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It can be fruitful to establish connections between the FRG and other

non-perturbative approaches (DS equations, NPI effective actions, .. .)
[Dupuis (2005, 2014); Blaizot, Pawlowski, UR (2011, 2021);
Carrington et al (2015, 2018, 2019); Katanin (2019); Alexander et al (2019)]

This can help:
— unveiling new truncation schemes;

— clarifying the question of renormalization.

In this talk, we use the FRG to shed light on how renormalization
works within the two-particle-irreducible (2PI) framework.
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OUTLINE

1. 2PI Framework

2. 1PI Flows

3. Flow Reformulation of the 2PI Framework
4. 2PI Renormalization using Flows

For definiteness, we consider a scalar theory:

Slel = / d*x { 8s0)2+— +%¢4}
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1. 2PI Framework



2PI EFFECTIVE ACTION

The 1PT effective action is a functional '[¢] that gives access to the
one-point function ¢ = (¢) from a variational principle:

5F[¢z§]
0 =
6¢ ¢——d_>

Similarly, the 2P1 effective action is a functional ['[G] that gives access
to the two-point function G(x,y) = (@(x)e(y))c:

~er[q]
0= 5600y

G=G
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2PI EFFECTIVE ACTION

It admits the following loop expansion:

1 _ 1
10022 o o8PV 5 f, (P i) Slo) v ole )

with ®[G, \p] the sum of two-particle-irreducible (2PI) diagrams:

®[G, Ay] = MO [G] + A20I[G] + -+ + Ao O[G] + -

o, oW =

oG] = ), oP)[g]
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2PI EFFECTIVE ACTION

It admits the following loop expansion:

reGl = 2 log G™(p) + (P* + my) G(p) + ©[G. Ay

p<Auv 2 p<Auv

with ®[G, \p] the sum of two-particle-irreducible (2PI) diagrams:

O[G, ] = WO [G]+ RO[G] + - + AT OO [G] + -
oB[6] = ), eB6) = <, 06 = o, .

In practice, one retains in ®[G] the diagrams up to a certain loop order:

DG, \p] = 1[G, M) = M@ [G] + A20F)[G] 4 - - + AT To(D[G)
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GAP EQUATION

The variational principle then gives G(p) as the solution to
an implicit “gap equation”:

G (p) = PP+ mi+

5G(p)

NN @ F oy
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GAP EQUATION

The variational principle then gives G(p) as the solution to
an implicit “gap equation”:

260[G]
) Iz

G Hp) = PP+ mi +

6G(p) Iz
= p*+m + &y i +-~

This diagrammatic formulation comes inevitably with
the problem of UV divergences.
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UV DIVERGENCES

o[6l=C X ) = Gl=p+m+ Q

Iterations:




UV DIVERGENCES

oel= (X ) = ei=pems

Iterations:




UV DIVERGENCES

o= (X = sr=pengr

1 —
r® = 716] - 5 / I[G] G*(r)T™  [Bethe-Salpeter]

7[G] = 46;2£G] = x [Kernel]




UV DIVERGENCES

ol6l= X O+ = G—1:p2+mg+Q+ s

Tterations:

Q r®(p,q) =Z(p.q) = % [ Z(p.r)G(r)FN(r,q)
%
T(p.q) = seiplehs = x + xCOx




UV DIVERGENCES
olel= (X D+ 5+ o
oo O e

2(p.0) = séiiély = X+ XOx+ XOCx+ <)




UV DIVERGENCES
o6l = (X D+ C o+ o
e (Do 0 oy

4520[G]

I(p.q):W:X"‘ O+OQ+ C

— New divergences that have to do with a loop-expanded
four-point function F(L4) rather than with the BS equation.

— Asymmetrical treatment of the bare vertices.
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2. 1PI Flows



PROPERTIES OF 1PI FLOWS

Infinite hierarchy of equations for the vertex functions:

1
0T (p) === [ 0.R.(q) GX(q)TW(q, p)
2 Jg<huy

Two crucial properties:
— no reference to the parameters of the model;
— the flow is UV finite (thanks to OxRx).

= access to the renormalized vertex functions from the start!
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In what follows we investigate the possibility to reformulate
the 2PI framework in terms of flow equations.

Our two guidelines will be:

— removing any reference to the parameters of the model.

— making the flow UV finite thanks to d; R, or power counting.

This will provide a renormalized 2P1I framework from the start.

