Operator Product Expansion

S. Hollands
\section*{UNIVERSITÅT LEIPZIG}
based on joint work with M. Fröb, J. Holland and Ch. Kopper

July 27, 2022

European Research Council
Established by the European Commission

QFT is hard

"In those years a theoretical physicist of modest talent could harvest results of great interest, today persons of great talent produce results of modest interest" [F. Hund]

The operator product expansion (OPE) expresses a decoupling of UV and IR dynamics in quantum/statistical field theory (QFT)

OPE history

- 60s: OPE introduced by Wilson, later arguments by Zimmermann
- 70s: conformal bootstrap ideas [Polyakov, Mack, Gatto e tal., Schroer et al., ...].
- 80s: CFTs in $d=2$ [Beavin et al.,..].
- 90s: vertex operator algebras [Borcherds, Frenkel, Kac, ...] \Rightarrow mathematics
- 00s-: numerical bootstrap in $d>2$ [Dolan, Osborne, Penedones, Poland, Rychkov, Simmons-Duffin, ...]
- IOs-: lattice QFT [Monahan,...]

Us: FLOW EQUATIONS, MATHEMATICAL BOUNDS [sh, Fröb, Holland, Kopper. ...]

Formulating QFT via operator product expansion

A "generally covariant" formulation of QFT requires OPE [Hollands-Wald 2012]. $\mathrm{QFT}=$

Formulating QFT via operator product expansion

A "generally covariant" formulation of QFT requires OPE [Hollands-Wald 2012]. QFT =

- A list of quantum fields $\left\{\mathcal{O}_{A}\right\}$

Formulating QFT via operator product expansion

A "generally covariant" formulation of QFT requires OPE [Hollands-Wald 2012].
QFT =

- A list of quantum fields $\left\{\mathcal{O}_{A}\right\}$
- A collection of states $\Psi=$ expectation value functional characterized by N-point "functions" $\left\langle\mathcal{O}_{A_{1}}\left(x_{1}\right) \ldots \mathcal{O}_{A_{N}}\left(x_{N}\right)\right\rangle_{\Psi}$ with suitable properties

Formulating QFT via operator product expansion

A "generally covariant" formulation of QFT requires OPE [Hollands-Wald 2012].
QFT =

- A list of quantum fields $\left\{\mathcal{O}_{A}\right\}$
- A collection of states $\Psi=$ expectation value functional characterized by N-point "functions" $\left\langle\mathcal{O}_{A_{1}}\left(x_{1}\right) \ldots \mathcal{O}_{A_{N}}\left(x_{N}\right)\right\rangle_{\Psi}$ with suitable properties

Formulating QFT via operator product expansion

A "generally covariant" formulation of QFT requires OPE [Hollands-Wald 2012].
QFT $=$

- A list of quantum fields $\left\{\mathcal{O}_{A}\right\}$
- A collection of states $\Psi=$ expectation value functional characterized by N-point "functions" $\left\langle\mathcal{O}_{A_{1}}\left(x_{1}\right) \ldots \mathcal{O}_{A_{N}}\left(x_{N}\right)\right\rangle_{\Psi}$ with suitable properties
- OPE:

$$
\left\langle\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)\right\rangle_{\Psi}=\sum_{B} \underbrace{\mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right)}_{\text {OPE coefficients }}\left\langle\mathcal{O}_{B}\left(x_{N}\right)\right\rangle_{\Psi}
$$

Formulating QFT via operator product expansion

A "generally covariant" formulation of QFT requires OPE [Hollands-Wald 2012].
QFT =

- A list of quantum fields $\left\{\mathcal{O}_{A}\right\}$
- A collection of states $\Psi=$ expectation value functional characterized by N-point "functions" $\left\langle\mathcal{O}_{A_{1}}\left(x_{1}\right) \ldots \mathcal{O}_{A_{N}}\left(x_{N}\right)\right\rangle_{\Psi}$ with suitable properties
- OPE:

$$
\left\langle\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)\right\rangle_{\Psi}=\sum_{B} \underbrace{\mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right)}_{\text {OPE coefficients }}\left\langle\mathcal{O}_{B}\left(x_{N}\right)\right\rangle_{\Psi}
$$

- OPE coefficients are independent of Ψ and generally covariant.

