

Functional Flows for Complex Actions

Based on arXiv:2207.10057 in collaboration with J. M. Pawlowski

・ロット (雪) (日) (日)

э

Introduction	Lee-Yang Theory	The fRG	A Num. Test	PT in d=4	Conclusion	Additional Slides	DG-Meth
0	•0	000	000	00	00	000000	00000

Partition function :

$$\mathcal{Z} = \sum_{i} \exp(-\beta E_i) \,.$$

Free energy :

$$F = -\beta^{-1} \log(\mathcal{Z}) \,.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Partition function :

$$\mathcal{Z} = \sum_{i} \exp(-\beta E_i) \,.$$

Free energy :

$$F = -\beta^{-1} \log(\mathcal{Z}) \,.$$

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Phase transition for $\mathcal{Z} = 0$, i.e. singular *F*.

Partition function :

$$\mathcal{Z} = \sum_{i} \exp(-\beta E_i) \,.$$

Free energy :

$$F = -\beta^{-1} \log(\mathcal{Z}) \,.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Phase transition for $\mathcal{Z} = 0$, i.e. singular *F*.
- BUT: \mathcal{Z} is always positive for $i < \infty$ and $\beta, E_i \in \mathbb{R}$.

Introduction Lee-Yang Theory The fRG A Num. Test PT in d=4 Conclusion Additional Slides DG-N 0 •••

Phase Transitions: Statistical Mechanics

Partition function :

$$\mathcal{Z} = \sum_{i} \exp(-\beta E_i) \,.$$

Free energy :

$$F = -\beta^{-1}\log(\mathcal{Z})\,.$$

- Phase transition for $\mathcal{Z} = 0$, i.e. singular *F*.
- BUT: \mathcal{Z} is always positive for $i < \infty$ and $\beta, E_i \in \mathbb{R}$.

Phase transitions in the limit $N \to \infty$ $V \to \infty$ N/V = const.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Partition function :

$$\mathcal{Z} = \sum_{i} \exp(-\beta E_i) \,.$$

Free energy :

$$F = -\beta^{-1} \log(\mathcal{Z}).$$

M. Fisher, Lecture Notes 1965

Phase transitions in the limit $N \to \infty$ $V \to \infty$ $N/V = {\rm const.}$

Solution: Extend to complex numbers $\mathbb C$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Z has complex zeroes (LYZ)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $\label{eq:solution:Extend} \frac{Solution:}{numbers} \, \mathbb{C}$

- Z has complex zeroes (LYZ)
- LYZ move to the real axis with increasing *N*, *V*

Introduction	Lee-Yang Theory	The fRG	A Num. Test	PT in d=4	Conclusion	Additional Slides	DG-Me
0	0•	000	000	00	00	000000	0000

 $\underline{\text{Solution:}} \text{ Extend to complex } \\ \text{numbers } \mathbb{C}$

- Z has complex zeroes (LYZ)
- LYZ move to the real axis with increasing *N*, *V*

 \Rightarrow Predict real phase transition!

Re q

CC license

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 $\label{eq:solution:Extend} \frac{Solution:}{numbers} \, \mathbb{C}$

- Z has complex zeroes (LYZ)
- LYZ move to the real axis with increasing *N*, *V*

Re q

 \Rightarrow Predict real phase transition!

CC license

PRD.95.085001 L. Zambelli, O. Zanusso PRL.125.191602 A. Connelly, G. Johnson, F. Rennecke, V. Skokov arXiv:2203.16651 F. Rennecke, V. Skokov

Lee-Yang Theory The fl

The fRG A Nur

PT in d=4 00 Conclusion

Additional Slides

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

DG-Methods

A Functional Approach

The infrared regularized path-integral / generating functional:

$$\mathcal{Z}_{k}[\boldsymbol{J}] = \int [d\varphi]_{\mathrm{ren},p^{2} \ge k^{2}} \exp\left\{-S[\varphi] + \boldsymbol{J} \cdot \varphi\right\},$$
$$\int [d\varphi]_{\mathrm{ren},p^{2} \ge k^{2}} = \int [d\varphi]_{\mathrm{ren}} \exp\left\{-\frac{1}{2}\varphi \cdot R_{k} \cdot \varphi\right\}$$

A Functional Approach

The infrared regularized path-integral / generating functional:

The fRG

$$\mathcal{Z}_{k}[\boldsymbol{J}] = \int [d\varphi]_{\mathrm{ren},p^{2} \geq k^{2}} \exp\left\{-S[\varphi] + \boldsymbol{J} \cdot \varphi\right\},$$
$$\int [d\varphi]_{\mathrm{ren},p^{2} \geq k^{2}} = \int [d\varphi]_{\mathrm{ren}} \exp\left\{-\frac{1}{2}\varphi \cdot R_{k} \cdot \varphi\right\}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Real function of a complex variable.