This should also clarify the need for various approximations
to the four-point function.
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3. Flow Reformulation of the 2PI Framework



DEFORMED 2PI EFFECTIVE ACTION

As usual S+ [, ¢(—q)R.(q)¢(q). The modified 2P effective action is:

(6= [ a6 p)+ 5 [ (4 mi+ R(@) Glo) + 0IC]

<Auv <Auv

The corresponding gap equation reads

256[G]
5G(p) lg,

G H(p) — Ru(p) = p* + mi +

It still refers to m%.
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DEFORMED 2PI EFFECTIVE ACTION

As usual S+ [, ¢(—q)R.(q)¢(q). The modified 2P effective action is:

(6= [ a6 p)+ 5 [ (4 mi+ R(@) Glo) + 0IC]

<Auv <Auv

The corresponding gap equation reads

_ 200[G]
F£_2) p) =Gl (p) — Ri(p) = p> + m? +
() = G (p) = Rulp) T e e
It still refers to m%.
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DEFORMED 2PI EFFECTIVE ACTION

As usual S+ [, ¢(—q)R.:(q)¢(q). The modified 2P effective action is:

(6= [ loeGp)+ 5 [ (4 mi+ R(@) Gp) + 01C]

The corresponding gap equation reads
209[G
0.7 p) = O]+ 0, )
G

r)

To remove the reference to mg, we promote to a flowing quantity.
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FLOW OF THE TWO-POINT FUNCTION

With the help of the chain rule, this becomes:

1 4520[G]
2 Jg<hw 0G(P)6G(q)

| ——
Z[Gkl(p,q) = Zx(p,q)

3,{r,(€2)(p) = 9xGr(q)

Gr

1

-2 /q< Ze(p.q) G2(q) (0:T'P)(p) +0xRu(q))

v

This equation is not finite however:

EARER
sllalo[—=4] o
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FLOW OF THE TWO-POINT FUNCTION

2
We solve formally for 6,J,(.€ )Z [Blaizot, Pawlowski, UR, 2011]

1
oFP(p) = " r(p, q) G2(q) 9xRx(q)
q uv

with (Bethe-Salpeter equation)

1
r*(p,q) = Zu(p, q) — 5/ Zo(p,r) GA(r)TW(r, q)

v
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FLOW OF THE TWO-POINT FUNCTION

2
We solve formally for 6,J,(.€ )Z [Blaizot, Pawlowski, UR, 2011]

1
oFP(p) = " r(p, q) G2(q) 9. R.(q)
q uv

with (Bethe-Salpeter equation)
r®(p,q) = Zu(p, 2/ «(p,r) G TO(r, q)

The flow equation is now finite thanks to 0, R,.
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FLOW OF THE TWO-POINT FUNCTION

2
We solve formally for 6,J,(.€ )Z [Blaizot, Pawlowski, UR, 2011]

r@(p) = - r(p. q) G2(q) 0. R«(q)
2 Jq

<Auv

with (Bethe-Salpeter equation)
r®(p. q) = Zu(p, 2/ w(p, ) GH(N)TE(r, q)

The flow equation is now finite thanks to 0, R,.

As anticipated, the BS relation between rﬁ‘” and 7, plays a key role.

U. Reinosa
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FLOW OF THE TWO-POINT FUNCTION

We solve formally for &ir,(f): [Blaizot, Pawlowski, UR, 2011]
1
oFP(p) = r'*)(p,q) G2(q) 0xRu(q)
q<Auv
with (Bethe-Salpeter equation)

1
r(p,q) = Z.(p. q) — 5 T(p.r) GA(r) T (r, q)

r<Auv

The flow equation is now finite thanks to 0, R,.

As anticipated, the BS relation between rﬁ‘” and 7, plays a key role.

However, F,(f) is still given in terms of UV regulated diagrams

contained in Z[G] oc 62®[G, \p] /0 G? which depends on \y,.
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FLOW OF THE FOUR-POINT FUNCTION

Once more, we promote I',(.f) to a flowing quantity:

1
3T (q, p) = 9:ZL(q,p) — ) r®(q,r) GX(r) 0xZu(r, p)
r uv
1
~3 r®(q,r)0.G2(r) Zu(r, p)
r<Auv

-5 [ 0. G Trp)
2 r</\uv

This equation is not finite however:

7| 62| 1|07 | 0.62 | 9.1

K

slalol=a] 0| =21 =6 0
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FLOW OF THE FOUR-POINT FUNCTION

Once more, we promote I',(.f) to a flowing quantity:

L[ r®(q.r) 62 0.Zu(r. p)

anrg)(q,l)) = a/iIn(Chp) - 5 <A
r uv

§=410-4-2=—2
Y (g, 0.6 Zu(r )
2 r<Auv

§=4+0—6+0=—2
-5 [ 0. G Trp)

<Auv

5=4+0-440=0

This equation is not finite however:

7| 62| 1|07 | 0.62 | 9.1
salo| =40 2] =6 0
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FLOW OF THE FOUR-POINT FUNCTION

We solve formally for 6,J,({4):
[Blaizot, Pawlowski, UR, (2021)]

0:TM(p, q) = 9:Tu(p, q)
o [ M. 0.6 T a)