Formulating QFT via operator product expansion

A "generally covariant" formulation of QFT requires OPE [Hollands-Wald 2012].
QFT =

- A list of quantum fields $\left\{\mathcal{O}_{A}\right\}$
- A collection of states $\Psi=$ expectation value functional characterized by N-point "functions" $\left\langle\mathcal{O}_{A_{1}}\left(x_{1}\right) \ldots \mathcal{O}_{A_{N}}\left(x_{N}\right)\right\rangle_{\Psi}$ with suitable properties
- OPE:

$$
\left\langle\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)\right\rangle_{\Psi}=\sum_{B} \underbrace{\mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right)}_{\text {OPE coefficients }}\left\langle\mathcal{O}_{B}\left(x_{N}\right)\right\rangle_{\Psi}
$$

- OPE coefficients are independent of Ψ and generally covariant.
- OPE satisfies associativity law.

When is OPE a good approximation?

If $\max \left|x_{i}-x_{j}\right| \lesssim$ scale of state $|\Psi\rangle$

- Thermal state at temperature β^{-1} : scale $=\beta$
- Bunch-Davies state in deSitter: scale $=$ Hubble radius
- Unruh state on black hole spacetime: scale = Schwarzschild radius
- Particle state e.g. proton $|p\rangle$: scale $=|p|$

Conformal field theory CFT

- operators form multiplets transforming under conformal group.
- each multiplet contains one primary field \mathcal{O}_{A}.
- OPE:
$\mathcal{O}_{A}\left(x_{1}\right) \mathcal{O}_{B}\left(x_{2}\right)=\sum_{\text {primary } C} \frac{\lambda_{A B}^{C}}{\left|x_{1}-x_{2}\right|^{\Delta_{A}+\Delta_{B}-\Delta_{C}}} \mathcal{P}\left(x_{1}-x_{2}, \partial\right) \mathcal{O}_{C}\left(x_{2}\right)$
where $\mathcal{P}=\mathcal{P}_{A B}^{C}$ is kinematical.

CFT

In CFTs, the OPE is determined by representation theory of conformal group ("kinematical") +

CFT data

- structure constants $\lambda_{A B}^{C}$
- dimensions Δ_{A}.

Associativity + positivity put very stringent conditions on these data.

\Rightarrow conformal bootstrap

This talk

I. Do the expected properties of OPE hold?
2. What is the error term in the OPE?
3. How to get OPE coefficients?

Action principle

To write down the action principle, use graphical notation. I draw an OPE coefficient

$$
\mathcal{C}_{A_{1} \ldots A_{n}}^{B}\left(x_{1}, \ldots, x_{n}\right)
$$

as

I draw a concatenation of OPE coefficients

$$
\mathcal{C}_{A_{1} C}^{B}\left(x_{1}, x_{n}\right) \mathcal{C}_{A_{2} \ldots A_{n}}^{C}\left(x_{2}, \ldots, x_{n}\right)
$$

as

Attention: None of these diagrams is a "Feynman graph"!

Action principle

I also write

where

- \mathcal{O} denotes the "deformation"
- $\int d^{4} y=$ integral over $\left\{\left|y-x_{n}\right|<L\right\}$.
- $L=$ length scale that is part of the definition of the theory.

Action principle

There is a kind of "action principle" for OPE coefficients if we "deform" $S \rightarrow S+g \int \mathcal{O}:$

Figure: Left side: $\partial_{g} \mathcal{C}_{A_{1} \ldots A_{n}}^{B}\left(x_{1}, \ldots, x_{n}\right)$

Figure: Right side: concatenations of OPE coefficients, e.g. the rightmost tree $\sum_{C} \mathcal{C}_{A_{1} \ldots A_{n}}^{C}\left(x_{1}, \ldots, x_{n}\right) \mathcal{C}_{\mathcal{O} C}^{B}\left(y, x_{n}\right)$

