhjmOHdWLU9INZ6Em8=">AAACCHicbVDLSsNAFJ34rPUVdenCwSLUTUmkqMuCGwUXFewD2hAm00k7dPJg5kYsIUs3/oobF4q49RPc+TdO2wjaeuDCmXPuZe49Xiy4Asv6MhYWl5ZXVgtrxfWNza1tc2e3qaJEUtagkYhk2yOKCR6yBnAQrB1LRgJPsJY3vBj7rTsmFY/CWxjFzAlIP+Q+pwS05JoHV24X2D3III2JggyXf54eB5Udu2bJqlgT4Hli56SEctRd87Pbi2gSsBCoIEp1bCsGJyUSOBUsK3YTxWJCh6TPOpqGJGDKSSeHZPhIKz3sR1JXCHii/p5ISaDUKPB0Z0BgoGa9sfif10nAP3dSHsYJsJBOP/ITgSHC41Rwj0tGQYw0IVRyvSumAyIJBZ1dUYdgz548T5onFfu0Ur2plmrXeRwFtI8OURnZ6AzV0CWqowai6AE9oRf0ajwaz8ab8T5tXTDymT30B8bHN6B4mmc=</latexit>

Ipast(bits)
<latexit sha1_base64="Ry1rvslVp1X54XuJa6umSFBq21o=">AAACCnicbVDJSgNBEO1xjXEb9eilNQjxEmYkqMeAFwUPEcwCSQg9nZqkSc9Cd40Yhpy9+CtePCji1S/w5t/YWQRNfFDweK+KqnpeLIVGx/myFhaXlldWM2vZ9Y3NrW17Z7eqo0RxqPBIRqruMQ1ShFBBgRLqsQIWeBJqXv9i5NfuQGkRhbc4iKEVsG4ofMEZGqltH1y1mwj3qILUTzBRMKT5H8ETqIfHbTvnFJwx6DxxpyRHpii37c9mJ+JJACFyybRuuE6MrZQpFFzCMNtMNMSM91kXGoaGLADdSsevDOmRUTrUj5SpEOlY/T2RskDrQeCZzoBhT896I/E/r5Ggf95KRRgnCCGfLPITSTGio1xoRyjgKAeGMK6EuZXyHlOMo0kva0JwZ1+eJ9WTgntaKN4Uc6XraRwZsk8OSZ645IyUyCUpkwrh5IE8kRfyaj1az9ab9T5pXbCmM3vkD6yPb16Am14=</latexit> I f
u
tu

re
(b
it
s)



Coarse-graining	in	a	neural	popula&on:

2

correlation max.min.

2

4

6

8

1

3

5

7

1+2

3+4

5+6

7+8

A

B

0 100 200 300 400
0
2

4

time (s)

no
rm

. f
lu

or
es

ce
nc

e

0

2

4

0

2

4

FIG. 2: Fluorscence signals, denoising, and coarse–graining.
(A) Continuous fluorescence signals, raw in grey and denoised
in black, for three neurons in our field of view. Illustration of
our coarse–graining procedure, for two iterations. (B) Activ-
ity of 8 example neurons. The first step in every iteration is
to compute the hierarchy of correlations between all pairs of
neurons based on their activity. Then, maximally correlated
pairs are grouped together by summing their activity, nor-
malizing so the mean of nonzero values is one. Each cell can
only participate in one pair, and all cells are grouped by the
end of each iteration. Darker arrows correspond to stronger
correlations in the pair.

tivity in each neuron i = 1, 2, · · · , N at time t; since our
coarse–graining does not mix di↵erent moments in time,
we drop this index for now. We compute the correlations

cij =
h�xi�xji

[h(�xi)2ih(�xj)2i]1/2
, (1)

where �xi = xi � hxii. We then search for the largest
nondiagonal element of this matrix, identifying the max-
imally correlated pair i, j⇤(i), and construct the coarse–
grained variable

x(2)
i = Z(2)

i

�
xi + xj⇤(i)

�
, (2)

where Z(2)
i restores normalization as described above.

We remove the pair [i, j⇤(i)], search for the next most
correlated pair, and so on, greedily, until the original N

variables have become bN/2c pairs. We can iterate this
process, generatingNK = bN/Kc clusters of sizeK = 2k,

represented by coarse–grained variables {x(K)
i }.

We would like to follow the joint distribution of vari-
ables at each step of coarse–graining, but this is impos-
sible using only a finite set of samples [18]. Instead, as
in the analysis of Monte Carlo simulations [19], we follow
the distribution of individual coarse–grained variables.
This distribution is a mixture of a delta function exactly
at zero and a continuous density over positive values,

PK(x) ⌘ 1

NK

NKX

i=1

⌧
�
⇣
x� x(K)

i

⌘�

= P0(K)�(x) + [1� P0(K)]QK(x), (3)

where our choice of normalization requires that

Z 1

0
dxQK(x)x = 1. (4)

Figure 3 shows the behavior of P0(K) and QK(x) from
the microscopic scale K = 1 out to K = 256.
If the coarse–grained activity of a cluster is zero, all

the microscopic variables in that cluster must be zero, so
that P0(K) measures the probability of silence in clus-
ters of size K. If neurons were independent, then this
probability would fall exponentially with K; in fact the
data are well described by

P0(K) = exp(�aK �̃), (5)

FIG. 3: Scaling in the probabilities of silence and activ-
ity. (left) Probability of silence as a function of cluster size.
Dashed line is the expectation for independent neurons, and
the solid line is from Eq (5). (right) Distribution of activ-
ity at di↵erent levels of coarse–graining, from Eq (3). Larger
clusters corresponds to lighter colors.

