PIon-PION SCATTERING

FROM NUCLEON-MESON FLUCTUATIONS

Jürgen Eser

Institut de Physique Théorique (IPhT), Saclay

ERG 2022 - Harnack House, Berlin
July 26, 2022

Relevant publications:
JE and J.-P. Blaizot, Phys. Rev. D 105 (2022), 074031;
N. Cichutek, F. Divotgey, and JE, Phys. Rev. D 102 (2020), 034030;
F. Divotgey, JE, and M. Mitter, Phys. Rev. D 99 (2019), 054023;

JE, F. Divotgey, M. Mitter, and D.H. Rischke, Phys. Rev. D 98 (2018), 014024.

Nucleon-meson model with parity doubling

- Euclidean effective action of investigated model:

$$
\begin{aligned}
\Gamma_{k}\left[\varphi, \bar{\psi}_{1}, \psi_{1}, \bar{\psi}_{2}, \psi_{2}\right]=\int_{x}\{ & \frac{1}{2} Z_{k}\left(\partial_{\mu} \varphi\right) \cdot \partial_{\mu} \varphi+V_{k}\left(\varphi^{2}\right)-h \sigma \\
& +\bar{\psi}_{1}\left[Z_{k}^{\psi} \gamma_{\mu} \partial_{\mu}+y_{1, k}\left(\sigma+i \gamma_{5} \vec{\pi} \cdot \vec{\tau}\right)\right] \psi_{1} \\
& +\bar{\psi}_{2}\left[Z_{k}^{\psi} \gamma_{\mu} \partial_{\mu}-y_{2, k}\left(\sigma-i \gamma_{5} \vec{\pi} \cdot \vec{\tau}\right)\right] \psi_{2} \\
& \left.+m_{0, k}\left(\bar{\psi}_{1} \psi_{2}+\bar{\psi}_{2} \psi_{1}\right)\right\}
\end{aligned}
$$

- $\mathrm{O}(4)$-vector $\varphi=(\vec{\pi}, \sigma)$, wave-function renormalizations Z_{k}, Z_{k}^{ψ}
- Mirror-assigned fermion doublet $\left(\psi_{1}, \psi_{2}\right)$
\Rightarrow Chiral-invariant fermion mass: $m_{0}\left(\bar{\psi}_{1} \psi_{2}+\bar{\psi}_{2} \psi_{1}\right)$
[Detar, Kunihiro ('89); Hatsuda, Prakash ('89); Jido, Nemoto, Oka, Hosaka ('00); Jido, Oka, Hosaka ('01)]

Nucleon and chiral partner

- Fermion doublet $\left(\psi_{1}, \psi_{2}\right)$ defined to be parity-even
- Transformation into physical parity-opposite basis:

$$
\binom{\text { nucleon }}{\text { chiral partner }}=\binom{N_{+}}{N_{-}}=\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & \gamma_{5}
\end{array}\right)\left(\begin{array}{cc}
\cos \omega & \sin \omega \\
-\sin \omega & \cos \omega
\end{array}\right)\binom{\psi_{1}}{\psi_{2}}
$$

- Rotation angle ω for the parity doublet:

$$
\omega=\frac{1}{2} \arctan \left[\frac{2 m_{0}}{\left(y_{1}+y_{2}\right) \sigma_{0}}\right], \quad \lim _{\sigma_{0} \rightarrow 0} \omega=\frac{\pi}{4}, \quad \lim _{m_{0} \rightarrow 0} \omega=0
$$

- Order parameter for chiral symmetry breaking: isoscalar condensate σ_{0}
- Interpretation of chiral partner: lightest resonance $N(1535)$
- Frequently discussed, also at nonzero densities
[Gallas, Giacosa, Rischke ('10); Weyrich, Strodthoff, von Smekal ('15); Marczenko, Blaschke, Redlich, Sasaki ('18); Tripolt, Jung, von Smekal, Wambach ('21); Minamikawa, Kojo, Harada ('21)]

Research objectives

Compute S-wave pion-pion scattering lengths:

- Present a "fresh" view on the topic
- Include loop corrections in an efficient manner, i.e., by means of the functional renormalization group (FRG)
- Test and exemplify the class of linear sigma models (LSMs)

Draw connection between the nucleon-meson model/LSM and the corresponding nonlinear sigma model (NLSM):

- Use stereographic coordinates
- Verify convergence of the employed low-energy expansion
- Elucidate subtleties and intricacies concerning the truncation of higher-derivative pion interactions in the effective action

Pion-pion scattering

- Pion-pion scattering process:

- Formulation in terms of stereographic projections and elimination of the radial θ-field through the equation of motion (EOM)

$$
\Pi^{\bar{a}}=2 f_{\pi} \frac{\pi^{\bar{a}}}{\theta+\sigma}, \quad \bar{a}=1,2,3, \quad \theta=|\varphi|=\sqrt{\vec{\pi}^{2}+\sigma^{2}}
$$