A Functional Approach

The infrared regularized path-integral / generating functional:

The fRG

$$\mathcal{Z}_{k}[\boldsymbol{J}] = \int [d\varphi]_{\mathrm{ren},p^{2} \ge k^{2}} \exp\left\{-S[\varphi] + \boldsymbol{J} \cdot \varphi\right\},$$
$$\int [d\varphi]_{\mathrm{ren},p^{2} \ge k^{2}} = \int [d\varphi]_{\mathrm{ren}} \exp\left\{-\frac{1}{2}\varphi \cdot R_{k} \cdot \varphi\right\}$$

- Real function of a complex variable.
- Sample from oscillatory integrand.

arXiv 2111.12645: F. Attanasio, M. Bauer, L. Kades, J. M. Pawlowski arXiv 2203.01243: J. M. Pawlowski, J. Urban

Generating functionals

• (Amputated) connected correlation functions:

 $\mathcal{W}_k[J] = \ln \mathcal{Z}_k[J]$ $S_{\mathrm{eff},k}[\phi] = -W_k[S_k^{(2)}\phi]$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

T. Weigand, Lecture Notes 2011

Generating functionals

• (Amputated) connected correlation functions:

 $\mathcal{W}_k[J] = \ln \mathcal{Z}_k[J]$

$$S_{\text{eff},k}[\phi] = -W_k[S_k^{(2)}\phi]$$

T. Weigand, Lecture Notes 2011

• 1PI correlation functions / Effective action:

$$\Gamma_k[\phi] = \sup\left\{\int_x J(x)\phi(x) - \mathcal{W}_k[J] - \Delta S_k[\phi]\right\}$$

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Introduction	Lee-Yang Theory	The fRG	A Num. Test	PT in d=4	Conclusion	Additional Slides	DG-Methods
0	00	000	000	00	00	000000	0000000

Optimising the RG flow

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Polchinski Flow:

 Amputate classical propagator:

 $J = (S^{(2)} + R_k)[\phi_0] \phi \,.$

• Remove classical mass $\Rightarrow S_{int}$

Introduction	Lee-Yang Theory	The fRG	A Num. Test	PT in d=4	Conclusion	Additional Slides	DG-Met
0	00	000	000	00	00	000000	0000

Optimising the RG flow

0.8 0.6 0.6 0.4 0.4 0.2 k = 50.0 0.2 k = 1.5 k = 0.00.0 -2 0 2 _4 Field ϕ

Polchinski Flow:

Amputate classical propagator:

 $J = (S^{(2)} + R_k)[\phi_0] \phi.$

Remove classical mass \Rightarrow S_{int}

RG-adapted Flow:

1.0

0.8

 Amputate RG-adapted propagator:

$$J = (G_k)^{-1} [\phi_0] \phi.$$

(ロ) (同) (三) (三) (三) (○) (○)

4

Remove $m_k \Rightarrow S_{dyn}$

An algebraic flow

From the Schwinger Functional Non-linear parabolic PDE:

$$\left(\partial_{t} + \int_{x} \phi \gamma_{\text{dyn},k} \frac{\delta}{\delta \phi}\right) S_{\text{dyn},k}[\phi] + \frac{1}{2} \int_{x} \phi \partial_{t} \Gamma_{k}^{(2)}[\phi_{0}] \phi$$
$$= \frac{1}{2} \operatorname{Tr} \mathcal{C} \left[S_{\text{dyn}}^{(2)}[\phi] - (S_{\text{dyn}}^{(1)}[\phi])^{2} \right]$$
Convection terms

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Introduction	Lee-Yang Theory	The fRG	A Num. Test	PT in d=4	Conclusion	Additional Slides	DG-Methods
0	00	000	000	00	00	000000	0000000

Discontinuous Galerkin

Computational domain:

Solution in each cell:

$$\Omega \simeq \Omega_h = \bigcup_{k=1}^K D^k$$

$$u_{h}^{k}(t,x) = \sum_{n=1}^{N+1} \hat{u}_{n}^{k}(t)\psi_{n}(x)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Introduction	Lee-Yang Theory	The fRG	A Num. Test	PT in d=4	Conclusion	Additional Slides	DG-Methods
0	00	000	000	00	00	000000	0000000

Discontinuous Galerkin

Computational domain:

Solution in each cell:

$$\Omega \simeq \Omega_h = \bigcup_{k=1}^K D^k$$

$$u_h^k(t,x) = \sum_{n=1}^{N+1} \hat{u}_n^k(t)\psi_n(x)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Best of Finite Volume

- Cell average vanishes.
- geometrically flexible
- Inherently discontinuous

Introduction Lee-Yang Theory The fRG A Num. Test PT in d=4 Conclusion Additional Slides DG-Methods 0 00 000 000 00 00 0000000 0000000

Discontinuous Galerkin

Computational domain:

$$\Omega \simeq \Omega_h = \bigcup_{k=1}^K D^k$$

Best of Finite Volume

- Cell average vanishes.
- geometrically flexible
- Inherently discontinuous

Best of Finite Element

- Residue vanishes weakly.
- Higher order accuracy

Solution in each cell:

$$u_h^k(t,x) = \sum_{n=1}^{N+1} \hat{u}_n^k(t)\psi_n(x)$$

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

Introduction Lee-Yang Theory The fRG A Num. Test PT in d=4 Conclusion Additional Slides DG-Methods 0 00 000 000 00 00 0000000 0000000

Discontinuous Galerkin

Computational domain:

$$\Omega \simeq \Omega_h = \bigcup_{k=1}^K D^k$$

Best of Finite Volume

- Cell average vanishes.
- geometrically flexible
- Inherently discontinuous

Best of Finite Element

- Residue vanishes weakly.
- Higher order accuracy

Solution in each cell:

arXiv:1903.09503 E. Grossi, N. Wink PRD.104.016028 E. Grossi, F. Ihssen, J. M. Pawlowski, N. Wink arXiv:2207.12266 F. Ihssen, J. M. Pawlowski, F. R. Sattler, N. Wink

Discontinuous Galerkin

Computational domain:

$$\Omega \simeq \Omega_h = \bigcup_{k=1}^K D^k$$

Best of Finite Volume

- Cell average vanishes.
- geometrically flexible
- Inherently discontinuous

Best of Finite Element

- Residue vanishes weakly.
- Higher order accuracy

Solution in each cell:

Introduction	Lee-Yang Theory	The fRG	A Num. Test	PT in d=4	Conclusion	Additional Slides	DG-Methods
0	00	000	00●	00	00	000000	0000000

The O(N) Model

$$S[\varphi] = \int_x \left\{ \frac{1}{2} \varphi(x) \left[-\partial_\mu^2 + m^2 \right] \varphi(x) + \frac{\lambda}{4!} \varphi(x)^4 \right\}$$

Test case:

• O(N) with d = 0, N = 1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Direct evaluation of ${\mathcal Z}$

Introduction	Lee-Yang Theory	The fRG	A Num. Test	PT in d=4	Conclusion	Additional Slides	DG-Methods
0	00	000	000	00	00	000000	0000000

The O(N) Model

$$S[\varphi] = \int_x \left\{ \frac{1}{2} \varphi(x) \left[-\partial_\mu^2 + m^2 \right] \varphi(x) + \frac{\lambda}{4!} \varphi(x)^4 \right\}$$

Test case:

- O(N) with d = 0, N = 1
- Direct evaluation of ${\mathcal Z}$

arXiv:2108.02504 A. Koenigstein, M. J. Steil, N. Wink, E. Grossi, J.Braun, M. Buballa, D. H. Rischke

arXiv:2108.04037 M. Steil, A. Koenigstein

arXiv:2108.10085 A. Koenigstein, M. J. Steil, N. and Wink, E. Grossi, J. Braun

Introduction O	Lee-Yang Theory 00	The fRG 000	A Num. Test OO●	PT in d=4 00	Conclusion OO	Additional Slides	DG-Methods
		Т	he $O(\Lambda)$	/) Mod	del		

$$S[\varphi] = \int_{x} \left\{ \frac{1}{2} \varphi(x) \left[-\partial_{\mu}^{2} + m^{2} \right] \varphi(x) + \frac{\lambda}{4!} \varphi(x)^{4} \right\}$$