2

correlation max.min.

2

4

6

8

1

3

5

7

1+2

3+4

5+6

7+8

A

B

0 100 200 300 400
0
2

4

time (s)

no
rm

. f
lu

or
es

ce
nc

e

0

2

4

0

2

4

FIG. 2: Fluorscence signals, denoising, and coarse–graining.
(A) Continuous fluorescence signals, raw in grey and denoised
in black, for three neurons in our field of view. Illustration of
our coarse–graining procedure, for two iterations. (B) Activ-
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to compute the hierarchy of correlations between all pairs of
neurons based on their activity. Then, maximally correlated
pairs are grouped together by summing their activity, nor-
malizing so the mean of nonzero values is one. Each cell can
only participate in one pair, and all cells are grouped by the
end of each iteration. Darker arrows correspond to stronger
correlations in the pair.
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coarse–graining does not mix di↵erent moments in time,
we drop this index for now. We compute the correlations
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[h(�xi)2ih(�xj)2i]1/2
, (1)

where �xi = xi � hxii. We then search for the largest
nondiagonal element of this matrix, identifying the max-
imally correlated pair i, j⇤(i), and construct the coarse–
grained variable
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We remove the pair [i, j⇤(i)], search for the next most
correlated pair, and so on, greedily, until the original N

variables have become bN/2c pairs. We can iterate this
process, generatingNK = bN/Kc clusters of sizeK = 2k,

represented by coarse–grained variables {x(K)
i }.

We would like to follow the joint distribution of vari-
ables at each step of coarse–graining, but this is impos-
sible using only a finite set of samples [18]. Instead, as
in the analysis of Monte Carlo simulations [19], we follow
the distribution of individual coarse–grained variables.
This distribution is a mixture of a delta function exactly
at zero and a continuous density over positive values,
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where our choice of normalization requires that
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0
dxQK(x)x = 1. (4)

Figure 3 shows the behavior of P0(K) and QK(x) from
the microscopic scale K = 1 out to K = 256.
If the coarse–grained activity of a cluster is zero, all

the microscopic variables in that cluster must be zero, so
that P0(K) measures the probability of silence in clus-
ters of size K. If neurons were independent, then this
probability would fall exponentially with K; in fact the
data are well described by

P0(K) = exp(�aK �̃), (5)
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FIG. 3: Scaling in the probabilities of silence and activ-
ity. (left) Probability of silence as a function of cluster size.
Dashed line is the expectation for independent neurons, and
the solid line is from Eq (5). (right) Distribution of activ-
ity at di↵erent levels of coarse–graining, from Eq (3). Larger
clusters corresponds to lighter colors.
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Coarse–graining, fixed points, and scaling in a large population of neurons
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We develop a phenomenological coarse–graining procedure for activity in a large network of neu-
rons, and apply this to recordings from a population of 1000+ cells in the hippocampus. Distribu-
tions of coarse–grained variables seem to approach a fixed non–Gaussian form, and we see evidence
of scaling in both static and dynamic quantities. These results suggest that the collective behavior
of the network is described by a non–trivial fixed point.

In systems with many degrees of freedom, it is natu-
ral to search for simplified, coarse–grained descriptions.
While this idea has a long history, our modern under-
standing is based on the renormalization group (RG).
In its conventional formulation, we start with the joint
probability distribution for variables defined at the mi-
croscopic scale, and then coarse–grain by local averaging
over small neighborhoods in space. The joint distribution
of coarse–grained variables evolves as we change the av-
eraging scale, and in most cases the distribution becomes
simpler as we move to larger scales. Thus, macroscopic
behaviors are simpler and more universal than their mi-
croscopic mechanisms [1–4]. Is it possible that simplifi-
cation in the style of the RG will succeed in the more
complex context of biological systems?

The exploration of the brain has been revolutionized
over the past decade by methods to record, simultane-
ously, the electrical activity of large numbers of neurons
[5–15]. Here we analyze experiments on 1000+ neurons
in the CA1 region of the mouse hippocampus. The mice
are genetically engineered to express a protein whose flu-
orescence depends on the calcium concentration, which in
turn follows electrical activity; fluorescence is measured
with a scanning two–photon microscope as the mouse
runs along a virtual linear track. Figure 1A shows a
schematic of the experiment, which has been described
more fully elsewhere [7, 11, 15]. The field of view is
0.5⇥ 0.5mm2 (Fig 1B), and we identify 1485 cells. Flu-
orescence signals are sampled at 30 Hz, images are seg-
mented to assign signals to individual neurons, and sig-
nals are denoised to reveal relatively infrequent transients
above a background of silence (Fig 2A).