Metric: $\quad g_{\bar{a} \bar{b}}=\frac{16 f_{\pi}^{2} \delta_{\bar{a} \bar{b}}}{\left(4 f_{\pi}^{2}+\Pi^{2}\right)^{2}}, \quad$ EOM: $\quad \frac{\delta \Gamma}{\delta \theta}=0$

Stereographic action

\Rightarrow Stereographic form of the (bosonic) effective action:

$$
\begin{aligned}
\Gamma[\Pi] & =\int_{x}\left[\frac{\theta^{2}}{2} g_{\bar{a} \bar{b}}\left(\partial_{\mu} \Pi^{\bar{a}}\right) \partial_{\mu} \Pi^{\bar{b}}+\frac{1}{2}\left(\partial_{\mu} \theta\right) \partial_{\mu} \theta+V\left(\theta^{2}\right)-h \theta \frac{4 f_{\pi}^{2}-\Pi^{2}}{4 f_{\pi}^{2}+\Pi^{2}}\right], \\
\theta & =f_{\pi}+\epsilon \xi_{1}(\Pi)+\epsilon^{2} \xi_{2}(\Pi)+\cdots, \quad \epsilon=\frac{M_{\pi}^{2}}{M_{\sigma}^{2}}
\end{aligned}
$$

- Formulation constitutes low-energy expansion in $\epsilon \simeq 0.0844$
- To lowest order, NLSM on three-sphere recovered: $\theta=f_{\pi}$
- Employing EOM equivalent to summation of all tree diagrams (based on Γ):

Scattering amplitude

\Rightarrow Computation of the scattering amplitude reduces to a single Feynman diagram

$$
\text { EOM: } \frac{\delta \Gamma}{\delta \theta}=0 \quad \Rightarrow \quad \mathcal{M}_{\pi \pi} \sim \Gamma_{\Pi} \equiv i \Gamma^{(4)}[\Pi]
$$

- General structure of scattering amplitude:

$$
\mathcal{M}_{\pi \pi}^{a b c d}(s, t, u)=i \mathfrak{A}(s, t, u) \delta^{a b} \delta^{c d}+i \mathfrak{A}(t, u, s) \delta^{a c} \delta^{b d}+i \mathfrak{A}(u, s, t) \delta^{a d} \delta^{b c}
$$

- S-wave isospin-zero and isospin-two scattering lengths:

$$
\begin{aligned}
& a_{0}^{0}=\left.\frac{1}{32 \pi}[3 \mathfrak{A}(s, t, u)+\mathfrak{A}(t, u, s)+\mathfrak{A}(u, s, t)]\right|_{s=4 M_{\pi}^{2}, t=u=0}, \\
& a_{0}^{2}=\left.\frac{1}{32 \pi}[\mathfrak{A}(t, u, s)+\mathfrak{A}(u, s, t)]\right|_{s=4 M_{\pi}^{2}, t=u=0}
\end{aligned}
$$

Scattering lengths

\Rightarrow Findings up to $\mathcal{O}\left(p^{12}\right)$:

$$
\begin{aligned}
& a_{0}^{0}=\frac{M_{\pi}^{2}}{32 \pi f_{\pi}^{2}}\left(7+29 \epsilon+108 \epsilon^{2}+432 \epsilon^{3}+1728 \epsilon^{4}+6912 \epsilon^{5}+15360 \epsilon^{6}\right. \\
& \left.+12288 \epsilon^{7}\right) \longrightarrow \frac{M_{\pi}^{2}}{32 \pi f_{\pi}^{2}}(1-\epsilon)\left[7+9 \sum_{n=1}^{\infty}(4 \epsilon)^{n}\right], \\
& a_{0}^{2}=-\frac{M_{\pi}^{2}}{16 \pi f_{\pi}^{2}}(1-\epsilon), \quad \text { expressions correct up to } \epsilon^{5}=\left(\frac{M_{\pi}^{2}}{M_{\sigma}^{2}}\right)^{5} \sim 10^{-6}
\end{aligned}
$$

- Geometric series convergent for $\epsilon<1 / 4$, yields "radius of convergence"
- Reference values: Experiment/Chiral perturbation theory

$$
a_{0}^{0}=0.2198 \pm 0.0126, \quad a_{0}^{2}=-0.0445 \pm 0.0023
$$

[Weinberg ('66); Gasser, Leutwyler ('84, '85); Leutwyler ('94, '12); Bijnens et al. ('96, '97); Colangelo, Gasser, Leutwyler ('00, '01); Ananthanarayan, Colangelo, Gasser, Leutwyler ('01); Gasser ('09)]