・ロト・「聞ト・「聞ト・「聞ト・」 目・

Introduction	Lee-Yang Theory	The fRG	A Num. Test	PT in d=4	Conclusion	Additional Slides	DG-Methods
0	00	000	000	00	00	000000	0000000

The O(N) Model

$$S[\varphi] = \int_x \left\{ \frac{1}{2} \varphi(x) \left[-\partial_\mu^2 + m^2 \right] \varphi(x) + \frac{\lambda}{4!} \varphi(x)^4 \right\}$$

◆□▶ ◆□▶ ◆三≯ ◆三≯ ● ● ● ●

Int O	roductior	n	Lee-Yang Theory	The fRG	A Num. 000	Test PT in d=	4 Conclusio	n Additional Slide: 000000	s DG-Methods
			$M(\phi_y, H$	$)=\phi_{ m EoM},$	with	$\partial_{\phi_x} w[J(\phi_x$	$[\phi_y,\phi_y)] - H$	$ _{\phi_x = \phi_{x, EoM}} = 0$	0

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

LY-location for Im[H] = 0.994, $m_{\text{UV}}^2 = 1$ at $\text{Im}[\langle M \rangle] = 1.33$!

Introduction Lee-Yang Theory The fRG A Num. Test PT in d=4 Conclusion Additional Slides DG-Methods 0 00 000 00 00 000 000 0000000 00000000

Recovering a Real Phase Transition

Scaling behaviour:
$${m^2-m_c^2\over m_c^2}=const\, H^{1/\Delta}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction Lee-Yang Theory The fRG A Num. Test PT in d=4 Conclusion Additional Slides DG-Method 0 00 000 000 00 00 0000000 0000000 0000000 0000000 0000000 0000000 000000000 00000000 00000000

Summary & Outlook

- Established a new functional flow: the RG-adapted flow
- Investigated the convergence of different functional flows in the complex plane using DG-methods.
- Retrieved location of the Lee-Yang singularity in *d* = 0 and *d* = 4.
- We extracted the critical mass m_c^2 of the real phase transition in d = 4!

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction Lee-Yang Theory The fRG A Num. Test PT in d=4 Conclusion Additional Slides DG-Method 0 00 000 000 00 00 0000000 0000000 0000000 0000000 0000000 0000000 000000000 00000000 00000000

Summary & Outlook

- Established a new functional flow: the RG-adapted flow
- Investigated the convergence of different functional flows in the complex plane using DG-methods.
- Retrieved location of the Lee-Yang singularity in *d* = 0 and *d* = 4.
- We extracted the critical mass m_c^2 of the real phase transition in d = 4!

• Investigate extraction in $d \neq 4$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 Go towards QCD phase structure

Introduction	Lee-Yang Theory	The fRG	A Num. Test	PT in d=4	Conclusion	Additional Slides	DG-Met
0	00	000	000	00	0.	000000	0000

Thank you for your attention!

(日)

Introduction Lee-Yang Theory The fRG A Num. Test PT in d=4 Conclusion Additional Slides 0 00 000 000 0 0 0 0 0 0 0<

Dealing with complex variables

Map the complex Ensure positive, real diffusion: derivative:

• $\partial_{\phi} \to \partial_{\phi_x}$ • $\partial_{\phi} \to -i\partial_{\phi_y}$

•
$$\left(S_k^{(2)}[\phi_0]\right)^2 = \left(m^2 + k^2 + \phi_0 \frac{\lambda}{2}\right)^2 \in \mathbb{R}_{>0}$$

$$\partial_t \left(u_x + \mathrm{i} u_y \right) + \partial_{\phi_x} \left[\frac{k^2}{\left(S_k^{(2)}[\phi_0] \right)^2} \left(\left(u_x + \mathrm{i} u_y \right)^2 - \partial_{\phi_x} \left(u_x + \mathrm{i} u_y \right) \right) \right] = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

