Operator Product Expansion

S. Hollands

UNIVERSITÄT LEIPZIG

based on joint work with M. Fröb, J. Holland and Ch. Kopper

July 27, 2022

European Research Council Established by the European Commission "In those years a theoretical physicist of modest talent could harvest results of great interest, today persons of great talent produce results of modest interest" [F. Hund] The operator product expansion (OPE) expresses a decoupling of UV and IR dynamics in quantum/statistical field theory (QFT)

- ▶ 60s: OPE introduced by Wilson, later arguments by Zimmermann
- ► 70s: conformal bootstrap ideas [Polyakov, Mack, Gatto et al., Schroer et al., ...].
- ▶ 80s: CFTs in d = 2 [Belavin et al., ...].
- ▶ 90s: vertex operator algebras [Borcherds, Frenkel, Kac, ...] ⇒ mathematics
- lacksim 00s-: numerical bootstrap in d>2 [Dolan, Osborne, Penedones, Poland, Rychkov, Simmons-Duffin, ...]
- IOs-: lattice QFT [Monahan, ...]

Us: FLOW EQUATIONS, MATHEMATICAL BOUNDS [SH, Fröb, Holland, Kopper, ...]

A <u>"generally covariant" formulation of QFT</u> requires OPE [Hollands-Wald 2012]. QFT =

A <u>"generally covariant" formulation of QFT</u> requires OPE [Hollands-Wald 2012]. QFT =

• A <u>list</u> of quantum fields $\{\mathcal{O}_A\}$

A <u>"generally covariant" formulation of QFT</u> requires OPE [Hollands-Wald 2012]. QFT =

- A <u>list</u> of quantum fields $\{\mathcal{O}_A\}$
- A collection of states Ψ = expectation value functional characterized by *N*-point "functions" $\langle \mathcal{O}_{A_1}(x_1) \dots \mathcal{O}_{A_N}(x_N) \rangle_{\Psi}$ with suitable properties

A <u>"generally covariant" formulation of QFT</u> requires OPE [Hollands-Wald 2012]. QFT =

- A <u>list</u> of quantum fields $\{\mathcal{O}_A\}$
- A collection of states Ψ = expectation value functional characterized by *N*-point "functions" $\langle \mathcal{O}_{A_1}(x_1) \dots \mathcal{O}_{A_N}(x_N) \rangle_{\Psi}$ with suitable properties

A <u>"generally covariant" formulation of QFT</u> requires OPE [Hollands-Wald 2012]. QFT =

- A <u>list</u> of quantum fields $\{\mathcal{O}_A\}$
- A collection of states Ψ = expectation value functional characterized by *N*-point "functions" $\langle \mathcal{O}_{A_1}(x_1) \dots \mathcal{O}_{A_N}(x_N) \rangle_{\Psi}$ with suitable properties

OPE:

$$\langle \mathcal{O}_{A_1}(x_1)\cdots\mathcal{O}_{A_N}(x_N)\rangle_{\Psi} = \sum_B \underbrace{\mathcal{C}^B_{A_1\dots A_N}(x_1,\dots,x_N)}_{\text{OPE coefficients}} \langle \mathcal{O}_B(x_N)\rangle_{\Psi}$$

A <u>"generally covariant" formulation of QFT</u> requires OPE [Hollands-Wald 2012]. QFT =

- A <u>list</u> of quantum fields $\{\mathcal{O}_A\}$
- A collection of states Ψ = expectation value functional characterized by *N*-point "functions" $\langle \mathcal{O}_{A_1}(x_1) \dots \mathcal{O}_{A_N}(x_N) \rangle_{\Psi}$ with suitable properties

OPE:

$$\langle \mathcal{O}_{A_1}(x_1)\cdots\mathcal{O}_{A_N}(x_N)\rangle_{\Psi} = \sum_B \underbrace{\mathcal{C}^B_{A_1\dots A_N}(x_1,\dots,x_N)}_{\text{OPE coefficients}} \langle \mathcal{O}_B(x_N)\rangle_{\Psi}$$

• OPE coefficients are independent of Ψ and generally covariant.

