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General motivation: Landau-Ginzburg mean-tield method
Group field theory
LG theory applied to Group field theory

Conclusions



What is LG theory? How does it relate to the RG?

- statistical field theory method to describe 1st and 2nd order phase transitions at mean-field level

- LG mean-field analysis clarifies phase structure of local field theories (coarse account)

- transition to condensate phase with nontrivial VEV (non-perturbative vacuum) (¢) # 0

1 A

e.g. Sl = 5 /d?’xgo(a:)(—A +m?)o(x) + = /d3xgo(:c)4

LG RG

e \ : 3
N \\\

LG theory studies I \\
fluctuations around 11 r\ involved RG studies go

the Gaussian fixed point beyond small fluctuations

(free theory)
quasi-Gaussian distribution generally non-Gaussian distribution
(o) # 0
—» coarse account of the phase diagram —» detailed account of the phase diagram

(good enough to start with...)



What is LG theory? Setup (I)

start with free energy functional as an expansion in terms of even + odd powers of the local field (order parameter)
and its gradient

consider truncation of this functional assumed to be valid from mesoscale to macroscale

details on microphysics encoded in couplings and order parameter

order parameter features only universal properties of the system
(dimension of space, symmetries of order parameter)

dimension of underlying space

/

Slgl = 5 [ dlp(a)(-a+m?)pl@) + 5 [ Ao’

I [ goal: evaluate 7 = /Dgpe_sm
free energy order here: global 7 partition function (sums all configs)
functional parameter symmetry

allows to control thermodynamic phases of the system by studying long-range correlations of order
parameter fluctuations over the distance ¢ (correlation length)

beyond ¢ correlations decay exponentially; it diverges at criticality



What is LG theory? Setup (ll)

1) determine uniform field configurations which are minimizers of the free energy functional

2

‘ | 1 =
wo =0if m? > 0and pp = =4/

B PYE]

if m?2 <0

2) study correlations of fluctuations around this uniform background (aka Gaussian approximation)

2. a) linearize classical equations of motion using fluctuations over the background ¢(Z) — wo + d¢(Z)

Ap

2
—>  (—A+m?)dp(Z) + 20 do(Z) = (

. . At . . . :
2. b) solve for correlation function (—A +m? + %) C(Z) = 6(&) (go to Fourier representation)

m? < 0

2. ¢) correlator is exponentially decaying function — determine correlation length ¢* = EOCE

3) determine domain of validity
——— fluctuations and coupling should remain small then mean-field theory self-consistent

Je d%2C(Z)

4—d _
Je ' e e

Ginzburg parameter (Q =

(measures strength of fluctuations)
critical dimension (of flat space) below which MFT seizes to be accurate;

accounts for coarse picture of phase diagram (good enough)



Why bother in Group field theory? Applicable?

What is GFT?



Motivation via Matrix models for 2d gravity

e Matrix models generate 2d random lattices

® at criticality they give rise to continuum geometries of dimension d < 2

e phase diagram of simple matrix models obtainable via
diagonalization of matrices, computation of the partition function for
large matrixes and then checking the (non-) analyticity of the free energy

® alternative route: phase structure via functional renormalization group

e continuum limit of simple matrix models agrees with that of 2d Liouville gravity

for example
1 A A ()
S(M) = —tr(M?) + Z=tr(M? 7 :/dM —S(M) _
combinatorics of a 2-simplex
Mlj B Mj,,; J

My

snapshot of a triangulation



Group Field Theory

Oriti, Freidel, Rovelli, Livine, Gurau, Baratin,...]

classical theory (kinematics):

rank r

group field o(g1,...ygr) : G" = R,C, ¢ € L*(G")

|

Lie group G

parallel transport g¢gr = Peles 4

typically work with » = 4 and G = SL(2,C)

— to model 4-dimensional Lorentzian quantum geometries

for I=1,...,r, link e;, connection A

supplement field with invariance property: o(g1, .. gr) = @(g1h™ ..., g,h™Y), VheG

