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QFT is hard

“In those years a theoretical physicist of modest talent could harvest results of great
interest, today persons of great talent produce results of modest interest” [F. Hund]



The operator product expansion (OPE)
expresses a decoupling of UV and IR
dynamics in quantum/statistical field

theory (QFT)



OPE history

▶ 60s: OPE introduced by Wilson, later arguments by Zimmermann
▶ 70s: conformal bootstrap ideas [Polyakov, Mack, Gatto et al., Schroer et al., ...].
▶ 80s: CFTs in d = 2 [Belavin et al., ...].
▶ 90s: vertex operator algebras [Borcherds, Frenkel, Kac, ...] ⇒ mathematics
▶ 00s-: numerical bootstrap in d > 2 [Dolan, Osborne, Penedones, Poland, Rychkov, Simmons-Duffin, ...]

▶ 10s-: lattice QFT [Monahan, ...]

Us: FLOW EQUATIONS, MATHEMATICAL BOUNDS [SH, Fröb, Holland, Kopper, ...]



Formulating QFT via operator product expansion

A “generally covariant” formulation of QFT requires OPE [Hollands-Wald 2012].
QFT =

▶ A list of quantum fields {OA}
▶ A collection of states Ψ = expectation value functional characterized by

N -point “functions” ⟨OA1(x1) . . .OAN
(xN )⟩Ψ with suitable properties

▶ OPE:

⟨OA1(x1) · · · OAN
(xN )⟩Ψ =

∑
B

CB
A1...AN

(x1, . . . , xN )︸ ︷︷ ︸
OPE coefficients

⟨OB(xN )⟩Ψ

▶ OPE coefficients are independent of Ψ and generally covariant.
▶ OPE satisfies associativity law.
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When is OPE a good approximation?

If max|xi − xj| ≲ scale of state |Ψ⟩

▶ Thermal state at temperature β−1: scale = β

▶ Bunch-Davies state in deSitter: scale = Hubble radius
▶ Unruh state on black hole spacetime: scale = Schwarzschild radius
▶ Particle state e.g. proton |p⟩: scale = |p|
▶ ...



Conformal field theory CFT

▶ operators form multiplets transforming under conformal group.
▶ each multiplet contains one primary field OA.
▶ OPE:

OA(x1)OB(x2) =
∑

primary C

λC
AB

|x1 − x2|∆A+∆B−∆C
P(x1−x2, ∂)OC(x2)

where P = PC
AB is kinematical.



CFT

In CFTs, the OPE is determined by representation theory of conformal
group (“kinematical”) +

CFT data

▶ structure constants λC
AB

▶ dimensions ∆A.

Associativity + positivity put very stringent conditions on these data.

=⇒ conformal bootstrap



This talk

1. Do the expected properties of OPE hold?

2. What is the error term in the OPE?

3. How to get OPE coefficients?



Action principle

To write down the action principle, use graphical notation. I draw an OPE
coefficient

CB
A1...An

(x1, . . . , xn)

as

1 2 n

I draw a concatenation of OPE coefficients

CB
A1C(x1, xn)C

C
A2...An

(x2, . . . , xn)

as

1 n2 3

Attention: None of these diagrams is a “Feynman graph”!



Action principle

I also write

∫
d4y

y,O 1 2 n

where
▶ O denotes the “deformation”
▶ ∫

d4y = integral over {|y − xn| < L}.
▶ L = length scale that is part of the definition of the theory.



Action principle

There is a kind of “action principle” for OPE coefficients if we “deform”
S → S + g

∫
O:

∂/∂g =

1 2 n

Figure: Left side: ∂gCB
A1...An

(x1, . . . , xn)

=
∫
d4y

y,O 1 2 n

−
∑n

i=1

∫
d4y

1 2 i ny,O

−
∫
d4y

y,O n1 2

Figure: Right side: concatenations of OPE coefficients, e.g. the rightmost tree∑
C CC

A1...An
(x1, . . . , xn)CB

OC(y, xn)



Action principle [SH, Holland 2017 ϕ4 , Fröb, Holland 2018 QCD, Fröb 2020 curved space]

Theorem
Under S → S + g

∫
O:

∂g CB
A1...AN

(x1, . . . , xN ) = −
∫
|y−xN |<L

d4y

[
CB
OA1...AN

(y, x1, . . . , xN )

−
N∑
i=1

∑
[C]≤[Ai]

CC
OAi

(y, xi) CB

A1...Âi C...AN
(x1, . . . , xN )

−
∑

[C]<[B]

CC
A1...AN

(x1, . . . , xN ) CB
OC(y, xN )

]
.

