RG flows between Gaussian fixed points

Diego Buccio, Roberto Percacci arXiv:2207.10596v1

Diego Buccio PhD student

dbuccio@sissa.it Berlin, 26/07/2022

Gaussian Fixed points

$$\mathsf{GFP}_k: \quad Z_k \phi \square^k \phi$$

- Canonical choice: k = 1
- Field classical dimension $[\phi] = \frac{d-2k}{2}$ is fixed by a preferred GFP_k in perturbation theory
- How are they related in the RG flow?

Shift invariant scalar model

Shift symmetry $\phi \rightarrow \phi + c$ and \mathbb{Z}^2 symmetry invariance

$$\Gamma[\phi] = \int d^4x \left[\frac{1}{2} Z_1(\partial \phi)^2 + \frac{1}{2} Z_2(\Box \phi)^2 + \frac{1}{4} g((\partial \phi)^2)^2 + \cdots \right]$$

Wetterich equation with adaptive Litim Cutoff

$$R_k^{(24)} = Z_1(k^2 - q^2)\theta(k^2 - q^2) + Z_2(k^4 - q^4)\theta(k^4 - q^4)$$

The charts

U1	U2
• Chart centred in GFP_1 • $[\phi] = 1$ • Z_1 reabsorbed in ϕ	• Chart centred in GFP_2 • $[\phi] = 0$ • Z_2 reabsorbed in ϕ
$\tilde{g} = \frac{gk^4}{Z_1^2}$, $\tilde{Z}_2 = \frac{Z_2k^2}{Z_1}$	$\hat{\gamma} = \frac{\gamma k^4}{\zeta_1^2}, \qquad \hat{\zeta}_2 = \frac{\zeta_2 k^2}{\zeta_1}$
$\hat{\zeta}_1 = \frac{1}{\tilde{Z}_2},$	$\hat{\gamma} = \frac{\tilde{g}}{\tilde{Z}_2^2}$

Flow equations

U1	U2
$\eta_{1} = \frac{8 \tilde{g} (1 + 2 \tilde{Z}_{2})}{\tilde{g} + 128\pi^{2} (1 + \tilde{Z}_{2})^{2}}$	$\eta_2 = 0$
$\beta_{\tilde{g}} \equiv \partial_t \tilde{g} = (4 + 2\eta_1)\tilde{g} + \frac{10 + 20\tilde{Z}_2 - \eta_1}{64\pi^2 (1 + \tilde{Z}_2)^3} \tilde{g}^2$	$\beta_{\hat{\zeta}_{1}} = -2\hat{\zeta}_{1} - \frac{8\hat{\gamma}(2+\hat{\zeta}_{1})}{\hat{\gamma}+128\pi^{2}(1+\hat{\zeta}_{1})^{2}}$
$\beta_{\tilde{Z}_2} \equiv \partial_t \tilde{Z}_2 = (2 + \eta_1) \tilde{Z}_2$	$\beta_{\hat{\gamma}} = \frac{\left(2 + \hat{\zeta}_{1}\right)\left(\hat{\gamma} + 640\pi^{2}\left(1 + \hat{\zeta}_{1}\right)^{2}\right)}{32\pi^{2}\left(1 + \hat{\zeta}_{1}\right)^{3}\left(\hat{\gamma} + 128\pi^{2}\left(1 + \hat{\zeta}_{1}\right)^{2}\right)}\hat{\gamma}^{2}$

Fixed points

		U	1		
FP	\tilde{Z}_{2*}	$ ilde{g}_*$	η_{1*}	$ heta_1$	$ heta_2$
GFP ₁	0	0	0	-4	-2
$NGFP_1$ NGFP_2	0	-127.0	-0.90 8.90	43.60	-10.90
NGFP ₂	-0.6	-1011	-2	-13.84	10.84

NGFP₁ and NGFP₂ known in litterature (De Brito et al. '21, Laporte et al. '21, '22)

g<0 in NGFPs negative interaction energy

The two NGFP₃ have the same critical exponents and their coordinates in theories space are related by the map showed before

Flow between GFPs

- "Classical" trajectory of free theories g = 0 (Rosten '11)
- Perturbative trajectories near to it
- Separatrix in the strongly interacting region

$$\begin{split} \tilde{g} &\sim -16\pi^2 \tilde{Z}_2 \text{ for large } \tilde{Z}_2 \\ \text{ends up in NGFP}_1 \end{split} \qquad \text{out from GFP}_2 \text{ as } \hat{\gamma} &\sim -16\pi^2 \hat{\zeta}_1 \\ \hat{\gamma} &\sim -128\pi^2 (2\sqrt{6}-5)\hat{\zeta}_1^2 \text{ for large } \hat{\zeta}_1 \end{split}$$

Dimensionful couplings

 $\partial_t Z_2 = 0$

Identifying k with an external momentum p:

$$Z_2 \phi \Box^2 \phi \sim p^4$$
 dominant
UV asymptotic freedom

Ghost mass

- Higher derivative theories suffer of the existence of ghosts
- $m_{gh}^2 = Z_1/Z_2$
- If we fix $Z_1 = 1$ in the IR limit, the pole mass at $\tilde{Z}_2 = 1$ corresponds to different masses on different trajectories
- On the classical trajectory $m_{gh}^2 = 1/Z_2 = const$
- On the separatrix $m_{gh}^2 \rightarrow \infty$

Inessential operators

- Different # DOF in different GFP_k
- Essential RG fixes the DOF of the theory
- cannot handle deformations that introduce new DOF
- Starting from GFP_l, $\phi \Box^k \phi$ are inessential for k > lwith redefinition $\delta \phi = \frac{Z_k}{2Z_l} \Box^{k-l} \phi$

Truncation

- We kept only relevant operators in GFP₂
- Starting with an irrelevant deformation of GFP₂, UV asymptotic freedom is broken
- All irrelevant operator are generated in the IR flow, but it is expected that the classical scaling prevails

Symanzik model

$$S = \int d^4 x \left[\frac{1}{2} Z_1 (\partial \phi)^2 + \frac{1}{2} Z_0 \phi^2 + \frac{1}{4!} \lambda \phi^4 + \cdots \right]$$

Main features

- From GFP_1 , well known $\lambda\phi^4$ theory
- Particle freezes out in IR
- GFP₀ trivial theory
- EOM: $\phi = 0$ All operators are inessential

Conclusions

- Free theory both in IR and UV
- Ghosts and negative interaction energy
- Anomalous dimension matches with classical dimension in GFPs
- Similar flow in $\lambda \phi^4$ theory for negative λ

Further developments

• for different k similar fluxes between GFPs.

In d = 4 and k > 2, infinite number of relevant operators may be manageable with larger symmetries

- Extended truncations (Laporte et al. '22) we expect higher order kinetic terms to be generated
- NLSM
- Analogies with R^2 theories of gravity