In familiar applications of the RG, microscopic vari-
ables have defined locations in space, and interactions are
local, so it makes sense to average over spatial neighbor-
hoods. Neurons are extended objects, and make synap-
tic connections across distances comparable to our entire
field of view, so locality is not a useful guide. But in sys-
tems with local interactions, microscopic variables are
most strongly correlated with the near spatial neighbors.
We will thus use correlation itself as a proxy for neighbor-

hood. We compute the correlation matrix of all the vari-
ables, search greedily for the most correlated pairs, and
define a coarse–grained variable by the sum of the two mi-
croscopic variables in the pair [16], as illustrated in Fig 2.
This can be iterated, placing the variables onto a binary
tree; alternatively, after k iterations we have grouped the
neurons into clusters of size K = 2k, and each cluster is
represented by a single coarse–grained variable [17].
A technical point concerns the normalization of vari-

ables at each step of the coarse–graining. We start with
signals whose amplitude has an element of arbitrariness,
being dependent on the relations between electrical activ-
ity and calcium concentration, and between calcium con-
centration and protein fluorescence. Nonetheless, there
are many moments in time when the signal is truly zero,
representing the absence of activity. We want to choose
a normalization that removes the arbitrariness but pre-
serves the meaning of zero, so we set the average ampli-
tude of the nonzero signals in each cell equal to one, and
restore this normalization at each step of coarse–graining.
Formally, we start with variables {xi(t)} describing ac-
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some implementations of RG. As a first guess, one might imagine that X in IB roughly corresponds to the
(fluctuating) bare state of a system we are interested in renormalizing, and its compressed representation X̃
is a coarsened dynamical field akin to a fluctuating ‘local’ order parameter. However, it is not difficult to
find implementations of RG which do not map to IB in this way, and vice versa. For example, in Wilsonian
RG schemes with a hard momentum cutoff, the decimation step represents a deterministic map from bare
to coarsened system state. Together with our provisional interpretation, this contradicts the original
formulation of IB, in which the coarsening is non-deterministic [29].

Another, more serious discrepancy is due to the expected use cases of these two theoretical frameworks.
Generically, the fixed point description of criticality offered by RG is legitimate due to the presence of
infinitely many interacting degrees of freedom, otherwise the coarsened model cannot be mapped back into
the original model space. In IB, the random variables X is finite-dimensional, such as a finite lattice of
continuous spins, and ‘dimensional reduction’ does not refer to the convergence toward a low-dimensional
critical manifold in model space, but instead the actual removal of dimensions from the coarsened
representation of X. Finally, and perhaps most dauntingly, there is not an obvious equivalent of the IB
relevance variable Y in RG. It seems counterintuitive that one would want more control over the collective
mode basis used to describe a system, when for the vast majority of RG applications, length or energy scale
works perfectly well as a cutoff.

Despite these apparent mismatches, there are some significant structural similarities between IB for
continuous variables and a class of RG implementations involving soft cutoffs. For concreteness, we restrict
our discussion of the correspondence to Gaussian statistics. While this precludes the analysis of
non-Gaussian criticality, it allows all of the results to be expressed analytically and makes connections more
transparently. This can also serve as a basis for later investigations involving non-Gaussian statistics and
interacting systems. To begin, we show that Gaussian information bottleneck (GIB) [30] exhibits a
semi-group structure in which successive IB coarsenings compose larger IB coarsenings. This structure is
summarized in an explicit function of the Lagrange multiplier β which simply multiplies under semigroup
action and is therefore analogous to the length scale in canonical RG. Next we explore how the coarsening
map P(x̃|x) provided by IB defines an infra-red regulator which serves as a soft cutoff in several
non-perturbative renormalization group (NPRG) schemes. This relation shows that the freedom inherent in
choosing a cutoff scheme maps directly to the choice of Y-statistics in IB. Finally, we use a Gaussian field
theory as a toy model to explore the physical significance of this fact. One result is that the RG scheme
provided by IB can select a collective mode basis which is not Fourier, and hence impose a cutoff which
cannot be interpreted as a wavenumber. Additionally, in whichever collective mode basis is chosen, the
shape of this IB cutoff scheme is closely related to the Litim regulator which is ubiquitous in NPRG
literature [31].