<U.V
2 [ ATe ) G g)
r<Auv
o L CH L GLE A
2 Jrena

+ Z// r$€4)(pa r) Gﬁ(r)BNIﬁ(r,s) G,E(S) rg)(s, q)
r,s<Auv
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FLOW OF THE FOUR-POINT FUNCTION

We solve formally for 6,J,({4):
[Blaizot, Pawlowski, UR, (2021)]

G2 ¥ o.z. ] 0.6
4l 0| 21 =6

N )

0:T(p, q) = 9:T.(p, q) g
B / (e, 1) 0.6 T (rq) vo=410 610= 2

<U.V

o[ AT ) GTIra) o2 a0

r<Auv

— / T8 (p,r) G3(r) OxZe(r,q) +6=4+0-4-2- 2

<uv

b e G011, 9) 69 T (s, )
r,s</Auv
S 0=44+440-4-2—-4+4+0=-2

This equation is now finite by power counting.
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FLOW OF THE FOUR-POINT FUNCTION

We solve formally for 6,J,({4):
[Blaizot, Pawlowski, UR, (2021)]

G2 ¥ o.z. ] 0.6
aﬁr,(;‘)(p,q):az .q) 5 —4] 0 | 2] -6

- / I'(4)(P7 8G2()I'()( q) >5=4+0-6+0=—

<U.V

N )

- / OxTu(p,r) GH(r)TM(r,q) »o=4-2-410=-

r<Auv

- / F®(p, r) G2(r) OuT(r,q) =6 —4+0-4-2— 2

<uv

b ) i) 0.1 (19) 69 T(s. )
r,s</Auv
S 0=44440-4-2—-440=—

This equation is now finite by power counting.

However, 0, Z, still given in terms of diagrams and thus in terms of Ay,.
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FLOW OF THE KERNEL

- §Z[G](q, p)
851-5((]’ P) - /r</\uva‘iGH(r) T(r) G=G,

From here, two different strategies are possible:

— descending equations for derivatives of the kernel [Carrington et all

— four-skeleton expansion of the flow of the kernel [This work]
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DESCENDING EQUATIONS

[Carrington et al]

6Z(q, p)
" (5G(I’1)

5°Z(q, p)

= 6IQG/€(r2)

G=G rn<Auy 5G(r2)5G(r1) G=G,




DESCENDING EQUATIONS

[Carrington et al]

5*Z(q, p)
" (5G(rk) te 5G(r1)

§*17(q, p)
<Ay 06(rt1)---0G(n)|o_¢

= / a/cGn(rk—i-l)
ri

G=Gx




DESCENDING EQUATIONS

[Carrington et al]

3*Z(q, p)
" (5G(rk) ce 5G(r1)

§*17(q, p)
= 0, G (r -
G=G, /fk+1</\uf w(rier1) 6G(rit1) -+ 6G(n) G=G,

If ®[G] contains a finite number of loops, so does Z[G] and
then the procedure stops eventually.

e T i [



DESCENDING EQUATIONS

[Carrington et al]

§*1Z(q, p)

= 0, G (1
G=G, /rk+1</\uv ( k+1) (5G(rk+1)"'5G(l’1) G=G,

5. 9(a.p)
*5G(re)---06G(n)

If ®[G] contains a finite number of loops, so does Z[G] and
then the procedure stops eventually.

Problem: §¥Z[G]/§G* are not simple to initialize since not 1P1.

SR
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FOUR-SKELETON EXPANSION

[This work]

&Jn(q,p):/ 9, G.(r) 2HLCNa.P)

r<Auy 5G(r) G=G,




FOUR-SKELETON EXPANSION

[This work]

0Tu(a,p) = Y /KA 04 Gu(r) D[Ge: A)(9. . 7)

diagrams D uv




FOUR-SKELETON EXPANSION

[This work]

OIu(a.p)= 3 / 0 Go(r) D[Gr; M)(q Py 1)

diagrams D <Auy

4-gkeletons are defined as diagrams with no 4-point subgraphs.

q 261 ¢
P P

4-skeleton
no 4-skeleton no 4-skeleton 4-skeleton
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FOUR-SKELETON EXPANSION

[This work]

q,p) 3 / 0 Go(r) S[Ge: T)(q, p, 1)

—skeletons S <Auv

4-gkeletons are defined as diagrams with no 4-point subgraphs.

q %Gulr) ¢
P

4-skeleton

oo = =T

no 4-skeleton no 4-skeleton 4-skeleton

e T i [



FOUR-SKELETON EXPANSION

[This work]

EAUDEIDS [ 0.6 56T N(a.p.7)

—skeletons S <Auv

4-gkeletons are defined as diagrams with no 4-point subgraphs.