Action principle

Theorem

Under $S \rightarrow S+g \int \mathcal{O}$:

$$
\begin{aligned}
\partial_{g} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right)=- & \int_{\left|y-x_{N}\right|<L} \mathrm{~d}^{4} y\left[\mathcal{C}_{\mathcal{O A}_{1} \ldots A_{N}}^{B}\left(y, x_{1}, \ldots, x_{N}\right)\right. \\
& -\sum_{i=1}^{N} \sum_{[C] \leq\left[A_{i}\right]} \mathcal{C}_{O A_{i}}^{C}\left(y, x_{i}\right) \mathcal{C}_{A_{1} \ldots \widehat{A_{i}} C \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \\
& \left.-\sum_{[C]<[B]} \mathcal{C}_{A_{1} \ldots A_{N}}^{C}\left(x_{1}, \ldots, x_{N}\right) \mathcal{C}_{\mathcal{O}}^{B}\left(y, x_{N}\right)\right]
\end{aligned}
$$

- Can compute OPE coefficients to any perturbation order by iteration.
- State independence obvious.
- $L \rightarrow L^{\prime}$ equivalent to

$$
\begin{equation*}
\mathcal{O}_{A} \rightarrow \sum Z_{A}^{B}(g, \tau) \cdot \mathcal{O}_{B} \tag{0.I}
\end{equation*}
$$

and $g \rightarrow g^{\prime}=g(g, \tau) . \Rightarrow$ RG equations! ($\tau=\log L / L^{\prime}=\mathrm{RG}$ "time").

Proofs:

- The proof of this theorem as well as most other results in this talk uses a variant of the Wilson-Wegner-Polchinski-Wetterich RG flow equations. However, I will mostly only indicate the final results/bounds after removal of cutoffs, which no longer refer to this equation.
- Proof is perturbative but equation should hold non-perturbatively.
- Proofs exist for ϕ^{4}, QCD
- For gauge theories suitable modifications involving BRST have to be taken into account.
- All statements refer to Euclidean signature and flat metric but some can be generalized to curved space.

- For flows of CFTs, my action principle gives a closed system of ODEs for CFT data $\lambda=\left\{\lambda_{A B}^{C}(g)\right\}$ and $\Delta=\left\{\Delta_{A}(g)\right\}$.
- Dynamical system for CFT data:

$$
\begin{aligned}
\frac{d}{d g} \lambda & =f(\Delta) \lambda \lambda \\
\frac{d}{d g} \Delta & =g(\Delta) \lambda
\end{aligned}
$$

where f, g are explicit kinematical functions that only depend on $6 j$-symbols of the conformal group

- We need initial condition.

Outline

I OPE factorisation

Associativity [sh. Holind 2006]

Theorem

In ϕ^{4}-theory, any arbitrary but fixed loop order:

$$
\mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right)=\sum_{C} \mathcal{C}_{A_{1} \ldots A_{M}}^{C}\left(x_{1}, \ldots, x_{M}\right) \mathcal{C}_{C A_{M+1} \ldots A_{N}}^{B}\left(x_{M}, \ldots, x_{N}\right)
$$

holds on the domain $\xi \equiv \frac{\max _{1 \leq i \leq M}\left|x_{i}-x_{M}\right|}{M<j \leq N}\left|\min _{j}-x_{M}\right|$. (Sum over C abs. convergent!)

Associativity [sh. Holind 2006]

Theorem

In ϕ^{4}-theory, any arbitrary but fixed loop order:
$\mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right)=\sum_{C} \mathcal{C}_{A_{1} \ldots A_{M}}^{C}\left(x_{1}, \ldots, x_{M}\right) \mathcal{C}_{C A_{M+1} \ldots A_{N}}^{B}\left(x_{M}, \ldots, x_{N}\right)$
holds on the domain $\xi \equiv \frac{\max _{1 \leq i \leq M}\left|x_{i}-x_{M}\right|}{M<j \leq N}\left|\min _{j}-x_{M}\right|$. (Sum over C abs. convergent!)