(known as closure constraint)
—» phase space: T*G? >~ G4 x g 4
—  dual formulation:  P(B1, ..., By) = /(dg)490(91,92793794) ] 1 s (Br)
I=1

e.g. for r=4 invariant field corresponds to a e.g. for G = SL(2, C) recover metric information:
3-simplex/tetrahedron T
\\91 Bl | (B B>. B )'_>g:€A€A: 1 Elfilg_ (BABBm )(BCDBTL )
\\\\\ . \ | ‘ 1, D2, D3 1] 1ALy 8131"(B1B2B3) i cJmn k AB l CD
\’_ ______ 4 \ \ B4
S = L\ ) :
- bivectors B =¢/ ke}-“ekB 1 et tetrads
/// i B / —
9, / i% 2 ~_)\, ZBt 9 Lorentz index A € {0,1,2,3}
|

Bs l (= B; €sl(2,C), i€ {1,2,3}

(closure)



Group Field Theory

classical theory (dynamics):| Sarr = / (dg)"@(91)Ke(g1) + VIe(gr), ¢(g1)]

IC : kinetic operator, V' : non-linear and non-local interaction term

model specified by: GG, dimension d, I, V and symmetries of ¢

crucial feature of GFT models: combinatorially non-local interaction

example in 3d: / 3 > A/ 5 B
S= [ + = [ (d +c.c., = g,
(Boulatov) (dg)” 123 A1 (dg)” p123%1450256P364 p123 = ©(91, 92, 93)

combinatorics of a 3-simplex

\

/

example in 4d: A
(Orc))guri) S = /(dg)4|901234\2 + =l /(dg)1090123490456790738990962(10)90(10)851 -+ C.C.
combinatorics of a 4-simplex
4-simplex
S 5 T
ZGFT = /DQODQZDG_ GETlP Pl — E S T Ar  GFT Feynman amplitude Ar
T ym( ) graph corresponds to discrete geometries

Boulatov and Ooguri model provide GFT quantizations of BF-theory in 3d & 4d

—p  build models starting with BF-theory (TFT)



BF-theory and Plebanski action

1
Slw, B, 1] = / {BU A FH (W) + §WJKLB” A BRE

l

Lagrange multiplier

v
s[(2,C) — valued 1-form

s[(2,C) — valued 2-form v
field strength: F'/(w) = dw'’ + w) Aw™’

variation wrt f ——»  “simplicity constraint” on B:

1
B! A BEL — gl VKL o — EGIJKLB” A BEL

solve for B —— solutions in two sectors: (1) topological sector vs.

(2) gravitational sector (Palatini)

first-order formulation

1
— SPalatini[e,W] = 5 /EIJKL€I N\ e’ A\ FhEL

\ tetrad field

0.5 = 0 — Einstein field eqns. 0,5 = 0 — 1st Cartan: dye! +wl Ael =0

N\

spin connection



Quantization of BF-theory via GFT

Ooguri]

Z p— / DwDBeiS[w’B] — / Dw5(F(w)) (integral over flat connections, i.e. no local dof)

(=volume of space of flat connection, infinitely large?!)

ill-defined in the continuum » quantization on a lattice

» agrees with GFT path integral quantization of Boulatov and Ooguri model via

Zapr = / DyDgeSertledl = 3™
I

How to impose simplicity constraints at GFT level to render this model one for gravitational dof?

— Example: Barrett-Crane model

10



complete Barrett Crane GFT m0d9|

[Barrett, Crane; Perez, Rovelli; Oriti, Baratin; Jercher, Oriti, Pithis]

a model for Lorentzian quantum gravity in 4d

 start with Ooguri model: GFT model for BF-theory in 4d (topological theory)
e impose so-called simplicity constraints to turn it into a theory of gravity (first-order Palatini)
* add non-dynamical timelike, spacelike and light like normal vector X to domain

—pp- allows to impose closure and simplicity covariantly and commutatively
=P unique model

o(g1, .-, 94; Xa) 1 SL(2,C)* x SL(2,C) /U™ — C o€ {+,0,-}
U =SU(2), U =8SU(1,1), U® =1SO(2) stabilizersof X, =(1,0,0,0), X, = \/%(1,0,0,1), X_ =(0,0,0,1)

timelike lightlike spacelike

w. @(917..-794;)(04) = Sp(glh_l,--'vgzlh_l;h'Xa), \v/h c SL(27<C) (closure)