A <u>"generally covariant" formulation of QFT</u> requires OPE [Hollands-Wald 2012]. QFT =

- A <u>list</u> of quantum fields $\{\mathcal{O}_A\}$
- A collection of states Ψ = expectation value functional characterized by *N*-point "functions" $\langle \mathcal{O}_{A_1}(x_1) \dots \mathcal{O}_{A_N}(x_N) \rangle_{\Psi}$ with suitable properties

OPE:

$$\langle \mathcal{O}_{A_1}(x_1)\cdots\mathcal{O}_{A_N}(x_N)\rangle_{\Psi} = \sum_B \underbrace{\mathcal{C}^B_{A_1\dots A_N}(x_1,\dots,x_N)}_{\text{OPE coefficients}} \langle \mathcal{O}_B(x_N)\rangle_{\Psi}$$

- OPE coefficients are independent of Ψ and generally covariant.
- OPE satisfies <u>associativity</u> law.

If $\max|x_i - x_j| \lesssim$ scale of state $|\Psi\rangle$

- Thermal state at temperature β^{-1} : scale = β
- Bunch-Davies state in deSitter: scale = Hubble radius
- Unruh state on black hole spacetime: scale = Schwarzschild radius
- Particle state e.g. proton $|p\rangle$: scale = |p|

▶ ...

- operators form <u>multiplets</u> transforming under conformal group.
- each multiplet contains one primary field \mathcal{O}_A .

OPE:

$$\mathcal{O}_A(x_1)\mathcal{O}_B(x_2) = \sum_{\text{primary } C} \frac{\lambda_{AB}^C}{|x_1 - x_2|^{\Delta_A + \Delta_B - \Delta_C}} \mathcal{P}(x_1 - x_2, \partial)\mathcal{O}_C(x_2)$$

where $\mathcal{P} = \mathcal{P}_{AB}^C$ is kinematical.

In CFTs, the OPE is determined by representation theory of conformal group ("kinematical") +

CFT data

- structure constants λ_{AB}^C
- dimensions Δ_A .

Associativity + positivity put very stringent conditions on these data.

\Rightarrow conformal bootstrap

This talk

- I. Do the expected properties of OPE hold?
- 2. What is the error term in the OPE?
- 3. How to get OPE coefficients?

Action principle

To write down the action principle, use graphical notation. I draw an OPE coefficient

$$\mathcal{C}^B_{A_1\dots A_n}(x_1,\dots,x_n)$$

as

I draw a concatenation of OPE coefficients

$$\mathcal{C}^B_{A_1C}(x_1, x_n)\mathcal{C}^C_{A_2\dots A_n}(x_2, \dots, x_n)$$

as

Attention: None of these diagrams is a "Feynman graph"!

1

I also write

where

- O denotes the "deformation"
- $\int d^4y = \text{integral over } \{|y x_n| < L\}.$
- \blacktriangleright L = length scale that is part of the definition of the theory.

Action principle

There is a kind of "action principle" for OPE coefficients if we "deform" $S \to S + g \int \mathcal{O}$:

Figure: Left side: $\partial_g C^B_{A_1...A_n}(x_1,...,x_n)$

Figure: Right side: concatenations of OPE coefficients, e.g. the rightmost tree $\sum_{C} C_{A_1...A_n}^C(x_1,...,x_n) C_{\mathcal{OC}}^B(y,x_n)$