2. Semigroup structure in Gaussian information bottleneck

Every IB problem begins with the distribution P(x, y), which specifies the statistical dependencies linking
the input variable X to the relevance variable Y. GIB refers to the subset of IB problems in which P(x, y) is
jointly Gaussian. Under this constraint, a family of coarsening maps Pβ(x̃|x) can be found exactly for all β.
Chechik et al [30] showed this by explicitly parameterizing the coarsening map, then minimizing the IB
objective function with respect to these parameters. Their parameterization consists of two matrices A and
Σξ , which are used to define the compressed representation X̃ as a linear projection of the input plus a
Gaussian ‘noise’ variable ξ. Explicitly, X̃ = AX + ξ with ξ ∼ N (0,Σξ). Under this parameterization, one
exact solution is given by






Σξ = I

A(β) = diag {αi(β)} VT

αi(β) =

[
β(1 − λi) − 1

λisi

]1/2

Θ

(
β − 1

1 − λi

)
,

(2)

where Θ is the Heaviside step function and si = [VTΣXV]ii. The matrix V represents a set of eigenvectors
with corresponding eigenvalues λi in the following way,

Σ−1
X ΣX|Y V = V diag {λi} , (3)

where the matrices ΣX and ΣX|Y are the covariances of the distributions P(x) and P(x|y), respectively. These
distributions are assumed to be known since they are determined by P(x, y). The matrix Σ−1

X ΣX|Y used
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Given the ubiquitous need to find simplifying structure in complex models and data, a synthesis of the ideas
present in IB and RG could yield powerful new analysis methods and theoretical insight.

IB and RG are motivated by different problems—IB is typically thought of as a data analysis tool, while
RG is an analytical tool. Yet both describe coarsening schemes which, as we demonstrate here, can be
exactly identified with each other. What purpose does this connection serve? In RG, not all coarsening
schemes are created equal. For a given notion of emergent structure, such as the patterning of the degrees of
freedom within a particular phase, one needs to properly define the RG procedure to capture that structure.
Frequently, this emergent property is complicated, and one does not know a priori how it arises from the
microscopic degrees of freedom, or indeed how to coarsen them to reveal the appropriate low-dimensional
structure. IB can be thought of as a way of picking an RG scheme in which the notion of relevance is defined
by the practitioner, and collective modes pertinent to that structure are discovered and not guessed at. In a
sense, IB formalizes the problem of picking an RG scheme that preserves relevant collective behavior, while
also generalizing what is meant by relevance.

Probability-theoretic investigations of RG methods are not a recent development [14]. One early paper
by Jona-Lasinio used limit theorems from probability theory to argue the equivalence of older,
field-theoretic RG formalism due to Gell–Mann and Low with the modern view due to Kadanoff and
Wilson [15]. Recent work [13, 16–20] has focused on connections of RG to information theory. Since the
general goal in RG is to remove information about some modes or system states through coarsening, an
effective characterization of RG explains how the information loss due to coarsening generates the RG flow
or relates to existing notions of emergence. Moreover, like the probabilistic viewpoint promoted by
Jona-Lasinio, the information-theoretic viewpoint enjoys a healthy separation from physical context. The
hope is that, by removing assumptions about the particular organization or interpretation of the degrees of
freedom in the system, RG methods can be generalized and made applicable to problems outside of a
traditional physics setting [5, 21]. This viewpoint also has the potential to enrich traditional RG
applications, as Koch-Janusz et al point out [12]. Their neural-network implementation of an IB-like
coarsening scheme was able to ‘discover’ the relevant, large-scale modes of the dimer model, whose
thermodynamics are completely entropic, and whose collective modes do not resemble the initial degrees of
freedom. More recently, Gordon et al built upon this scheme to formally connect notions of ‘relevance’
between IB and RG [13].

In contrast to most RG formulations which require an explicit notion of how the modes of the system
should be ordered, the IB approach defines the relevance of a feature by the information it carries about a
specified relevance variable. To be concrete, let X be a random variable, called the ‘input’, which we wish to
coarsen. Then, let Y be another random variable, called the ‘relevance variable’, which has some statistical
interaction with the input X. IB defines a non-deterministically coarsened version of X, X̃, which is optimal
in the sense that the mutual information (MI) between X̃ and Y is maximized. Because X̃ is defined as a
non-deterministic coarsening of X, an exact correspondence between RG and IB demands that the RG
scheme uses what is known as a ‘soft’ cutoff. This means, for example, that the ubiquitous perturbative
momentum shell approach put forth by Wilson cannot be mapped exactly onto IB under the interpretation
of X̃ as some coarse-grained variable. The trade-off between degree of coarsening, indicated by I(X̃; X) and
the amount of relevant information retained I(X̃; Y) is controlled by a continuous variable, denoted β.
Formally, the non-deterministic map which yields X̃ from X is found by optimizing the IB objective
function,

Pβ(x̃|x) = argminP(̃x|x) I(X; X̃) − βI(X̃; Y). (1)

For large values of β, the compressed representation x̃ is more detailed and retains a greater deal of
predictive information about Y. Conversely, for smaller β, relatively few features are kept, in favor of
reducing I(X̃; X) (increasing compression/coarsening). The formalism investigated here is the one originally
laid out in 2000 by Tisbhy et al [1], but since then a number of thematically similar IB schemes have been
proposed [22–24]. IB methods have been employed extensively in computer science, specifically toward
artificial neural networks and machine learning [6–11]. In theoretical neuroscience, Palmer et al have
demonstrated using IB that the retina optimally encodes the future state of some time-correlated stimuli,
suggesting that prediction is a biological function instantiated early on in the visual stream [4, 25, 26]. IB
has also been applied in studies of other complex systems, for instance to efficiently discover important
reaction coordinates in large MD simulations [27], and to rigorously demonstrate hierarchical structure in
the behavior of Drosophila over long timescales [28].