General functional Flows

$$\partial_t P[\phi] = \frac{\delta}{\delta \phi(x)} \Big(\Psi[\phi] \, P[\phi] \Big) \,, \qquad P[\phi] = e^{-S_{\rm eff}[\phi]}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- General reparametrisation with unchanged path integral.
- RG-Kernel:

$$\Psi[\phi] = \frac{1}{2} \mathcal{C}[\phi] \frac{\delta S_{\text{eff}[\phi]}}{\delta \phi} + \gamma_{\phi} \phi$$

General functional Flows

$$\partial_t P[\phi] = \frac{\delta}{\delta \phi(x)} \Big(\Psi[\phi] \, P[\phi] \Big) \,, \qquad P[\phi] = e^{-S_{\rm eff}[\phi]}$$

• General reparametrisation with unchanged path integral.

• RG-Kernel:

$$\Psi[\phi] = \frac{1}{2} \mathcal{C}[\phi] \frac{\delta S_{\text{eff}[\phi]}}{\delta \phi} + \gamma_{\phi} \phi$$

Use this to integrate out momentum shells k.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

General functional Flows

$$\partial_t P[\phi] = \frac{\delta}{\delta\phi(x)} \Big(\Psi[\phi] P[\phi] \Big), \qquad P[\phi] = e^{-S_{\text{eff}}[\phi]}$$

- General reparametrisation with unchanged path integral.
- RG-Kernel:

$$\Psi[\phi] = \frac{1}{2} \mathcal{C}[\phi] \frac{\delta S_{\text{eff}[\phi]}}{\delta \phi} + \gamma_{\phi} \phi$$

Use this to integrate out momentum shells k.

Choice of $C[\phi]$:

Field dependence

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Regulator

Introduction O	Lee-Yang Theory	The fRG 000	A Num. Test 000	PT in d=4 00	Conclusion OO	Additional Slides	DG-Methods

$$\partial_t W_k[J] = -\frac{1}{2} \operatorname{Tr} \partial_t R_k \left[W^{(2)}[J] + \left(W^{(1)}[J] \right)^2 \right]$$

$$\partial_t \Gamma_k[\Phi] = \frac{1}{2} \operatorname{Tr} \left[\left(\frac{1}{\Gamma_k^{(2)}[\Phi] + R_k} \right)_{ab} \partial_t R_k^{ab} \right]$$

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

1000

Introduction	Lee-Yang Theory	The fRG	A Num. Test	PT in d=4	Conclusion	Additional Slides	DG-Methods
0	00	000	000	00	00	000000	0000000

Convergence beyond d = 0

・ロット (雪) (日) (日)

ъ

Convergence beyond d = 0

・ロット (雪) (日) (日)

э

• Field dependence is not exact for d > 0.

	01101031011	FIIIU=4	Slides	JG-Methods
0 00 000 000 00 000	00	00) (0000000

Convergence beyond d = 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Introduction	Lee-Yang Theory	The fRG	A Num. Test	PT in d=4	Conclusion	Additional Slides	DG-Me
0	00	000	000	00	00	000000	0000

Computing the complex dynamical potential

- Resolve the complex plane in ϕ_y -slices.
- Singularity at $J_c = 3.3659(42) i$.
- Predicted from fixed-point analyses

$$\operatorname{Re}[W(0, J_y)] = c J_y^2 + a + b \log(J_c - J_y),$$

	b	J_c	с	
d = 0 $d = 4$	$ \begin{array}{c} 1.0008(55) \\ 1.24(41) \end{array} $	$\begin{array}{c} 3.002104(65) \\ 3.3659(42) \end{array}$	-0.281(12) -0.99(91)	

Introduction O	Lee-Yang Theory OO	The fRG 000	A Num. 000	Test	PT in d=4 00	Conclusion OO	Additional Slides	DG-Methods
	$M(\phi_y, H)$ =	$= \phi_{\rm EoM} ,$	with	$\partial_{\phi_x} w$	$\phi[J(\phi_x,\phi_y)]$	$)] - H _{\phi_x} =$	$\phi_{x, EoM} = 0$	

Introduction O	Lee-Yang Theory OO	The fRG 000	A Num. Test 000	PT in d=4 00	Conclusion OO	Additional Slides	DG-Methods
	$M(\phi_y, H)$:	$= \phi_{\rm EoM} ,$	with ∂_{ϕ_x}	$w[J(\phi_x,\phi$	$[\phi_y)] - H _{\phi_x}$	$=\phi_{x, EoM} = 0$	