For $N=3: \xi=\frac{\left|x_{1}-x_{2}\right|}{\left|x_{2}-x_{3}\right|}<1$

for $\xi \approx 1$

Associativity ssy nolime 2006

Theorem

In ϕ^{4}-theory, any arbitrary but fixed loop order:
$\mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right)=\sum_{C} \mathcal{C}_{A_{1} \ldots A_{M}}^{C}\left(x_{1}, \ldots, x_{M}\right) \mathcal{C}_{C A_{M+1} \ldots A_{N}}^{B}\left(x_{M}, \ldots, x_{N}\right)$
holds on the domain $\xi \equiv \frac{\max _{1 \leq i \leq M}\left|x_{i}-x_{M}\right|}{\min _{M<j \leq N}\left|x_{j}-x_{M}\right|}<1$. (Sum over C abs. convergent !)

For $N=3: \xi=\frac{\left|x_{1}-x_{2}\right|}{\left|x_{2}-x_{3}\right|}<1$

$$
\text { for } \xi \approx 1
$$

This shows associativity really holds!

- Bound on remainder
- Justification of "action principle"

Quantitative bound

Theorem

Up to any perturbation order $r \in \mathbb{N}$ the bound
\mid Remainder in associativity \mid

$$
\leq \frac{K_{r} \xi^{D+1} \max _{N \leq v<N}\left|x_{i}-x_{n}\right|^{[B]}}{\prod_{v=1}^{M} \min _{1 \leq w \leq M, w \neq v}\left|x_{v}-x_{w}\right|^{\left[A_{v}\right]+\delta} \prod_{i=M+1}^{N} \min _{M<j \leq N, i \neq j}\left|x_{i}-x_{j}\right|^{\left[A_{i}\right]+\delta}}
$$

holds for some $\delta>0$ and where

$$
\xi:=\frac{\max _{1 \leq i \leq M}\left|x_{i}-x_{M}\right|}{\min _{M<j \leq N}\left|x_{j}-x_{M}\right|}
$$

and where K_{r} is a constant which does not depend on D. (Here $[A]=\operatorname{dim}$. of $o p$. in free theory).

Bound on OPE remainder $I_{\text {sur kowere } 205 \text { s-1 }}$

Theorem

At any perturbation order r and for any $D \in \mathbb{N}$,
OPE-Remainder
$\overbrace{|\left(\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)-\sum_{\operatorname{dim}[B] \leq D} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \mathcal{O}_{B}\left(x_{N}\right)\right) \underbrace{\left.\hat{\varphi}\left(p_{1}\right) \cdots \hat{\varphi}\left(p_{n}\right)\right\rangle}_{\text {Spectator fields }}\rangle \mid}^{\mid}$

Bound on OPE remainder $I_{\text {sur kowere } 205 \text { s-1 }}$

Theorem

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a $K>0$ such that

OPE-Remainder

$$
\begin{gathered}
\overbrace{|\left(\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)-\sum_{\operatorname{dim}[B] \leq D} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \mathcal{O}_{B}\left(x_{N}\right)\right) \underbrace{\hat{\varphi}\left(p_{1}\right) \cdots \hat{\varphi}\left(p_{n}\right)}_{\text {spectator fields }}\rangle \mid}^{\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \cdot \sup \left(1, \frac{|P|}{\sup (m, \kappa)}\right)^{(D+2)(r+5)}} .
\end{gathered}
$$

- $M=\left\{\begin{array}{ll}m & \text { for } m>0 \\ \mu & \text { for } m=0\end{array}\right.$ mass or renormalization scale

Bound on OPE remainder $I_{\text {sur kowere } 205 \text { s-1 }}$

Theorem

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a $K>0$ such that

OPE-Remainder

$$
\begin{gathered}
\overbrace{|\left(\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)-\sum_{\operatorname{dim}[B] \leq D} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \mathcal{O}_{B}\left(x_{N}\right)\right) \underbrace{\left.\hat{\varphi}\left(p_{1}\right) \cdots \hat{\varphi}\left(p_{n}\right)\right\rangle}_{\text {Spectator fields }}\rangle}^{\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \cdot \sup \left(1, \frac{|P|}{\sup (m, \kappa)}\right)^{(D+2)(r+5)}} .
\end{gathered}
$$

- $M=\left\{\begin{array}{ll}m & \text { for } m>0 \\ \mu & \text { for } m=0\end{array} \quad\right.$ mass or renormalization scale
- $|P|=\sup _{i}\left|p_{i}\right|$: maximal momentum of spectators