General procedure

1. Compute dressed vertices from FRG integration within nucleon-meson model

$$
\begin{aligned}
& \Gamma_{\mathrm{UV}}=S \\
& \partial_{k} \Gamma_{k}=\frac{1}{2} \operatorname{tr}\left[\left(\partial_{k} \mathcal{R}_{k}\right)\left(\Gamma_{k}^{(2)}+\mathcal{R}_{k}\right)^{-1}\right] \\
& \Gamma_{\mathrm{IR}}=\Gamma
\end{aligned}
$$

\Rightarrow Constraint: chiral symmetry breaking at $\Lambda_{\chi}=1.2 \mathrm{GeV} \simeq 4 \pi f_{\pi}$
2. Transform to nonlinear stereographic action
3. Perform low-energy expansion up to $\mathcal{O}\left(p^{12}\right)$, accurate up to ϵ^{5}
4. Compute S-wave isospin-zero and isospin-two scattering lengths
\Rightarrow Compare to mean-field (MF) and one-loop calculations ("backwards")
\Rightarrow Comment on model parameters: σ-mass and chiral-invariant nucleon mass m_{0}
[Wetterich ('93); Ellwanger ('94); Morris ('94); Pawlowski ('07); Dupuis et al. ('21)]

FRG integration

- FRG flow in LPA'-truncation (found to reproduce scattering lengths):

$\Rightarrow \sigma$-mass in FRG (with given conditions) typically around $M_{\sigma} \simeq 500 \mathrm{MeV}$
\Rightarrow Chiral-invariant nucleon mass amounts to $m_{0}=824.5 \mathrm{MeV}$ in the IR

Isospin-zero scattering length

Isospin-two scattering length

Isoscalar mass in FRG

- Scale dependence of M_{σ} for different approximations:

\Rightarrow "Down-bending" of M_{σ} with "advancing" the approximation
$\Rightarrow M_{\sigma}$ successively shrinks, leading to improved results on the scattering lengths

Radius of convergence

- Dynamic ratio $\epsilon=M_{\pi}^{2} / M_{\sigma}^{2}$:

- Geometric series convergent for $\epsilon<1 / 4$, divergent for $\epsilon \geq 1 / 4$
\Rightarrow Low-energy expansion valid for $k \lesssim \Lambda_{\chi}$ ("radius of convergence" w.r.t. k-scale)

Rotation angle

- Dynamic rotation angle ω :

- ω parametrizes transformation to physical basis
\Rightarrow Angles coincide in the IR, reflecting the common fermion parameters

Conclusion

- Pion-pion scattering as interesting application of parity-doublet model
\Rightarrow Scattering lengths brought into simultaneous agreement with experiment, with the requirement of chiral symmetry breaking roughly at $4 \pi f_{\pi}$

FRG: $\quad a_{0}^{0}=0.2291$,
experiment: $\quad a_{0}^{0}=0.2198 \pm 0.0126, \quad a_{0}^{2}=-0.0445 \pm 0.0023$

- Embedding of the topic into the dynamical context of the FRG
- "Backwards"-determination of σ-mass: insisting on pertinent scales and employing common parameters when "reducing" the approximation
$\Rightarrow \sigma$-mass tends to shrink with "advancing" the approximation, from $M_{\sigma}>1 \mathrm{GeV}$ (MF, one-loop) towards $M_{\sigma} \simeq 500 \mathrm{MeV}$ (FRG)
\Rightarrow Model study suggests a chiral-invariant mass around $m_{0}=824.5 \mathrm{MeV}$

PIon-PION SCATTERING

FROM NUCLEON-MESON FLUCTUATIONS

Jürgen Eser

Institut de Physique Théorique (IPhT), Saclay

ERG 2022 - Harnack House, Berlin
July 26, 2022

Relevant publications:
JE and J.-P. Blaizot, Phys. Rev. D 105 (2022), 074031;
N. Cichutek, F. Divotgey, and JE, Phys. Rev. D 102 (2020), 034030;
F. Divotgey, JE, and M. Mitter, Phys. Rev. D 99 (2019), 054023;

JE, F. Divotgey, M. Mitter, and D.H. Rischke, Phys. Rev. D 98 (2018), 014024.

MF approximation

- MF integration (with chiral-symmetry breaking scale Λ_{χ}):

$\Rightarrow \sigma$-mass in MF (with given conditions): $M_{\sigma}>1 \mathrm{GeV}$
- Chiral-invariant nucleon mass fixed to LPA'-value to achieve comparability

Isoscalar-mass prediction in MF

- M_{σ} in the IR, depending on the scale of chiral symmetry breaking:

$\Rightarrow M_{\sigma} \simeq 1.5 \mathrm{GeV}$ in the IR, with the required breaking scale of $\Lambda_{\chi} \simeq 4 \pi f_{\pi}$
$\Rightarrow M_{\sigma}$ uniquely determined, once fermionic model parameters fixed