Scaling relations:

• Preserves symmetry:

$$\operatorname{Re}\left[M(\phi_y, H=0)\right] = B\left(\frac{\phi_y - \phi_c}{\phi_c}\right)^{\beta}$$

・ロト ・聞ト ・ヨト ・ヨト

æ

 $\begin{array}{l} \mbox{Mean Field: } \beta = 1/2 \\ \mbox{Fit: } 0.505(23) \end{array}$

Scaling relations:

Preserves symmetry:

$$\operatorname{Re}\left[M(\phi_y, H=0)\right] = B\left(\frac{\phi_y - \phi_c}{\phi_c}\right)^{\beta}$$

· Breaks symmetry:

$$\operatorname{Re}\left[M(\phi_y = \phi_c, H)\right] = B_c H^{1/\delta}$$

 $\begin{array}{l} \mbox{Mean Field: } \delta = 3 \\ \mbox{Fit: } 2.992(18) \end{array}$

・ロト・雪・・雪・・雪・・ 白・ 今々ぐ

Scaling relations:

Preserves symmetry:

$$\operatorname{Re}\left[M(\phi_y, H=0)\right] = B\left(\frac{\phi_y - \phi_c}{\phi_c}\right)^{\beta}$$

Breaks symmetry:

$$\operatorname{Re}\left[M(\phi_y = \phi_c, H)\right] = B_c H^{1/\delta}$$

Mean Field: $|C_+| = 2|C_-|$ $C_+ = -0.4369(11)$, $C_- = 0.2025(21)$

$$R_{\chi} = \frac{C_+ B^{\delta - 1}}{B_c^{\delta}} = 1.010(57)$$

$$\chi(\phi_y, H=0) = C_{+/-} \left(\frac{\phi_y - \phi_c}{\phi_c} + \text{subl.}\right)^{-\gamma}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Introduction	Lee-Yang Theory	The fRG	A Num. Test	PT in d=4	Conclusion	Additional Slides	DG-Methods
0	00	000	000	00	00	000000	•000000

Solving FRG-Equations

<ロ> (四) (四) (三) (三) (三) (三)

Solving FRG-Equations

PDE with second order derivatives:

 \Rightarrow Analogy to Hydrodynamics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Solving FRG-Equations

PDE with second order derivatives:

 \Rightarrow Analogy to Hydrodynamics

PDE with discontinuities:

 \Rightarrow Requires discontinuous methods

(ロ) (同) (三) (三) (三) (○) (○)

Introduction	Lee-Yang Theory	The fRG	A Num. Test	PT in d=4	Conclusion	Additional Slides	DG-Method
0	00	000	000	00	00	000000	000000

Dealing with (real) Diffusion: LDG-Methods

$$\partial_t u = \partial_q \left(F(t,q,u) + \sqrt{a(t,u)}v \right)$$
$$v = \sqrt{a(t,u)}\partial_q u$$

Riemann problem with positive diffusion:

- Slopes travel with convection.
- Slopes smooth out with diffusion.
- Map $t \rightarrow -t$ for negative diffusion!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

arXiv:2207.12266: F. Ihssen, J.M. Pawlowski, F. R. Sattler, N. Wink

Introduction	Lee-Yang Theory	The fRG	A Num. Test	PT in d=4	Conclusion	Additional Slides	DG-Methods
0	00	000	000	00	00	000000	000000

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$\partial_t u = \partial_q \left(F(t, q, u) + \sqrt{a(t, u)} v \right)$$
$$v = \sqrt{a(t, u)} \partial_q u$$

Introduction	Lee-Yang Theory	The fRG	A Num. Test	PT in d=4	Conclusion	Additional Slides	DG-Methods
0	00	000	000	00	00	000000	0000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\partial_t u = \partial_q \left(F(t, q, u) + \sqrt{a(t, u)} v \right)$$
$$v = \sqrt{a(t, u)} \partial_q u$$

From the Wetterich equation:

•
$$\sqrt{a} \propto \frac{1}{k^2 + u} \Rightarrow \text{Complex}$$

Real Part k²+u_x

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э

From the Wetterich equation:

•
$$\sqrt{a} \propto \frac{1}{k^2 + u} \Rightarrow \text{Complex}$$

• Works for small complex fields/fluxes

From the Wetterich equation:

•
$$\sqrt{a} \propto \frac{1}{k^2 + u} \Rightarrow \text{Complex}$$

• Works for small complex fields/fluxes

ヘロト 人間 とくほとくほとう

3

roduction Lee-Yang Theory The fRG A Num. Test
$$0 = \partial_t u = \partial_q \left(F(t,q,u) + \sqrt{a(t,u)}v \right)$$

 $v = \sqrt{a(t,u)}\partial_q u$

From the Wetterich equation:

•
$$\sqrt{a} \propto \frac{1}{k^2 + u} \Rightarrow \text{Complex}$$

• Works for small complex fields/fluxes

Solving Conservation Laws

Scalar conservation law:

 $\partial_t u + \partial_x f(u) = 0$

Solving Conservation Laws

Scalar conservation law:

With numerical approximations:

 $\partial_t u + \partial_x f(u) = 0$

 $u_h(t, x_k), f_h(u_h(t, x_k))$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Solving Conservation Laws

Scalar conservation law:

With numerical approximations:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$\partial_t u + \partial_x f(u) = 0$$
 $u_h(t, x_k), f_h(u_h(t, x_k))$

The scheme converges if the residual vanishes:

$$\mathcal{R}_h = \partial_t u_h + \partial_x f_h \stackrel{!}{=} 0$$

Introduction Lee-Yang Theory The fRG A Num. Test PT in d=4 Canclusion Additional Slides DG-Methods 0 00 000 000 00 000

Solving Conservation Laws

Scalar conservation law:

With numerical approximations:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

$$\partial_t u + \partial_x f(u) = 0$$
 $u_h(t, x_k), f_h(u_h(t, x_k))$

The scheme converges if the residual vanishes:

$$\mathcal{R}_h = \partial_t u_h + \partial_x f_h \stackrel{!}{=} 0$$

Convergence on Nodes:

 $\mathcal{R}_h(t, x_k) = 0 \quad \forall x_k \in \Omega$

Solving Conservation Laws

Scalar conservation law:

With numerical approximations:

$$\partial_t u + \partial_x f(u) = 0$$
 $u_h(t, x_k), f_h(u_h(t, x_k))$

The scheme converges if the residual vanishes:

$$\mathcal{R}_h = \partial_t u_h + \partial_x f_h \stackrel{!}{=} 0$$

Convergence on Nodes:

Orthogonal to test-functions:

$$\int_{\Omega} \mathcal{R}_h(t, x) \psi(x) = 0$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 $\mathcal{R}_h(t, x_k) = 0 \quad \forall x_k \in \Omega$

Discontinuous Galerkin

Computational domain:

Solution in each cell:

$$\Omega \simeq \Omega_h = \bigcup_{k=1}^K D^k$$

$$u_{h}^{k}(t,x) = \sum_{n=1}^{N+1} \hat{u}_{n}^{k}(t)\psi_{n}(x)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

https://en.wikipedia.org/wiki

/Finite_element_method

Discontinuous Galerkin

Computational domain:

$$\Omega \simeq \Omega_h = \bigcup_{k=1}^K D^k$$

Solution in each cell:

$$u_{h}^{k}(t,x) = \sum_{n=1}^{N+1} \hat{u}_{n}^{k}(t)\psi_{n}(x)$$

DG-Methods 0000000

https://en.wikipedia.org/wiki

/Finite_element_method

Best of Finite Volume

- Cell average vanishes.
- geometrically flexible
- Inherently discontinuous
- Higher order accuracy problems

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Discontinuous Galerkin

Computational domain:

$$\Omega \simeq \Omega_h = \bigcup_{k=1}^K D^k$$

https://en.wikipedia.org/wiki

/Finite_element_method

Solution in each cell:

$$u_h^k(t,x) = \sum_{n=1}^{N+1} \hat{u}_n^k(t)\psi_n(x)$$

DG-Methods

Best of Finite Volume

- Cell average vanishes.
- geometrically flexible
- Inherently discontinuous
- Higher order accuracy problems