Under $S \to S + g \int \mathcal{O}$:

$$\partial_g \, \mathcal{C}^B_{A_1\dots A_N}(x_1,\dots,x_N) = -\int_{|y-x_N| < L} \mathrm{d}^4 y \bigg[\mathcal{C}^B_{\mathcal{O}A_1\dots A_N}(y,x_1,\dots,x_N) \\ -\sum_{i=1}^N \sum_{[C] \le [A_i]} \mathcal{C}^C_{\mathcal{O}A_i}(y,x_i) \, \mathcal{C}^B_{A_1\dots \widehat{A_i} \ C\dots A_N}(x_1,\dots,x_N) \\ -\sum_{[C] < [B]} \mathcal{C}^C_{A_1\dots A_N}(x_1,\dots,x_N) \, \mathcal{C}^B_{\mathcal{O}C}(y,x_N) \bigg] \,.$$

- Can compute OPE coefficients to any perturbation order by iteration.
- State independence obvious.
- ▶ $L \to L'$ equivalent to

$$\mathcal{O}_A \to \sum Z_A^B(g,\tau) \cdot \mathcal{O}_B$$
 (0.1)

and $g \to g' = g(g, \tau)$. \Rightarrow RG equations! ($\tau = \log L/L' =$ RG "time").

- The proof of this theorem as well as most other results in this talk uses a variant of the Wilson-Wegner-Polchinski-Wetterich <u>RG flow</u> <u>equations</u>. However, I will mostly only indicate the final results/bounds after removal of cutoffs, which no longer refer to this equation.
- Proof is perturbative but equation should hold <u>non-perturbatively</u>.
- Proofs exist for ϕ^4 , QCD
- For gauge theories suitable modifications involving BRST have to be taken into account.
- All statements refer to <u>Euclidean signature</u> and flat metric but some can be generalized to curved space.

- ► For flows of CFTs, my action principle gives a <u>closed system of ODEs</u> for <u>CFT data</u> $\lambda = \{\lambda_{AB}^C(g)\}$ and $\Delta = \{\Delta_A(g)\}$.
- Dynamical system for CFT data:

$$\frac{d}{dg}\lambda = f(\Delta)\lambda\lambda$$
$$\frac{d}{dg}\Delta = g(\Delta)\lambda$$

where f, g are explicit kinematical functions that only depend on 6j-symbols of the conformal group

We need initial condition.

Outline

In ϕ^4 -theory, any arbitrary but fixed loop order:

$$\mathcal{C}^B_{A_1\dots A_N}(x_1,\dots,x_N) = \sum_C \mathcal{C}^C_{A_1\dots A_M}(x_1,\dots,x_M) \mathcal{C}^B_{CA_{M+1}\dots A_N}(x_M,\dots,x_N)$$

holds on the domain $\xi \equiv \frac{\max_{1 \le i \le M} |x_i - x_M|}{\min_{M < j \le N} |x_j - x_M|} < 1$. (Sum over C abs. convergent !)

In $\phi^4\text{-theory, any arbitrary but fixed loop order:}$

$$\mathcal{C}^B_{A_1\dots A_N}(x_1,\dots,x_N) = \sum_C \mathcal{C}^C_{A_1\dots A_M}(x_1,\dots,x_M) \mathcal{C}^B_{CA_{M+1}\dots A_N}(x_M,\dots,x_N)$$

holds on the domain $\xi \equiv \frac{\max_{1 \le i \le M} |x_i - x_M|}{\min_{M < j \le N} |x_j - x_M|} < 1.$ (Sum over C abs. convergent !)

In $\phi^4\text{-theory, any arbitrary but fixed loop order:}$

$$\mathcal{C}^B_{A_1\dots A_N}(x_1,\dots,x_N) = \sum_C \mathcal{C}^C_{A_1\dots A_M}(x_1,\dots,x_M) \mathcal{C}^B_{CA_{M+1}\dots A_N}(x_M,\dots,x_N)$$

holds on the domain
$$\xi \equiv \frac{\max_{1 \le i \le M} |x_i - x_M|}{\min_{M < j \le N} |x_j - x_M|} < 1$$
. (Sum over C abs. convergent !)

This shows associativity really holds!