q D:.Grlr) q .
><>< 4-skeletons have no subdivergences
» »

and are then completely finite.
4-skeleton

oo =) =Q

no 4-skeleton no 4-skeleton 4-skeleton
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FOUR-SKELETON EXPANSION
[This work]

0La.p) = 3 | 0616 (a.p.7)

—skeletons S <Auv

4-gkeletons are defined as diagrams with no 4-point subgraphs.

q D:.Grlr) q .
><>< 4-skeletons have no subdivergences
» »

and are then completely finite.
4-skeleton

oo =) =Q

no 4-skeleton no 4-skeleton 4-skeleton

We thus arrive at a flow equation for the kernel which is finite
and makes no reference to the bare parameters.

e T i [



2PI FLOW

Reformulation of the exact 2PI effective action in terms of finite flow
equations that make no reference to the parameters:

1
oTP(p) = =35 A r*)(p,q) G2(q) 9xRx(q)
q uv

1
0.7 p.q) = 0L(p. @)~ 5 [ T(p.) .G TE(r.q) +

r<Auv

me:zLA () S[G: TN, p. 1)

e T i [



LOOP TRUNCATED 2PI FLOW

Reformulation of the L-loop truncated 2PI effective action in terms of
finite flow equations that make no reference to the parameters:

1
0@ (p) = -1 r'(p, q) G2(q) 0xRx(q)

2 Jg<huv

1
8fir(n4)(p7 q) = 8NII€(p7 q)_ 5/ r(,j)(P, r)aﬁGg(r) r/(£4)(r7 q)+

r<Auv

Z/< () S[G: T L < L—3}](r,q, p)‘
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LOOP TRUNCATED 2PI FLOW

Reformulation of the L-loop truncated 2PI effective action in terms of
finite flow equations that make no reference to the parameters:

1
0@ (p) = -1 r'(p, q) G2(q) 0xRx(q)

2 Jg<huv

1
8fir(n4)(p7 q) = 8NII€(p7 q)_ 5/ r(,j)(P, r)aﬁGg(r) r/(£4)(r7 q)+

r<Auv

Z/< () S[G: T L < L—3}](r,q, p)‘

8 (py) Z/ 0:Go() SIGai T 51" < L' = 1H(r, 1)

e T T [



4. 2PI Renormalization using Flows



RENORMALIZED 2P1 FRAMEWORK

Auv > N> Npphys: momenta are either large or have a large mass A.

= Loop diagrams are expandable w.r.t. the external momenta:

r2(p) = ma + Znp?, T = Assa, r(f/)\ — ALA

Moreover, since k < A < Ayy, the cut-off Ay, plays no role in the flow:

1
(e = 2+ [ L[5 [ 0Ra) G@Tap)
q<Mav

= 2PI renormalized framework from the start!
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BACK TO THE DIAGRAMS

N> Nyy > Nphys: loop momenta are all very massive.

= Loop diagrams are completely suppressed as A — oco:

r(p) = zmd + 2p%, W = Z2\oms, TEA = 22

Note that A,y cannot be removed in the range Ay, < k:

0
") =zt 4 20+ [ di |5 [ 2Ru(a) @) TO(a.p)

= Fancy rewriting of the diagrammatic 2PI framework. Useful?
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MAPPING OUT DIVERGENCES

The flow separates the overall divergences from the subdivergences of a
given vertex function and dictates how the later appear as overall
divergences of other vertex functions:

0
() =20+ Zmi + | de FAT,TO](p)
A>NAyy

uv

0
r(p,q)=Z2xps+ [ dx FOD 1O 0, L r(p,q)

" /\>>/\uV Nuv
4 4 4 4
) (p) = Zxow + A»/im FOO T e,

= complete map of UV divergences in the 2PI framework!
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RENORMALIZED 2PI EFFECTIVE ACTION

With these intial conditions at A > Ay, the flow integrates into

1 1
5 / log G *(p) + 5 (Zp?+Zm2) G(p) + Z*\, ss®P)[G]
2 p<Auy 2 p<Auv

+ (Zz)‘b,L)2¢(3)[G]+' . "F(sz\b’L)Lflq)(L)[G]‘L

instead of the original

%/p IogGl(p)Jr%/p (p*+m;) G(p)

<Auv <Auv
+ 0 [6] + A203[G]+- - -+ AL Lo D[G)

= All order renormalized expression for the 2PI effective action!

e T [ o



CONCLUSIONS

— We have reformulated the 2PI framework in terms of finite flow
equations that do not make reference to the parameters.

— This opens the way to new 2PI/FRG approximations schemes.

— In the case of the standard 2PI loop expansion, it provides:

— a renormalized 2PI framework from the start;
— a map of the UV divergences among the various vertex functions;
— a renormalized expression for the 2PI effective action.

— Strategy applicable to other non-perturbative approaches.

e T T [



THANK YOU!