From a broad perspective, there are some basic similarities between RG and IB. Both frameworks entail
a coarsening procedure by which the irrelevant aspects of a system description are discarded in order to
generate a lower-dimensional, ‘effective’ picture. Further, the Lagrange multiplier β in IB, which
parameterizes the level of detail retained, can be seen as roughly analogous to the scale cutoff present in
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of freedom are added or removed. The modern view of RG theory, which is largely due to Wilson [34–38]
and Kadanoff [39], concerns itself with the removal of degrees of freedom through a process known as
decimation, in which a thermodynamic quantity (typically the partition function) is re-written by
performing a configurational sum or integral over a subset of the original modes. Here, even before
discussing rescaling and renormalization, we must make procedural choices. To begin, one must specify the
subset of degrees of freedom which are to be coarsened off. In theories where modes are labeled by
wavenumber or momentum, one typically establishes a cutoff and decimates all modes with momentum
above it. As a result, those modes are completely removed from the system description, and their statistics
are incorporated into the couplings which parameterize the new effective theory. Another consideration is
the practicality of carrying out such a procedure. If the model in consideration can be expanded in a
perturbation series about a Gaussian model, and if the non-Gaussian operators are irrelevant or marginal
under the flow, then this analysis is amenable to perturbative RG. However, this is often not the case, for
example in systems far from their critical dimension, or in non-equilibrium phase transitions, where there
may not even be critical dimensions [40, 41].

In NPRG approaches, the need for a perturbative treatment is removed by working from a formally
exact flow equation at the outset. The first such treatment was put forth in 1973 by Wegner and Houghton,
who used Wilson’s idea of an infinitesimal momentum-shell integration to derive an exact flow equation for
the full coarse-grained Hamiltonian [42]. Because this equation describes the evolution of the Hamiltonian
for every field configuration, this and other NPRG flow equations are called integro-differential equations,
and the NPRG is sometimes referred to as the functional renormalization group (FRG). Later, Wilson and
Kogut [36], as well as Polchinski [43], proposed new NPRG flow equations in which the cutoff was not
described explicitly through a literal demarcation between included and excluded modes, but instead
through non-deterministic coarsening, so that the effective Hamiltonian satisfies a functional generalization
of a diffusion equation [44]. These approaches were introduced, at least in part, as a response to difficulties
[45] that arise from the sharp cutoff in the Wegner–Houghton construction. Correspondingly, the
Wilson–Polchinski FRG approach can be thought to give a soft cutoff, where modes can be ‘partially
coarsened’.

The most common NPRG approach in use today was first described in 1993 by Wetterich [46]. Like the
Wilson–Polchinski NPRG, the Wetterich approach uses a soft cutoff, but the objects computed by this
framework are fundamentally different. Instead of computing the effective Hamiltonian of modes which are
below the cutoff, the Wetterich framework computes the effective free energy of modes above the cutoff. For
this reason, we say that the Wilson–Polchinski framework is UV-regulated and Wetterich is IR-regulated.
Yet, despite this difference in perspective, the Wetterich formalism still describes the flow effective models
make from their microscopic to macroscopic pictures. In this section, we will explore how the soft-cutoff
construction is related to a notion of non-deterministic coarsening, and in turn, the IB framework. An
in-depth discussion of the philosophy and implementation of NPRG techniques would be distracting, so we
instead refer the reader to a number of good references on the topic [47–50].

So far we have not explained how one actually imposes a soft-cutoff scheme. We begin by examining the
Wetterich setup, in which one writes the effective (Helmholtz) free energy at cutoff k,

Wk[J] = log
∫

Dχ exp

[
−S[χ] −∆Sk[χ] +

∑

a

∫
ddx Ja(x)χa(x)

]
. (12)

The bare action, given by S, is the microscopic theory which is known. The source J allows us to take
(functional) derivatives of this object to obtain cumulants (connected Green’s functions). The remaining
term ∆Sk[χ] is known as the deformation, and it is this term which enforces the cutoff. It is written as a
bilinear in χ,

∆Sk[χ] =
1
2

∑

ab

∫
ddx ddy [Rk]ab(x, y)χa(x)χb(y). (13)

For compactness, we will often resort to a condensed notation and express integrals instead as
contraction over suppressed continuous indices. For example, the deformation may be re-written

∆Sk[χ] =
1
2
χ†Rkχ. (14)

The kernel (matrix) R is known as the regulator, and it controls the ‘shape’ of the cutoff. Almost always,
it is chosen to be diagonal in Fourier basis so that the cutoff k has the interpretation of a wavenumber or
momentum. The resulting Fourier-transformed regulator Rk(q) has some freedom in its definition, but it
must satisfy the following properties [31]:
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Wk[J] = log
∫

Dχ exp

[
−S[χ] −∆Sk[χ] +

∑

a

∫
ddx Ja(x)χa(x)

]
. (12)