▶ Can compute OPE coefficients to any perturbation order by iteration.
▶ State independence obvious.
▶ L → L′ equivalent to

OA →
∑

ZB
A (g, τ) · OB (0.1)

and g → g′ = g(g, τ). ⇒ RG equations! (τ = logL/L′ = RG “time”).



Proofs:

▶ The proof of this theorem as well as most other results in this talk uses
a variant of the Wilson-Wegner-Polchinski-Wetterich RG flow
equations. However, I will mostly only indicate the final results/bounds
after removal of cutoffs, which no longer refer to this equation.

▶ Proof is perturbative but equation should hold non-perturbatively.
▶ Proofs exist for ϕ4, QCD
▶ For gauge theories suitable modifications involving BRST have to be

taken into account.
▶ All statements refer to Euclidean signature and flat metric but some can

be generalized to curved space.



Exactly marginal flows of CFT [Hollands 2018, Behan 2018]

▶ For flows of CFTs, my action principle gives a closed system of ODEs
for CFT data λ = {λC

AB(g)} and ∆ = {∆A(g)}.
▶ Dynamical system for CFT data:

d

dg
λ = f(∆)λλ

d

dg
∆ = g(∆)λ

where f, g are explicit kinematical functions that only depend on
6j-symbols of the conformal group

▶ We need initial condition.



Outline

1 OPE factorisation



Associativity [SH, Holland 2016]

Theorem
In ϕ4-theory, any arbitrary but fixed loop order:

CB
A1...AN

(x1, . . . , xN ) =
∑
C

CC
A1...AM

(x1, . . . , xM )CB
CAM+1...AN

(xM , . . . , xN )

holds on the domain ξ ≡
max

1≤i≤M
|xi−xM |

min
M<j≤N

|xj−xM | < 1. (Sum over C abs. convergent !)

For N = 3: ξ = |x1−x2|
|x2−x3| < 1

x1 x2

x3

for ξ ≪ 1

x1 x2

x3

for ξ ≈ 1

This shows associativity really holds!
▶ Bound on remainder
▶ Justification of “action principle”
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Quantitative bound

Theorem
Up to any perturbation order r ∈ N the bound∣∣∣Remainder in associativity

∣∣∣
≤

Krξ
D+1 max

N≤v<N
|xi − xn|[B]∏M

v=1 min
1≤w≤M,w ̸=v

|xv − xw|[Av ]+δ
∏N

i=M+1 min
M<j≤N,i ̸=j

|xi − xj |[Ai]+δ

holds for some δ > 0 and where

ξ :=
max1≤i≤M |xi − xM |
minM<j≤N |xj − xM |

and where Kr is a constant which does not depend on D. (Here [A] = dim. of
op. in free theory).



Bound on OPE remainder I [SH, Kopper 2015, ...]

Theorem
At any perturbation order r and for any D ∈ N,

there exists a K > 0 such that

OPE-Remainder︷ ︸︸ ︷∣∣∣〈(OA1(x1) · · · OAN (xN ) −
∑

dim[B]≤D

CB
A1...AN

(x1, . . . , xN )OB(xN )
)
φ̂(p1) · · · φ̂(pn)︸ ︷︷ ︸

Spectator fields

〉∣∣∣

≤ Mn−1

√
D!

(
KM max

1≤i≤N
|xi − xN |

)D+1

min
1≤i<j≤N

|xi − xj |
∑

i dim[Ai]+1
· sup

(
1,

|P |
sup(m,κ)

)(D+2)(r+5)

▶ M =

{
m for m > 0

µ for m = 0
mass or renormalization scale

▶ |P | = supi |pi|: maximal momentum of spectators

▶ κ := inf(µ, ε), where ε = minI⊂{1,...,n} |
∑

I pi|
ε: distance of (p1, . . . , pn) to “exceptional” configurations
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Conclusions from bound on OPE remainder

“OPE remainder” ≤ Mn−1

√
D!