O(g1s - ga; Xa) = p(grur, .oy gaig; Xo), Vuq,...,uqg € Ux, (simplicity)

—_— g fields correspond to spacelike, timelike and lightlike tetrahedra
Sle, o] = Klp, @] + Ve, o
Klp, p] = Z/ (dg)4/ dXop(g1,---945 Xao)p(g1, 945 Xa)

SL(2,C)4 SL(2,C/U(e)

Ve, @] I/ dg) 10 Z /an1 /an5801234(Xa1)904567(on2)907389(Xa3)90962(10)(Xa4)90(10)851(Xa5>+C-C

a1...05
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Back to Landau-Ginzburg method

Applicable in GFT?



Why bother in GFT? Applicable?

transition to condensate phase in GFT with non-trivial VEV?!

LG RG

problem of the continuum limit in GFT/spin
foam models

Gy A mapping phases/phase structure of
"I such models
L to this aim: exploit field theory character of GFTs
A
e.g. GFT on R?
[Ben Geloun, Martini, Oriti]
{p) #0

condensate remains hypothesis for realistic models (but getting there); test with LG theory applied to GFT

important for group field theory condensate cosmology: condensate phase is
important pillar

upshot: LG MFT applicable in GFT in spite of non-locality of its interactions, gauge invariance and simplicity

13



Landau-Ginzburg mean-field theory of GFTs

. . ) . . [Tharigen, Pithis; Marchetti, Oriti, Thirigen,Pithis]
(goal: determine ingredients to realize phase transition)

local scalar field LG theory gives coarse picture of phase structure thus sufficient to
theory: point to the formation of a condensate phase; fully accurate only
above critical dimension
—» method works also for GFTs (non-local)

(shown for simplified models on Abelian compact/non-compact group with/out closure constraint
with/out additional local dof; wip on Lorentz group and simplicity constraints imposed)

mean-field analysis for ¢(g) : G" - R,C  take G =R

devise regularisation scheme due to non-locality together with projection onto uniform fields: G — U(1)

specifies
rank of group combinatorics
coupling field
l double-trace melon @ @

extract critical dimension via Ginzburg quantity ¢ A, E4(7=20)

quartic melonic
/' non-local
correlation

contribution

length .
quartic quartic necklace @
interaction

1 : H . . . 2 1. .'1
various interactions (power and combinatorics) checked and result generalized PP @

Impose closure constraint  r—r -1
14



More realistic scenario - kinematics

[wip: Marchetti, Oriti, Thurigen, Pithis]

work within context of the complete Barrett-Crane model
Here:

« caveat: restrict to spacelike tetrahedra/timelike normals

Sp(gaX) — 90(917927937947)() — SL(27<C)4 X IPIHS — R,C

v

SL(2,C)/SU(2) = H*

decomposition of the field in terms of irreducible representations

4

B P1pP2P3 P4

o H /dpzpz E : D]zszO giX P jrm jamajzmsjama
i=1 Jis mz/'

Wigner matrices of SL(2,C) in the so-called unitary principal series

integration over normal to get rid of irrelevant information on embedding

4
_ 2 pi,0 ) P1pP2pP3 P4 P1P2P3 P4
Sp(g) B /HS dXSO g’ H /dpzpi Z Djzm 00(92) Blln1l2n2l3n3l4n4(’0]1m1]2m2]3m334m4

=1 ji,mi,li,ni

. . 01 P2 P3P —_ Pi 0)
Barrett-Crane intertwiner ~ B7'/2P3/ = / dX HD, mi00(

)1/111/ 21no /;m;/;m;

15



More realistic scenario - dynamics

S[Soa 95] — SO [907 95] T SIA [907 95]

GFT action kinetic term  interaction(s)

4
Sole, @] =/ dg/ dX (g, X) (ZAZ-HL) »(g, X)
SL(2,C)* H3 P

double-trace melon simple melon necklace simplicial

e.g.

A

SI1A simplex s P] = = /SL@ - [dg]™” /HM[dX]5901234(X1)904567(X2)907389(X3)909620(X4)900851(X5) + c.c.