- Bound on remainder
- Justification of "action principle"

Quantitative bound

Theorem

Up to any perturbation order $r \in \mathbb{N}$ the bound

$$\begin{split} & \left| \text{Remainder in associativity} \right| \\ & \leq \frac{K_r \xi^{D+1} \max_{N \leq v < N} |x_i - x_n|^{[B]}}{\prod_{v=1}^M \min_{1 \leq w \leq M, w \neq v} |x_v - x_w|^{[A_v] + \delta} \prod_{i=M+1}^N \min_{M < j \leq N, i \neq j} |x_i - x_j|^{[A_i] + \delta}} \end{split}$$

holds for some $\delta > 0$ and where

$$\xi := \frac{\max_{1 \le i \le M} |x_i - x_M|}{\min_{M < j \le N} |x_j - x_M|}$$

and where K_r is a constant which does not depend on D. (Here $[A] = \dim$. of op. in free theory).

Bound on OPE remainder I [SH, Kopper 2015, ...]

Theorem

At any perturbation order r and for any $D \in \mathbb{N}$,

$$\boxed{\left|\left\langle \left(\mathcal{O}_{A_1}(x_1)\cdots\mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \leq D} \mathcal{C}^B_{A_1\dots A_N}(x_1,\dots,x_N) \mathcal{O}_B(x_N)\right) \underbrace{\hat{\varphi}(p_1)\cdots\hat{\varphi}(p_n)}_{\text{Spectator fields}}\right\rangle\right|}$$

Bound on OPE remainder I [SH, Kopper 2015, ...]

Theorem

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a K > 0 such that

$$\begin{split} \overbrace{\left|\left\langle \left(\mathcal{O}_{A_{1}}(x_{1})\cdots\mathcal{O}_{A_{N}}(x_{N})-\sum_{\dim[B]\leq D}\mathcal{C}_{A_{1}\dots A_{N}}^{B}(x_{1},\dots,x_{N})\mathcal{O}_{B}(x_{N})\right)\underline{\hat{\varphi}(p_{1})\cdots\hat{\varphi}(p_{n})}\right\rangle\right|}_{\mathsf{Spectator fields}}\right|\\ &\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM\max_{1\leq i\leq N}|x_{i}-x_{N}|\right)^{D+1}}{\min_{1\leq i< j\leq N}|x_{i}-x_{j}|\sum_{i}\dim[A_{i}]+1}\cdot\sup\left(1,\frac{|P|}{\sup(m,\kappa)}\right)^{(D+2)(r+5)}}$$

•
$$M = \begin{cases} m & \text{for } m > 0 \\ \mu & \text{for } m = 0 \end{cases}$$
 mass or renormalization scale

At any perturbation order r and for any $D\in\mathbb{N},$ there exists a K>0 such that

$$\begin{split} \hline \left| \left\langle \left(\mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \le D} \mathcal{C}^B_{A_1 \dots A_N}(x_1, \dots, x_N) \mathcal{O}_B(x_N) \right) \underbrace{\hat{\varphi}(p_1) \cdots \hat{\varphi}(p_n)}_{\text{Spectator fields}} \right\rangle \right| \\ & \leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \le i \le N} |x_i - x_N| \right)^{D+1}}{\min_{1 \le i < j \le N} |x_i - x_j| \sum_i \dim[A_i] + 1} \cdot \sup \left(1, \frac{|P|}{\sup(m, \kappa)} \right)^{(D+2)(r+5)} \end{split}$$

•
$$M = \begin{cases} m & \text{for } m > 0 \\ \mu & \text{for } m = 0 \end{cases}$$
 mass or renormalization scale