(
KM max

1≤i≤N
|xi − xN |

)D+1

min
1≤i<j≤N

|xi − xj |
∑

i dim[Ai]+1
· sup

(
1,

|P |
sup(m,κ)

)(D+2)(r+5)

1. Massive fields (m > 0): Bound is finite for arbitrary p1, . . . , pn

2. Massless fields: Bound is finite only for non-exceptional p1, . . . , pn
(compare [Lowenstein-Zimmermann 1976])

3. Bound vanishes as D → ∞

⇒ OPE converges at any finite distances!

4. Convergence is slow if...

▶ |P | is large (“energy scale” of spectators)
▶ maximal distance of points xi from reference point xN is large
▶ ratio of max. and min. distances is large, e.g. for N = 3

x1 x2

x3

Slow convergence
x1 x2

x3

Fast convergence



Conclusions from bound on OPE remainder

“OPE remainder” ≤ Mn−1

√
D!

(
KM max

1≤i≤N
|xi − xN |

)D+1

min
1≤i<j≤N

|xi − xj |
∑

i dim[Ai]+1
· sup

(
1,

|P |
sup(m,κ)

)(D+2)(r+5)

1. Massive fields (m > 0): Bound is finite for arbitrary p1, . . . , pn

2. Massless fields: Bound is finite only for non-exceptional p1, . . . , pn
(compare [Lowenstein-Zimmermann 1976])

3. Bound vanishes as D → ∞

⇒ OPE converges at any finite distances!

4. Convergence is slow if...

▶ |P | is large (“energy scale” of spectators)
▶ maximal distance of points xi from reference point xN is large
▶ ratio of max. and min. distances is large, e.g. for N = 3

x1 x2

x3

Slow convergence
x1 x2

x3

Fast convergence



Conclusions from bound on OPE remainder

“OPE remainder” ≤ Mn−1

√
D!

(
KM max

1≤i≤N
|xi − xN |

)D+1

min
1≤i<j≤N

|xi − xj |
∑

i dim[Ai]+1
· sup

(
1,

|P |
sup(m,κ)

)(D+2)(r+5)

1. Massive fields (m > 0): Bound is finite for arbitrary p1, . . . , pn

2. Massless fields: Bound is finite only for non-exceptional p1, . . . , pn
(compare [Lowenstein-Zimmermann 1976])

3. Bound vanishes as D → ∞

⇒ OPE converges at any finite distances!

4. Convergence is slow if...

▶ |P | is large (“energy scale” of spectators)
▶ maximal distance of points xi from reference point xN is large
▶ ratio of max. and min. distances is large, e.g. for N = 3

x1 x2

x3

Slow convergence
x1 x2

x3

Fast convergence



Conclusions from bound on OPE remainder

“OPE remainder” ≤ Mn−1

√
D!

(
KM max

1≤i≤N
|xi − xN |

)D+1

min
1≤i<j≤N

|xi − xj |
∑

i dim[Ai]+1
· sup

(
1,

|P |
sup(m,κ)

)(D+2)(r+5)

1. Massive fields (m > 0): Bound is finite for arbitrary p1, . . . , pn

2. Massless fields: Bound is finite only for non-exceptional p1, . . . , pn
(compare [Lowenstein-Zimmermann 1976])

3. Bound vanishes as D → ∞

⇒ OPE converges at any finite distances!

4. Convergence is slow if...

▶ |P | is large (“energy scale” of spectators)
▶ maximal distance of points xi from reference point xN is large
▶ ratio of max. and min. distances is large, e.g. for N = 3

x1 x2

x3

Slow convergence
x1 x2

x3

Fast convergence



Conclusions from bound on OPE remainder

“OPE remainder” ≤ Mn−1

√
D!

(
KM max

1≤i≤N
|xi − xN |

)D+1

min
1≤i<j≤N

|xi − xj |
∑

i dim[Ai]+1
· sup

(
1,

|P |
sup(m,κ)

)(D+2)(r+5)

1. Massive fields (m > 0): Bound is finite for arbitrary p1, . . . , pn

2. Massless fields: Bound is finite only for non-exceptional p1, . . . , pn
(compare [Lowenstein-Zimmermann 1976])

3. Bound vanishes as D → ∞ ⇒ OPE converges at any finite distances!

4. Convergence is slow if...

▶ |P | is large (“energy scale” of spectators)
▶ maximal distance of points xi from reference point xN is large
▶ ratio of max. and min. distances is large, e.g. for N = 3

x1 x2

x3

Slow convergence
x1 x2

x3

Fast convergence



Conclusions from bound on OPE remainder

“OPE remainder” ≤ Mn−1

√
D!