Bound on OPE remainder $I_{\text {sur kowere } 205 \text { s-1 }}$

Theorem

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a $K>0$ such that
OPE-Remainder

- $M=\left\{\begin{array}{ll}m & \text { for } m>0 \\ \mu & \text { for } m=0\end{array} \quad\right.$ mass or renormalization scale
- $|P|=\sup _{i}\left|p_{i}\right|:$ maximal momentum of spectators
- $\kappa:=\inf (\mu, \varepsilon)$, where $\varepsilon=\min _{I \subset\{1, \ldots, n\}}\left|\sum_{I} p_{i}\right|$ ε : distance of $\left(p_{1}, \ldots, p_{n}\right)$ to "exceptional" configurations

Conclusions from bound on OPE remainder

"OPE remainder" $\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \cdot \sup \left(1, \frac{|P|}{\sup (m, \kappa)}\right)^{(D+2)(r+5)}$

Conclusions from bound on OPE remainder

"OPE remainder" $\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \cdot \sup \left(1, \frac{|P|}{\sup (m, \kappa)}\right)^{(D+2)(r+5)}$
I. Massive fields $(m>0)$: Bound is finite for arbitrary p_{1}, \ldots, p_{n}

Conclusions from bound on OPE remainder

"OPE remainder" $\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \cdot \sup \left(1, \frac{|P|}{\sup (m, \kappa)}\right)^{(D+2)(r+5)}$
I. Massive fields $(m>0)$: Bound is finite for arbitrary p_{1}, \ldots, p_{n}
2. Massless fields: Bound is finite only for non-exceptional p_{1}, \ldots, p_{n} (compare [Lowenstein-Zimmerman 1976])

Conclusions from bound on OPE remainder

$" O P E$ remainder" $\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \cdot \sup \left(1, \frac{|P|}{\sup (m, \kappa)}\right)^{(D+2)(r+5)}$
I. Massive fields $(m>0)$: Bound is finite for arbitrary p_{1}, \ldots, p_{n}
2. Massless fields: Bound is finite only for non-exceptional p_{1}, \ldots, p_{n} (compare [Lowenstein-Zimmerman 1976])
3. Bound vanishes as $D \rightarrow \infty$

Conclusions from bound on OPE remainder

"OPE remainder" $\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \cdot \sup \left(1, \frac{|P|}{\sup (m, \kappa)}\right)^{(D+2)(r+5)}$
I. Massive fields $(m>0)$: Bound is finite for arbitrary p_{1}, \ldots, p_{n}
2. Massless fields: Bound is finite only for non-exceptional p_{1}, \ldots, p_{n} (compare [Lowenstein-Zimmerman 1976])
3. Bound vanishes as $D \rightarrow \infty \Rightarrow$ OPE converges at any finite distances!

Conclusions from bound on OPE remainder

"OPE remainder" $\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \cdot \sup \left(1, \frac{|P|}{\sup (m, \kappa)}\right)^{(D+2)(r+5)}$
I. Massive fields $(m>0)$: Bound is finite for arbitrary p_{1}, \ldots, p_{n}
2. Massless fields: Bound is finite only for non-exceptional p_{1}, \ldots, p_{n} (compare [Lowenstein-Zimmermann 1976])
3. Bound vanishes as $D \rightarrow \infty \Rightarrow$ OPE converges at any finite distances!
4. Convergence is slow if...

- $|P|$ is large ("energy scale" of spectators)

Conclusions from bound on OPE remainder

I. Massive fields $(m>0)$: Bound is finite for arbitrary p_{1}, \ldots, p_{n}
2. Massless fields: Bound is finite only for non-exceptional p_{1}, \ldots, p_{n} (compare [Lowenstein-Zimmermann 1976])
3. Bound vanishes as $D \rightarrow \infty \Rightarrow$ OPE converges at any finite distances!
4. Convergence is slow if...

- $|P|$ is large ("energy scale" of spectators)
- maximal distance of points x_{i} from reference point x_{N} is large

Conclusions from bound on OPE remainder

"OPE remainder" $\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \cdot \sup \left(1, \frac{|P|}{\sup (m, \kappa)}\right)^{(D+2)(r+5)}$
I. Massive fields $(m>0)$: Bound is finite for arbitrary p_{1}, \ldots, p_{n}
2. Massless fields: Bound is finite only for non-exceptional p_{1}, \ldots, p_{n} (compare [Lowenstein-Zimmermann 1976])
3. Bound vanishes as $D \rightarrow \infty \Rightarrow$ OPE converges at any finite distances!
4. Convergence is slow if...