The bare action, given by S, is the microscopic theory which is known. The source J allows us to take
(functional) derivatives of this object to obtain cumulants (connected Green’s functions). The remaining
term ∆Sk[χ] is known as the deformation, and it is this term which enforces the cutoff. It is written as a
bilinear in χ,

∆Sk[χ] =
1
2

∑

ab

∫
ddx ddy [Rk]ab(x, y)χa(x)χb(y). (13)

For compactness, we will often resort to a condensed notation and express integrals instead as
contraction over suppressed continuous indices. For example, the deformation may be re-written

∆Sk[χ] =
1
2
χ†Rkχ. (14)

The kernel (matrix) R is known as the regulator, and it controls the ‘shape’ of the cutoff. Almost always,
it is chosen to be diagonal in Fourier basis so that the cutoff k has the interpretation of a wavenumber or
momentum. The resulting Fourier-transformed regulator Rk(q) has some freedom in its definition, but it
must satisfy the following properties [31]:
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Figure 1. IR regulators compared between Litim and IB schemes. The IB problem depicted here is from the toy model discussed
in section 4.2 for the simple case where the collective modes selected by IB are Fourier and the disorder correlation has no
dispersion (η is constant). Top: eigenvalues of the canonical correlation matrix Σ−1

X ΣX|Y as a function of label q, which may be
interpreted as a wavevector magnitude. Modes with smaller eigenvalue can be thought to carry more information about Y.
Bottom: regulator values as a function of cutoff k and mode label q for the Litim scheme (28) and the IB scheme (black and blue,
respectively).

Finally, we project the degrees of freedom into the canonical correlation basis obtained by diagonalizing
the canonical correlation matrix Σ−1

X ΣX|Y , as discussed in section 2. That is, we take X → VTX which takes
R → V−1RV−T, which makes R diagonal,

[
R(IB)
β

]

ij
=

β − βi

si(βi − 1)
Θ(β − βi)δij. (27)

Here the β i are critical bottleneck values. These values β i are given by (1 − λi)−1, where λi are the
eigenvalues of the canonical correlation matrix. Intuitively, one can think of each eigenvalue λi as
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Is it okay to take (27) seriously as an IR regulator scheme? Let us attempt to compare with the
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As promised, the existence of a family of distributions Pk[χ̃|χ] with a known parameterization (Ak,∆k)
allows us to define an IR regulator scheme, and therefore compute the NPRG flow both above and below
the cutoff. The deformation term ∆Sk ultimately came from the χ2 term present in the coarsening map,
which could be interpreted as a free energy. We also identify immediately that the IR regulator Rk

corresponding to a given choice of coarsening map is given by A†
k∆

−1
k Ak.

We will next use this viewpoint to introduce IB into the discussion. In particular, we will associate the
coarsening map Pk[χ̃|χ] with the IB coarsening map Pβ(x̃|x) and examine some consequences. This
discussion comes with some restrictions. Firstly, one should note that all soft-cutoff NPRG frameworks,
regardless of the structure of the microscopic action, assume a Gaussian coarsening map. With a
non-Gaussian Pk[χ̃|χ], the flow may still be defined, but it will not, in general, satisfy any known exact flow
equations. This is easiest to see in the IR Wetterich formalism, since a non-Gaussian Pk would yield a
∆Sk[χ] which is no longer bilinear in χ, and hence one could not write the flow equation in terms of the
exact effective propagator, as it usually is. Indeed, the more general ∆Sk[χ] could have terms at arbitrarily
high order in χ, and thus require arbitrarily high-order derivatives of Γk in the flow equation. So, while it is
not impossible to seriously consider non-Gaussian Pk[χ̃|χ], it is certainly inadvisable without good reason.

With this in mind, we must also note that IB has an exact solution involving Gaussian Pβ(x̃|x), but only
when the variables X and Y are jointly Gaussian. By analogy, this restricts us to discussing theories where
the bare action S[χ], or perhaps more accurately, the bare Hamiltonian H[χ] contains only linear and
bilinear terms in χ. While everything presented above holds for general S, everything that follows will be
totally Gaussian so that IB optimality can be exactly satisfied. Finally, note that IB may not be well-defined
for infinite-dimensional random variables such as fields, so our scope is further limited to
finite-dimensional multivariate Gaussian distributions of classical variables.

3.2. The Gaussian IB regulator scheme
In the last section, we briefly introduced soft-cutoff NPRG approaches and argued that both UV- and
IR-regulated flows can be defined given a family of Gaussian coarsening maps Pk[χ̃|χ]. Broadly, we aim to
show that IB and RG can be connected by identifying this map with the IB-optimal coarsening map
Pβ(x̃|x). By this we do not mean to say that the family of maps produced by IB are the correct starting
point for NPRG. Instead, we simply note that IB-optimality is a constraint one could impose on the
coarse-graining scheme. Assuming we do so, what characteristics does the IB-RG scheme carry?