▶ $|P| = \sup_i |p_i|$: maximal momentum of spectators

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a K > 0 such that

$$\begin{split} & \overbrace{\left\langle \left(\mathcal{O}_{A_1}(x_1)\cdots\mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \leq D} \mathcal{C}^B_{A_1\dots A_N}(x_1,\dots,x_N) \mathcal{O}_B(x_N)\right) \underbrace{\hat{\varphi}(p_1)\cdots\hat{\varphi}(p_n)}_{\text{Spectator fields}} \right\rangle \right\rangle} \\ & \leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_i - x_j| \sum_i \dim[A_i] + 1} \cdot \sup\left(1, \frac{|P|}{\sup(m,\kappa)}\right)^{(D+2)(r+5)} \end{split}$$

•
$$M = \begin{cases} m & \text{for } m > 0 \\ \mu & \text{for } m = 0 \end{cases}$$
 mass or renormalization scale

• $|P| = \sup_i |p_i|$: maximal momentum of spectators

• $\kappa := \inf(\mu, \varepsilon)$, where $\varepsilon = \min_{I \subset \{1,...,n\}} |\sum_{I} p_i|$ ε : distance of (p_1, \ldots, p_n) to "exceptional" configurations

$$\text{``OPE remainder''} \leq \frac{M^{n-1}}{\sqrt{D!}} \; \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_i - x_j|^{\sum_i \dim[A_i] + 1}} \cdot \; \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}$$

$$\text{``OPE remainder''} \leq \frac{M^{n-1}}{\sqrt{D!}} \ \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_i - x_j| \sum_i \dim[A_i] + 1} \cdot \ \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}$$

"OPE remainder"
$$\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_i - x_j| \sum_i \dim[A_i] + 1} \cdot \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}$$

I. Massive fields (m > 0): Bound is finite for arbitrary p_1, \ldots, p_n

2. Massless fields: Bound is finite only for non-exceptional p_1, \ldots, p_n (compare [Lowenstein-Zimmermann 1976])

"OPE remainder"
$$\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_i - x_j| \sum_i \dim[A_i] + 1} \cdot \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}$$

- 2. Massless fields: Bound is finite only for non-exceptional p_1, \ldots, p_n (compare [Lowenstein-Zimmermann 1976])
- 3. Bound vanishes as $D \to \infty$

"OPE remainder"
$$\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM\max_{1\leq i\leq N} |x_i - x_N|\right)^{D+1}}{\min_{1\leq i< j\leq N} |x_i - x_j| \sum_i \dim[A_i] + 1} \cdot \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}$$

- 2. Massless fields: Bound is finite only for non-exceptional p_1, \ldots, p_n (compare [Lowenstein-Zimmermann 1976])
- 3. Bound vanishes as $D \rightarrow \infty \Rightarrow \mathsf{OPE}$ converges at any finite distances!

"OPE remainder"
$$\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_i - x_j| \sum_i \dim[A_i] + 1} \cdot \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}$$

- 2. Massless fields: Bound is finite only for non-exceptional p_1, \ldots, p_n (compare [Lowenstein-Zimmermann 1976])
- 3. Bound vanishes as $D \rightarrow \infty \Rightarrow$ OPE converges at any finite distances!
- 4. Convergence is slow if...
 - ▶ |P| is large ("energy scale" of spectators)

"OPE remainder"
$$\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_i - x_j| \sum_i \dim[A_i] + 1} \cdot \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}$$

- 2. Massless fields: Bound is finite only for non-exceptional p_1, \ldots, p_n (compare [Lowenstein-Zimmermann 1976])
- 3. Bound vanishes as $D \rightarrow \infty \Rightarrow$ OPE converges at any finite distances!
- 4. Convergence is slow if...
 - ► |P| is large ("energy scale" of spectators)
 - maximal distance of points x_i from reference point x_N is large

"OPE remainder"
$$\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_i - x_j| \sum_i \dim[A_i] + 1} \cdot \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}$$

- 2. Massless fields: Bound is finite only for non-exceptional p_1, \ldots, p_n (compare [Lowenstein-Zimmermann 1976])
- 3. Bound vanishes as $D \rightarrow \infty \Rightarrow$ OPE converges at any finite distances!
- 4. Convergence is slow if...
 - ► |P| is large ("energy scale" of spectators)
 - maximal distance of points x_i from reference point x_N is large
 - ratio of max. and min. distances is large, e.g. for N=3

Consider now smeared spectator fields $\varphi(f_i) = \int f_i(x)\varphi(x) d^4x$.