- $|P|$ is large ("energy scale" of spectators)
- maximal distance of points x_{i} from reference point x_{N} is large
- ratio of max. and min. distances is large, e.g. for $N=3$

Slow convergence

Fast convergence

Bound on OPE remainder II sH, Kopper. Holland 2017

Consider now smeared spectator fields $\varphi\left(f_{i}\right)=\int f_{i}(x) \varphi(x) \mathrm{d}^{4} x$.
Theorem
At any perturbation order r and for any $D \in \mathbb{N}$,
$\left|\left\langle\left(\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)-\sum_{\operatorname{dim}[B] \leq D} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \mathcal{O}_{B}\left(x_{N}\right)\right) \varphi\left(f_{1}\right) \cdots \varphi\left(f_{n}\right)\right\rangle\right|$

Consider now smeared spectator fields $\varphi\left(f_{i}\right)=\int f_{i}(x) \varphi(x) \mathrm{d}^{4} x$.

Theorem

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a $K>0$ such that

$$
\begin{aligned}
&\left|\left\langle\left(\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)-\sum_{\operatorname{dim}[B] \leq D} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \mathcal{O}_{B}\left(x_{N}\right)\right) \varphi\left(f_{1}\right) \cdots \varphi\left(f_{n}\right)\right\rangle\right| \\
& \leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \sum_{s_{1}+\ldots+s_{N}=0}^{(D+2)(r+5)} \prod_{i=1}^{n} \frac{\left\|\hat{f}_{i}\right\|_{\frac{s_{i}}{2}}}{M^{s_{i}}}
\end{aligned}
$$

M : mass for $m>0$ or renormalization scale μ for massless fields $\|\hat{f}\|_{s}:=\sup _{p \in \mathbb{R}^{4}}\left|\left(p^{2}+M^{2}\right)^{s} \hat{f}(p)\right|$ (Schwartz norm)

Consider now smeared spectator fields $\varphi\left(f_{i}\right)=\int f_{i}(x) \varphi(x) \mathrm{d}^{4} x$.

Theorem

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a $K>0$ such that

$$
\begin{aligned}
& \mid\left\langle\left(\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots\right.\right.\left.\left.\mathcal{O}_{A_{N}}\left(x_{N}\right)-\sum_{\operatorname{dim}[B] \leq D} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \mathcal{O}_{B}\left(x_{N}\right)\right) \varphi\left(f_{1}\right) \cdots \varphi\left(f_{n}\right)\right\rangle \mid \\
& \leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \sum_{s_{1}+\ldots+s_{N}=0}^{(D+2)(r+5)} \prod_{i=1}^{n} \frac{\left\|\hat{f}_{i}\right\|_{s_{i}}^{2}}{M^{s_{i}}}
\end{aligned}
$$

M : mass for $m>0$ or renormalization scale μ for massless fields $\|\hat{f}\|_{s}:=\sup _{p \in \mathbb{R}^{4}}\left|\left(p^{2}+M^{2}\right)^{s} \hat{f}(p)\right|($ Schwartz norm)
I. Bound is finite for any $f_{i} \in \mathcal{S}\left(\mathbb{R}^{4}\right)$ (Schwartz space) OPE remainder is a tempered distribution

Consider now smeared spectator fields $\varphi\left(f_{i}\right)=\int f_{i}(x) \varphi(x) \mathrm{d}^{4} x$.