Best of Finite Element

- Residue vanishes weakly.
- Higher order accuracy
- Method is global

A Num. Test PT in d=4 Conclusion

DG-Methods 0000000

$$\begin{split} \int_{D^k} \left((\partial_t u_h^k) \psi_n - (f_h^k(u_h^k) - \sqrt{a_h^k(u_h^k)} \, v_h^k) \partial_x \psi_n \right) \mathrm{d}x \\ &= - \int_{\partial D^k} \left(f_h^* + \mathbf{h}_1 \right) \cdot \hat{n} \, \psi_n \, \mathrm{d}x \,, \\ \int_{D^k} \left(v_h^k \, \psi_n + j_h^k(u_h) \partial_x \psi_n \right) \mathrm{d}x = - \int_{\partial D^k} \mathbf{h}_2 \cdot \hat{n} \, \psi_n \, \mathrm{d}x \end{split}$$

A Num. Test PT in d=4 Conclusion

Additional Slides

DG-Methods 0000000

$$\begin{split} \int_{D^k} \left((\partial_t u_h^k) \psi_n - (f_h^k(u_h^k) - \sqrt{a_h^k(u_h^k)} \, v_h^k) \partial_x \psi_n \right) \mathrm{d}x \\ &= - \int_{\partial D^k} \left(f_h^* + \mathbf{h}_1 \right) \cdot \hat{n} \, \psi_n \, \mathrm{d}x \,, \\ \int_{D^k} \left(v_h^k \, \psi_n + j_h^k(u_h) \partial_x \psi_n \right) \mathrm{d}x = - \int_{\partial D^k} \mathbf{h}_2 \cdot \hat{n} \, \psi_n \, \mathrm{d}x \,, \\ \end{split}$$
Conservative numerical flux:
$$f^*(u_h^+, u_h^-) = \frac{1}{2} (f_h(u_h^+) + f_h(u_h^-)) - \frac{C_{\mathrm{conv}}}{2} [\mathbf{u}_h] \,, \\ \end{split}$$
Diffusive flux:
$$\mathbf{h}(u^-, u^+) = \left(-\frac{j(u_h^+) - j(u_h^-)}{u_h^+ - u_h^-} \frac{v_h^+ + v_h^-}{2}}{-\frac{j_h^+ + j_h^-}{2}} \right) - \frac{C_{\mathrm{diff}}}{2} [\mathbf{h}] \,, \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

0000000 $\int_{D^k} \left((\partial_t u_h^k) \psi_n - \left(f_h^k(u_h^k) - \sqrt{a_h^k(u_h^k) v_h^k} \right) \partial_x \psi_n \right) \mathrm{d}x$ $= -\int_{\partial D^k} \left(\frac{f_h^*}{h} + \frac{\mathbf{h}_1}{\mathbf{h}_1} \right) \cdot \hat{n} \,\psi_n \,\mathrm{d}x \,,$ $\int_{D^k} \left(v_h^k \,\psi_n + j_h^k(u_h) \partial_x \psi_n \right) \mathrm{d}x = -\int_{\partial D^k} \frac{\mathbf{h}_2}{\mathbf{h}_1} \cdot \hat{n} \,\psi_n \,\mathrm{d}x \,,$ Conservative numerical flux:

$$f^*(u_h^+, u_h^-) = \frac{1}{2} \left(f_h(u_h^+) + f_h(u_h^-) \right) - \frac{C_{\text{conv}}}{2} [\mathbf{u_h}]^{/} \qquad \qquad j(s) = \int_0^s \sqrt{a(s')} \mathrm{d}s' \mathrm{$$

Diffusive flux:

$$\mathbf{h}(u^{-},u^{+}) = \begin{pmatrix} -\frac{j(u_{h}^{+}) - j(u_{h}^{-})}{u_{h}^{+} - u_{h}^{-}} \frac{v_{h}^{+} + v_{h}^{-}}{2} \\ -\frac{j_{h}^{+} + j_{h}^{-}}{2} \end{pmatrix} - \frac{C_{\text{diff}}}{2} [\mathbf{h}], - \frac{\sqrt{a(s)\partial_{x}s} = \partial_{s}j(s)\partial_{x}s = \partial_{x}j(s)}{2}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

DG-Methods

Implementation

Distributed and Unified Numerics Environment

- Modular toolbox (C++)
 - Variety of grids (1D, 2D ...).
 - Implementations of FEM, FVM, DG.
 - Various time-stepping modules
- Large-scale computing

(c) 2002-2016 by the Dune developers https://www.dune-project.org/

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●