16



More realistic scenario - regularization

* due to closure constraint together with projection onto uniform fields &, one has infinite volume factors as SL(2,C)
IS non-compact

— have to regularize models: done by analytic continuation and compactification of SL(2,C) to Spin(4)

[Dona, Gozzini, Nicotra]

concretely:

« at local level it amounts to map between corresponding Lie algebras spin(4) = su(2) & su(2) < sl(2,C) = su(2) ¢ isu(2)

e at global level it amounts to map between corresponding Lie groups
via mapping respective Cartan decompositions into each other:

SL(2,C) Spin(4)

SU(2) x AT x SU(2) — SL(2,C)
n

SU(2) x T* x SU(2) — Spin(4)

g3 -1

1n 1 21t 1t
(u,e229% v) > ue2a%3y 1

1t
503 2550'310— ,ue'LQEO'?,,U—].)

(u,e 2% v) — (ue”

1ln introduce regulator 1n, Wick rotate ity compactif 311
AT ={e2e%n € Ry} ———— AL = {e77p € [0,A)} — 5= T = {77+t € [0,A)} ———> T+ = {e~"2a7t € [0,27a)}

Uil A — 27a

« essentially amounts to mapping of respective homogeneous spaces into each other

H? = SL(2, C)/SU(2) S% = Spin(4) /SU(2)
B dn\? . o m 2

o () o (2 e (2 e (o)
skirt radius

« map representation labels p — —ip —P |work with Spin(4)-representation theory instead

17



—>  result for correlation length (via asymptotic analysis or second-moment-method): & 2

More realistic scenario -
correlation function and length

Starting from regularized action:
— linearize equations of motion over non-trivial background @

— solve for regularized correlation function:

=112

(p:,0) P1P2P3P4 Ap1p2P3P4
VOl ) Z D]'Lmzl i (gz) Bl1n1l2n213n3l4n4Cj1m1j2m2j3m3j4’m4
=1 ]

Ji,Mi;

l’iyni

Cp1p2p3p4 = !
mM1J2M273M374M 1
Jimij2majzmsajama = Zz (—CaSLpz') + bp,jﬂ’n

| /

encapsulates remaining non-locality of interactions after projection onto @

—» analyze correlation function mode-by-mode

— turns out that only the zero-mode behaviour of the correlator is important for us; there we can Wick rotate back and

decompactify to SL(2,C)

—>» only these zero-modes contribute to the correlation length and determine the behaviour of the Ginzburg Q-parameter

modification due to hyperbolicity of domain

(see also Benedetti, 1403.6712)

18



More realistic scenario - Ginzburg Q

.....................

e results for local scalar )\ 2@ _2.1&
field th n (? ~ E a
Ie d eory O ’Yf e (Benedetti, 1403.6712)

one 3-hyperboloid T
coupling \

exponential suppression due to hyperbolicity of domain

rank of the group field

inite skirt radius @ : 2 —2(4—s0)&
for finite skirt radius a : Q ~ )\,yg e ( )3
combinatorics of interaction sg < 4

dimension of 3-hyperboloid

v
flat limit: Q ~ A\ i3 =s0)

a — OO (agrees with our results 2110.15336)

impact of closure constraint

i i - Sg — So + 1 (i.e. one more zero-mode, or one rank less r — r — 1)
via the BC intertwiner:

e can be generalized to arbitrary interactions

 local degrees of freedom can be added straightforwardly

—» Ginzburg Q always very small

—» LG mean-field theory can self-consistently describe phase transition (2o =0 < ® # 0) o



Conclusions

* LG theory is also applicable to GFT models in spite of their non-local interactions
e it iInforms us about the coarse phase structure of different models
e apply it to Barrett-Crane model for Lorentzian first order Palatini gravity

 from there we can extract the rescaling relations of couplings needed for RG studies

Extensions

 consider all the bare causal structure (spacelike, timelike and lightlike tetrahedra)
» extension to other relevant models
e conduct full-fledged (functional) RG and 1/N analyses of these models

 devise observables & tools to characterize different phases wrt their geometric properties

20



Thank you for your attention!