Theorem

At any perturbation order r and for any $D \in \mathbb{N}$,

$$\left|\left\langle \left(\mathcal{O}_{A_1}(x_1)\cdots\mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \leq D} \mathcal{C}^B_{A_1\dots A_N}(x_1,\dots,x_N) \, \mathcal{O}_B(x_N)\right) \varphi(f_1)\cdots\varphi(f_n)\right\rangle\right|$$

Consider now smeared spectator fields $\varphi(f_i) = \int f_i(x)\varphi(x) d^4x$.

Theorem

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a K > 0 such that

$$\left| \left\langle \left(\mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \le D} \mathcal{C}^B_{A_1 \dots A_N}(x_1, \dots, x_N) \mathcal{O}_B(x_N) \right) \varphi(f_1) \cdots \varphi(f_n) \right\rangle \right| \\ \le \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \le i \le N} |x_i - x_N| \right)^{D+1}}{\min_{1 \le i < j \le N} |x_i - x_j| \sum_i \dim[A_i]^{+1}} \sum_{s_1 + \dots + s_N = 0}^{(D+2)(r+5)} \prod_{i=1}^n \frac{\|\hat{f}_i\|_{\frac{s_i}{2}}}{M^{s_i}} \right|$$

$$\begin{split} M: \text{ mass for } m > 0 \text{ or renormalization scale } \mu \text{ for massless fields} \\ \|\hat{f}\|_s := \sup_{p \in \mathbb{R}^4} |(p^2 + M^2)^s \hat{f}(p)| \text{ (Schwartz norm)} \end{split}$$

Consider now smeared spectator fields $\varphi(f_i) = \int f_i(x)\varphi(x) d^4x$.

Theorem

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a K > 0 such that

$$\left| \left\langle \left(\mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \le D} \mathcal{C}^B_{A_1 \dots A_N}(x_1, \dots, x_N) \mathcal{O}_B(x_N) \right) \varphi(f_1) \cdots \varphi(f_n) \right\rangle \right| \\ \le \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \le i \le N} |x_i - x_N| \right)^{D+1}}{\min_{1 \le i < j \le N} |x_i - x_j| \sum_i \dim[A_i]^{+1}} \sum_{s_1 + \dots + s_N = 0}^{(D+2)(r+5)} \prod_{i=1}^n \frac{\|\hat{f}_i\|_{\frac{s_i}{2}}}{M^{s_i}} \right|$$

$$\begin{split} M: \text{ mass for } m > 0 \text{ or renormalization scale } \mu \text{ for massless fields} \\ \|\hat{f}\|_s:= \sup_{p \in \mathbb{R}^4} |(p^2 + M^2)^s \hat{f}(p)| \text{ (Schwartz norm)} \end{split}$$

1. Bound is finite for any $f_i \in \mathcal{S}(\mathbb{R}^4)$ (Schwartz space) OPE remainder is a tempered distribution

Consider now smeared spectator fields $\varphi(f_i) = \int f_i(x)\varphi(x) d^4x$.

Theorem

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a K > 0 such that

$$\left| \left\langle \left(\mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \le D} \mathcal{C}^B_{A_1 \dots A_N}(x_1, \dots, x_N) \mathcal{O}_B(x_N) \right) \varphi(f_1) \cdots \varphi(f_n) \right\rangle \right| \\ \le \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \le i \le N} |x_i - x_N| \right)^{D+1}}{\min_{1 \le i < j \le N} |x_i - x_j| \sum_i \dim[A_i]^{+1}} \sum_{s_1 + \dots + s_N = 0}^{(D+2)(r+5)} \prod_{i=1}^n \frac{\|\hat{f}_i\|_{\frac{s_i}{2}}}{M^{s_i}} \right|$$

$$\begin{split} M: \text{ mass for } m > 0 \text{ or renormalization scale } \mu \text{ for massless fields} \\ \|\hat{f}\|_s:= \sup_{p \in \mathbb{R}^4} |(p^2 + M^2)^s \hat{f}(p)| \text{ (Schwartz norm)} \end{split}$$

