Quantum discontinuity fixed point and
renormalization group flow of the SYK model
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Outline: -+ introduction to SYK model
 FRG calculation
e global RG flow

e discontunuity fixed point

Qutlook: - new result on spin FRG for frustrated spin systems

see also talk by Andreas Riuckriegel in Thursday
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Kitaev (2015): Talks at KITP: a simple model for quantum holography

toy model for some phenomena in high-energy physics and general relativity
finite ground state entropy; same information scambling as black holes;

holographic principle in string theory

toy model for non-Fermi liquid behavior in condensed matter

exactly solvable for large N (only melon-diagrams)
controlled solution of strongly coupled field theory

can be generalized to include phonons, superconductivity
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* random interactions with Gaussian probability distribution
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 disorder averaging generates fermionic 8-point vertex
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 for N — = self-energy determined by melon diagram + Dyson equation
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* non-Fermi liquid solution ( |w| < J)
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propagator G (7)o r—1/2 implies finite ground state entropy

 another solution of self-consistency equation for T=0: Xy (w) =0
describes integer valence (IV) state: = =1 or 0.



Smit, Valentinis, Schmalian, PK, PRR 2021,
see also Azeyanagi, Ferrari, Schaposnik, PRL 2018
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Questions:

 How does underlying global RG flow look like?

Iigure 2: D’hase diagram of the SYK model as a function
of chemical potential g and temperature 1" obtained from the
numerical solution of the large-N sell-consistency equation for
the self-energy; see also Ref. [34]. For T =0 and |p| < pa =
0.212.J, the non-Fermi liquid (NI'L) phase with anomalous
dimension 5 = 1/2 is the stable solution, For p = 4, (red
dots) there are first order quantum phase transitions from
n & 0,76 or 0.24 to integer-valence (IV) phases n =1 or 0,
respectively, Between the spinodal lines (dashed) both phases
arc locally stable. The transition terminales at eritical points
(pe, Te) = (£0.34,0.067)J (blue dots).

 What are properties of RG fixed point describing quantum first-order transition?
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 Large-N truncation of flow equations for site averaged vertex functions:
evolution due to change of cutoff A
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* wave-function renormalization z, :

Ealw) = Ba(0) + (1 - Zy Niw + Ow?)

 rescaled dimensionless couplings:
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 flow equations for rescaled couplings
4 fixed points:
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 scale-dependent anomalous dimension:
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discontinuity fixed points represent
first order phase transitions in RG
(Nienhuis, Nauenberg 1975, Fisher 1982)

all rescaled couplings finite at D

linearized RG flow around D
gives scaling exponents
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scaling of singular part of density
1/ -
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Ay =~ 1 implies discontinuity

consistent with numerics
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« numerical solution of large-N
Dyson-Schwinger equations
confirm first order transition

* new feature of quantum first

order transition: fermionic

excitations have anomalous

dimension? = 1/2
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» different from classical first order transitions
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» guantum first order transitions can be different from classical counter-parts

 controlled calculation for SYK model: discontinuity fixed point with

rules out effective description with classical Ising model! 7] = 1/2

* challenges: generalization to finite temperature
SYK+phonons, superconductivity
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Exact renormalization group for quantum spin systems

Jan Krieg and Peter Kopietz
fastitued fiie Theoretische Mhvsil, Dniversitild Frankfuet, Mec-von-Laoe Steafle I 00428 Frankfuret, Geemony

M (Received 2 Augost 201 8; revised manuseript reccived 15 Junuary 2019, published 8 Febroary 2019)

Wo show thut the dingrammatic approach to quantum spin systems developed in g seminal work by Vaks,
Larkin, and Pikin |Sov. Phys, JETP 26, 188 (1965]1] can he embedded in the framework of the functional
renormalization group. The crucial insight is that the generating functional of the Gme-ordered connccted spin
correlation functions of an arhitrary quantum spin system satisfies an exact renormalization group low equation
which resembles the correaponding flow equation of interacting bosons. The S07{2% spin algebra is implementad
via a nentivial intal condition for the renormalization group Qow. Our method 1s rather general and offers a
ditferent nonperturbative approach o quanmm spin systems,

recent progress:

serious alternative to
pseudofermion FRG !

* Dissipative spin dynamics in hot qguantum paramagnets

PRB 2021, with D. Tarasevych
* SFRG for dimerized quantum spin systems

PRB 2022, with A. Rtickriegel, J. Arnold, R. Goll, see talk by A. Rickriegel on Thursday

* SFRG for frustrated J1J2J3 quantum Heisenberg magnet
In preparation, with D. Tarasevych, S. Keupert, V. Mitsiiouanou, and A. Rickriegel
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Heisenberg AFM ({1 = 0)

Heisenberg FM (f; < 0)
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* static level-1 truncation produces 2nd-next neighbor coupling Ja;
results comparable with 1-loop PFRG
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* static level-2 truncation produces true RG fixed point (missed in PFRG)
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* results for finite S can be improved by including dynamic spin fluctuations

* evidence for spin-liquid phase in maximally frustrated regime of J1J2J3

model (agrees with one-loop PFRG, disagrees with multi-loop PFRG)
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