(
KM max

1≤i≤N
|xi − xN |

)D+1

min
1≤i<j≤N

|xi − xj |
∑

i dim[Ai]+1
· sup

(
1,

|P |
sup(m,κ)

)(D+2)(r+5)

1. Massive fields (m > 0): Bound is finite for arbitrary p1, . . . , pn

2. Massless fields: Bound is finite only for non-exceptional p1, . . . , pn
(compare [Lowenstein-Zimmermann 1976])

3. Bound vanishes as D → ∞ ⇒ OPE converges at any finite distances!

4. Convergence is slow if...
▶ |P | is large (“energy scale” of spectators)

▶ maximal distance of points xi from reference point xN is large
▶ ratio of max. and min. distances is large, e.g. for N = 3

x1 x2

x3

Slow convergence
x1 x2

x3

Fast convergence



Conclusions from bound on OPE remainder

“OPE remainder” ≤ Mn−1

√
D!

(
KM max

1≤i≤N
|xi − xN |

)D+1

min
1≤i<j≤N

|xi − xj |
∑

i dim[Ai]+1
· sup

(
1,

|P |
sup(m,κ)

)(D+2)(r+5)

1. Massive fields (m > 0): Bound is finite for arbitrary p1, . . . , pn

2. Massless fields: Bound is finite only for non-exceptional p1, . . . , pn
(compare [Lowenstein-Zimmermann 1976])

3. Bound vanishes as D → ∞ ⇒ OPE converges at any finite distances!

4. Convergence is slow if...
▶ |P | is large (“energy scale” of spectators)
▶ maximal distance of points xi from reference point xN is large

▶ ratio of max. and min. distances is large, e.g. for N = 3

x1 x2

x3

Slow convergence
x1 x2

x3

Fast convergence



Conclusions from bound on OPE remainder

“OPE remainder” ≤ Mn−1

√
D!

(
KM max

1≤i≤N
|xi − xN |

)D+1

min
1≤i<j≤N

|xi − xj |
∑

i dim[Ai]+1
· sup

(
1,

|P |
sup(m,κ)

)(D+2)(r+5)

1. Massive fields (m > 0): Bound is finite for arbitrary p1, . . . , pn

2. Massless fields: Bound is finite only for non-exceptional p1, . . . , pn
(compare [Lowenstein-Zimmermann 1976])

3. Bound vanishes as D → ∞ ⇒ OPE converges at any finite distances!

4. Convergence is slow if...
▶ |P | is large (“energy scale” of spectators)
▶ maximal distance of points xi from reference point xN is large
▶ ratio of max. and min. distances is large, e.g. for N = 3

x1 x2

x3

Slow convergence
x1 x2

x3

Fast convergence



Bound on OPE remainder II SH, Kopper, Holland 2017

Consider now smeared spectator fields φ(fi) =
∫
fi(x)φ(x) d

4x.

Theorem
At any perturbation order r and for any D ∈ N,

there exists a K > 0 such that

∣∣∣〈(OA1(x1) · · · OAN (xN ) −
∑

dim[B]≤D

CB
A1...AN

(x1, . . . , xN )OB(xN )
)
φ(f1) · · ·φ(fn)

〉∣∣∣

≤ Mn−1

√
D!

(
KM max

1≤i≤N
|xi − xN |

)D+1

min
1≤i<j≤N

|xi − xj |
∑

i dim[Ai]+1

(D+2)(r+5)∑
s1+...+sN=0

n∏
i=1

∥f̂i∥ si
2

Msi

M : mass for m > 0 or renormalization scale µ for massless fields
∥f̂∥s := supp∈R4 |(p2 +M2)sf̂(p)| (Schwartz norm)

1. Bound is finite for any fi ∈ S(R4) (Schwartz space)
OPE remainder is a tempered distribution

2. Let f̂i(p) = 0 for |p| > |P |:

Bound vanishes as D → ∞
⇒ OPE converges at any finite distances!
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Conclusions & Outlook

1. QFT in CST is best formulated in terms of algebraic relations + states

2. The OPE converges at finite distances in perturbation theory.

3. The OPE factorizes (associativity) in perturbation theory.

4. The OPE satisfies an action principle which is also useful for calculations

Possible Generalizations

▶ Curved manifolds?
▶ Lorentzian signature?
▶ Light cone expansion?
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