By working within the constraints of GIB, we can write down an exact, IB-optimal Gaussian coarsening
map. Then, because the NPRG coarsening scheme is also Gaussian, we can identify the structure in our IB
solution which represents an IR cutoff scheme. To begin, we recall that the role of the regulator is to deform
the microscopic theory through the addition of a mass-like term which ‘freezes out’ the most relevant
modes,

∆Sk[χ] =
1
2
χ†Rkχ. (21)

When the bare variable, x, is finite-dimensional, this is written as

∆Sβ(x) =
1
2

x†Rβx (22)

with Rβ a positive semi-definite matrix. Following the argument in section 3.1, we can identify the
deformation produced by a Gaussian coarsening X̃ = AX + ξ

∆S(x) =
1
2

xT ATΣ−1
ξ Ax. (23)

Now, by imposing IB-optimality (A1) on (A,Σξ), we find that

R(IB)
β = A(β)TΣξ(β)−1A(β)

= V diag(α2
i (β))VT , (24)

with

α2
i (β) =

β(1 − λi) − 1
λisi

Θ

(
β − 1

1 − λi

)
. (25)

After the substitution βi = (1 − λi)−1, we can write

[
R(IB)
β

]

ij
=

∑

u

Viu
β − βu

su(βu − 1)
Θ(β − βu)Vuj. (26)
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(a) limq2/k2→0 Rk(q) > 0

(b) limk2/q2→0 Rk(q) = 0

(c) Rk(q) →∞∀ q as k →∞
These constraints guarantee that the deformation acts as an IR cutoff. The first condition increases the

effective mass of low-momentum modes and suppresses their contribution to the effective free energy. The
second ensures that modes with high momentum (q2 > k2) are left relatively unaffected, and contribute
more fully to Wk. The third condition ensures that the so-called ‘effective action’, defined as

Γk[ϕ] = J†ϕ− Wk[J] −∆Sk[ϕ], (15)

approaches the bare action (or Hamiltonian, as the case may be) in the limit k →∞. Here, the order
parameter ϕ is given by δWk[J]/δJ†. Because of this construction, the second regulator property also
ensures that in the limit k → 0, the deformation ∆Sk disappears, and the effective action Γk becomes the
Legendre transform of W[J]. This functional Γk=0 is known in many-body theory as the 1PI generating
functional, and in statistical mechanics as the Gibbs free energy. In the Wetterich formalism, one is
generally interested in computing the flow of Γk because of these useful boundary conditions.

To see how this approach is related to non-deterministic coarsening, we will connect it to a soft-cutoff
UV-regulated approach, also put forth by Wetterich, which is formally equivalent to the Wilson–Polchinski
framework. We begin with the following expression defining the average action Γav

k [χ̃], taken directly from
the paper [51], with only a slight change in notation

− Γav
k [χ̃] = log

∫
Dχ Pk[χ̃|χ] exp(−S[χ]), (16)

where we refer to this functional Pk[χ̃|χ] as the coarsening map. If we were interested in performing
deterministic coarsening, i.e. one involving a hard cutoff, the coarsening map would be something like a
delta-function δ(χ̃− Φk[χ]) for some functional Φk. However, in all soft-cutoff UV-regulated approaches,
this distribution is Gaussian in χ̃

Pk[χ̃|χ] = exp

[
−1

2
(χ̃− Akχ)†∆−1

k (χ̃− Akχ) − Ck

]
. (17)

In principle, given the coarsening parameters Ak and ∆k for all k, the exact flow equation for Γav
k is

determined. Wetterich gives explicit choices for these parameters, while Wilson and Polchinski
independently give their own (though in slightly different fashion). The term Ck is a normalizing constant
which is essentially unimportant to the remainder of our discussion.

Now we connect the IR and UV approaches to show that they are complementary, and in some sense,
equivalent. In particular, suppose we know Pk[χ̃|χ] for all k. Then, from this single object, one can
construct both the IR-regulated and UV-regulated flows. This should make intuitive sense; the IR-regulated
part tracks the thermodynamics of the already-integrated modes, while the UV-regulated part tracks the
model of the unintegrated modes. This can all be seen clearly by writing out the full sourced partition
function Z[J] and invoking the normalization of the coarsening map:

Z[J] =

∫
Dχ exp

(
−S[χ] + J†χ

)

=

∫
Dχ̃Dχ Pk[χ̃|χ] exp

(
−S[χ] + J†χ

)

∼
∫

Dχ̃ exp

(
−1

2
χ̃†∆−1

k χ̃ + Wk[J + J̃[χ̃]]

)
. (18)

In the final expression, the normalizing constant Ck has been dropped. Readers familiar with the Polchinski
formulation will immediately recognize Wk [̃J[χ̃]] as the effective interaction potential. However, the
argument to this potential is shifted by the source J, which therefore enters nonlinearly, unlike in
Polchinski’s approach. This difference is due to the fact that we define a flow for each initial source
configuration, instead of adding a linear source term to the vacuum flow.

To arrive at (18) above, we had to define the effective field-dependent source J̃ and identify a suitable
deformation term in Pk[χ̃|χ]. By directly substituting (17), one can see that

J̃[χ̃] = A†
k∆

−1
k χ̃, (19)

and

∆Sk[χ] =
1
2
χ†A†

k∆
−1
k Akχ. (20)
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Given the ubiquitous need to find simplifying structure in complex models and data, a synthesis of the ideas
present in IB and RG could yield powerful new analysis methods and theoretical insight.