Theorem

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a $K>0$ such that

$$
\begin{aligned}
\left|\left\langle\left(\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)-\sum_{\operatorname{dim}[B] \leq D} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \mathcal{O}_{B}\left(x_{N}\right)\right) \varphi\left(f_{1}\right) \cdots \varphi\left(f_{n}\right)\right\rangle\right| \\
\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \sum_{s_{1}+\ldots+s_{N}=0}^{(D+2)(r+5)} \prod_{i=1}^{n} \frac{\left\|\hat{f}_{i}\right\|_{\frac{s_{i}}{2}}}{M^{s_{i}}}
\end{aligned}
$$

M : mass for $m>0$ or renormalization scale μ for massless fields $\|\hat{f}\|_{s}:=\sup _{p \in \mathbb{R}^{4}}\left|\left(p^{2}+M^{2}\right)^{s} \hat{f}(p)\right|($ Schwartz norm)
I. Bound is finite for any $f_{i} \in \mathcal{S}\left(\mathbb{R}^{4}\right)$ (Schwartz space) OPE remainder is a tempered distribution
2. Let $\hat{f}_{i}(p)=0$ for $|p|>|P|$:

Consider now smeared spectator fields $\varphi\left(f_{i}\right)=\int f_{i}(x) \varphi(x) \mathrm{d}^{4} x$.

Theorem

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a $K>0$ such that

$$
\begin{gathered}
\left|\left\langle\left(\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)-\sum_{\operatorname{dim}[B] \leq D} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \mathcal{O}_{B}\left(x_{N}\right)\right) \varphi\left(f_{1}\right) \cdots \varphi\left(f_{n}\right)\right\rangle\right| \\
\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \sup \left(1, \frac{|P|}{M}\right)^{(D+2)(r+5)}
\end{gathered}
$$

M : mass for $m>0$ or renormalization scale μ for massless fields $\|\hat{f}\|_{s}:=\sup _{p \in \mathbb{R}^{4}}\left|\left(p^{2}+M^{2}\right)^{s} \hat{f}(p)\right|($ Schwartz norm)
I. Bound is finite for any $f_{i} \in \mathcal{S}\left(\mathbb{R}^{4}\right)$ (Schwartz space) OPE remainder is a tempered distribution
2. Let $\hat{f}_{i}(p)=0$ for $|p|>|P|$:

Consider now smeared spectator fields $\varphi\left(f_{i}\right)=\int f_{i}(x) \varphi(x) \mathrm{d}^{4} x$.

Theorem

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a $K>0$ such that

$$
\begin{gathered}
\left|\left\langle\left(\mathcal{O}_{A_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{A_{N}}\left(x_{N}\right)-\sum_{\operatorname{dim}[B] \leq D} \mathcal{C}_{A_{1} \ldots A_{N}}^{B}\left(x_{1}, \ldots, x_{N}\right) \mathcal{O}_{B}\left(x_{N}\right)\right) \varphi\left(f_{1}\right) \cdots \varphi\left(f_{n}\right)\right\rangle\right| \\
\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(K M \max _{1 \leq i \leq N}\left|x_{i}-x_{N}\right|\right)^{D+1}}{\min _{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\sum_{i} \operatorname{dim}\left[A_{i}\right]+1}} \sup \left(1, \frac{|P|}{M}\right)^{(D+2)(r+5)}
\end{gathered}
$$

M : mass for $m>0$ or renormalization scale μ for massless fields $\|\hat{f}\|_{s}:=\sup _{p \in \mathbb{R}^{4}}\left|\left(p^{2}+M^{2}\right)^{s} \hat{f}(p)\right|($ Schwartz norm)
I. Bound is finite for any $f_{i} \in \mathcal{S}\left(\mathbb{R}^{4}\right)$ (Schwartz space) OPE remainder is a tempered distribution
2. Let $\hat{f}_{i}(p)=0$ for $|p|>|P|$: Bound vanishes as $D \rightarrow \infty$ \Rightarrow OPE converges at any finite distances!

Conclusions \& Outlook

I. QFT in CST is best formulated in terms of algebraic relations + states
2. The OPE converges at finite distances in perturbation theory.
3. The OPE factorizes (associativity) in perturbation theory.
4. The OPE satisfies an action principle which is also useful for calculations

Conclusions \& Outlook

I. QFT in CST is best formulated in terms of algebraic relations + states
2. The OPE converges at finite distances in perturbation theory.
3. The OPE factorizes (associativity) in perturbation theory.
4. The OPE satisfies an action principle which is also useful for calculations

Possible Generalizations

- Curved manifolds?
- Lorentzian signature?
- Light cone expansion?