1. Bound is finite for any $f_i \in \mathcal{S}(\mathbb{R}^4)$ (Schwartz space) OPE remainder is a tempered distribution

2. Let
$$\hat{f}_i(p) = 0$$
 for $|p| > |P|$:

Consider now smeared spectator fields $\varphi(f_i) = \int f_i(x)\varphi(x) d^4x$.

Theorem

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a K > 0 such that

$$\left| \left\langle \left(\mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \le D} \mathcal{C}^B_{A_1 \dots A_N}(x_1, \dots, x_N) \mathcal{O}_B(x_N) \right) \varphi(f_1) \cdots \varphi(f_n) \right\rangle \right|$$
$$\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \le i \le N} |x_i - x_N| \right)^{D+1}}{\min_{1 \le i < j \le N} |x_i - x_j| \sum_i \dim[A_i] + 1} \sup \left(1, \frac{|P|}{M} \right)^{(D+2)(r+5)}$$

$$\begin{split} M: \text{ mass for } m > 0 \text{ or renormalization scale } \mu \text{ for massless fields} \\ \|\hat{f}\|_s:= \sup_{p \in \mathbb{R}^4} |(p^2 + M^2)^s \hat{f}(p)| \text{ (Schwartz norm)} \end{split}$$

1. Bound is finite for any $f_i \in \mathcal{S}(\mathbb{R}^4)$ (Schwartz space) OPE remainder is a tempered distribution

2. Let
$$\hat{f}_i(p) = 0$$
 for $|p| > |P|$:

Consider now smeared spectator fields $\varphi(f_i) = \int f_i(x)\varphi(x) d^4x$.

Theorem

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a K > 0 such that

$$\left| \left\langle \left(\mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \le D} \mathcal{C}^B_{A_1 \dots A_N}(x_1, \dots, x_N) \mathcal{O}_B(x_N) \right) \varphi(f_1) \cdots \varphi(f_n) \right\rangle \right|$$
$$\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \le i \le N} |x_i - x_N| \right)^{D+1}}{\min_{1 \le i < j \le N} |x_i - x_j| \sum_i \dim[A_i] + 1} \sup \left(1, \frac{|P|}{M} \right)^{(D+2)(r+5)}$$

$$\begin{split} M: \text{ mass for } m > 0 \text{ or renormalization scale } \mu \text{ for massless fields} \\ \|\hat{f}\|_s := \sup_{p \in \mathbb{R}^4} |(p^2 + M^2)^s \hat{f}(p)| \text{ (Schwartz norm)} \end{split}$$

- 1. Bound is finite for any $f_i \in \mathcal{S}(\mathbb{R}^4)$ (Schwartz space) OPE remainder is a tempered distribution
- 2. Let $\hat{f}_i(p) = 0$ for |p| > |P|: Bound vanishes as $D \to \infty$ \Rightarrow OPE converges at any finite distances!

- I. QFT in CST is best formulated in terms of algebraic relations + states
- 2. The OPE converges at finite distances in perturbation theory.
- 3. The OPE factorizes (associativity) in perturbation theory.
- 4. The OPE satisfies an action principle which is also useful for calculations

- I. QFT in CST is best formulated in terms of algebraic relations + states
- 2. The OPE converges at finite distances in perturbation theory.
- 3. The OPE factorizes (associativity) in perturbation theory.
- 4. The OPE satisfies an action principle which is also useful for calculations

Possible Generalizations

- Curved manifolds?
- Lorentzian signature?
- Light cone expansion?