IB and RG are motivated by different problems—IB is typically thought of as a data analysis tool, while
RG is an analytical tool. Yet both describe coarsening schemes which, as we demonstrate here, can be
exactly identified with each other. What purpose does this connection serve? In RG, not all coarsening
schemes are created equal. For a given notion of emergent structure, such as the patterning of the degrees of
freedom within a particular phase, one needs to properly define the RG procedure to capture that structure.
Frequently, this emergent property is complicated, and one does not know a priori how it arises from the
microscopic degrees of freedom, or indeed how to coarsen them to reveal the appropriate low-dimensional
structure. IB can be thought of as a way of picking an RG scheme in which the notion of relevance is defined
by the practitioner, and collective modes pertinent to that structure are discovered and not guessed at. In a
sense, IB formalizes the problem of picking an RG scheme that preserves relevant collective behavior, while
also generalizing what is meant by relevance.

Probability-theoretic investigations of RG methods are not a recent development [14]. One early paper
by Jona-Lasinio used limit theorems from probability theory to argue the equivalence of older,
field-theoretic RG formalism due to Gell–Mann and Low with the modern view due to Kadanoff and
Wilson [15]. Recent work [13, 16–20] has focused on connections of RG to information theory. Since the
general goal in RG is to remove information about some modes or system states through coarsening, an
effective characterization of RG explains how the information loss due to coarsening generates the RG flow
or relates to existing notions of emergence. Moreover, like the probabilistic viewpoint promoted by
Jona-Lasinio, the information-theoretic viewpoint enjoys a healthy separation from physical context. The
hope is that, by removing assumptions about the particular organization or interpretation of the degrees of
freedom in the system, RG methods can be generalized and made applicable to problems outside of a
traditional physics setting [5, 21]. This viewpoint also has the potential to enrich traditional RG
applications, as Koch-Janusz et al point out [12]. Their neural-network implementation of an IB-like
coarsening scheme was able to ‘discover’ the relevant, large-scale modes of the dimer model, whose
thermodynamics are completely entropic, and whose collective modes do not resemble the initial degrees of
freedom. More recently, Gordon et al built upon this scheme to formally connect notions of ‘relevance’
between IB and RG [13].

In contrast to most RG formulations which require an explicit notion of how the modes of the system
should be ordered, the IB approach defines the relevance of a feature by the information it carries about a
specified relevance variable. To be concrete, let X be a random variable, called the ‘input’, which we wish to
coarsen. Then, let Y be another random variable, called the ‘relevance variable’, which has some statistical
interaction with the input X. IB defines a non-deterministically coarsened version of X, X̃, which is optimal
in the sense that the mutual information (MI) between X̃ and Y is maximized. Because X̃ is defined as a
non-deterministic coarsening of X, an exact correspondence between RG and IB demands that the RG
scheme uses what is known as a ‘soft’ cutoff. This means, for example, that the ubiquitous perturbative
momentum shell approach put forth by Wilson cannot be mapped exactly onto IB under the interpretation
of X̃ as some coarse-grained variable. The trade-off between degree of coarsening, indicated by I(X̃; X) and
the amount of relevant information retained I(X̃; Y) is controlled by a continuous variable, denoted β.
Formally, the non-deterministic map which yields X̃ from X is found by optimizing the IB objective
function,

Pβ(x̃|x) = argminP(̃x|x) I(X; X̃) − βI(X̃; Y). (1)

For large values of β, the compressed representation x̃ is more detailed and retains a greater deal of
predictive information about Y. Conversely, for smaller β, relatively few features are kept, in favor of
reducing I(X̃; X) (increasing compression/coarsening). The formalism investigated here is the one originally
laid out in 2000 by Tisbhy et al [1], but since then a number of thematically similar IB schemes have been
proposed [22–24]. IB methods have been employed extensively in computer science, specifically toward
artificial neural networks and machine learning [6–11]. In theoretical neuroscience, Palmer et al have
demonstrated using IB that the retina optimally encodes the future state of some time-correlated stimuli,
suggesting that prediction is a biological function instantiated early on in the visual stream [4, 25, 26]. IB
has also been applied in studies of other complex systems, for instance to efficiently discover important
reaction coordinates in large MD simulations [27], and to rigorously demonstrate hierarchical structure in
the behavior of Drosophila over long timescales [28].

From a broad perspective, there are some basic similarities between RG and IB. Both frameworks entail
a coarsening procedure by which the irrelevant aspects of a system description are discarded in order to
generate a lower-dimensional, ‘effective’ picture. Further, the Lagrange multiplier β in IB, which
parameterizes the level of detail retained, can be seen as roughly analogous to the scale cutoff present in
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One	can	change	the	scaling	properties	and	collective	
mode	ordering	by	changing	how	third	and	fourth-order	
vertices	relate	to	the	second-order	vertex.	



Summary:	
• brains	“see”	different	things		
• working	on	an	RG	framework	
• compute	your	regulator!
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