The Spectral Geometry of de Sitter Space in Asymptotic Safety
 Renata Ferrero and Martin Reuter

Based on arXiv:2203.08003 (accepted for publication in JHEP)

ERG 2022 - Berlin, 26th July 2022

Motivations

To understand the dynamical "thinning out" of degrees of freedom in the UV

Fractality
~2D theory

Gravitational effective average action

A Background Independent and diffeomorphism-covariant
continuum approach to quantum gravity

The Idea

Pick a solution of the FRGE:

Spectral flow

$$
k \mapsto\left\{\mathscr{F}_{n}(k)\right\}, \quad\left\{\chi_{n}(k)\right\}
$$

encodes information about the fractal structure of spacetime

Running Gravitational Effective Average Action

Background Independence:

$h_{\mu \nu}$-dynamics on all backgrounds

$$
\left.\begin{array}{l}
\qquad\left\langle\hat{g}_{\mu \nu}\right\rangle_{\bar{g}} \equiv \bar{g}_{\mu \nu}+\left\langle\hat{h}_{\mu \nu}\right\rangle_{\bar{g}} \\
\qquad\left\langle\hat{h}_{\mu \nu}\right\rangle_{\bar{g}}=0 \Longleftrightarrow\left\langle\hat{g}_{\mu \nu}\right\rangle_{\bar{g}}=\bar{g}_{\mu \nu} \text { for } \quad \bar{g}=\bar{g}_{k}^{s c}
\end{array} \begin{array}{c}
\text { Self-consistent } \\
\text { geometries }
\end{array}\right] \begin{aligned}
& \left.\frac{\delta}{\delta h_{\mu \nu}(x)} \Gamma_{k}[h ; \bar{g}]\right|_{h=0, \bar{g}=\bar{g}_{k}^{s c}}=0 \quad \begin{array}{c}
\text { tadpole } \\
\text { condition }
\end{array} \\
& \text { or } \begin{array}{c}
\text { effective Einstein } \\
\text { equation }
\end{array} \\
& \text { Generic solutions }\left(\bar{g}_{k}^{s c}\right)_{\mu \nu} \text { will depend on the RG scale } k: \quad k \mapsto\left(\Gamma_{k},\left(\bar{g}_{k}^{s c}\right)_{\mu \nu}\right)
\end{aligned}
$$

Remarks all the expectation values have a nontrivial (indirect) dependence on the background, which is kept completely arbitrary
the dynamics determines the expectation value of the metric s.t. the fluctuations are "as content as possible" about it

Two different types of spectral problems

1 Rigid background

> "Off-shell"

$$
-\square_{\bar{g}} \chi_{n m}[\bar{g}](x)=\mathscr{F}_{n}[\bar{g}] \chi_{n m}[\bar{g}](x)
$$

$\bar{g}_{\mu \nu}$: generic background metric

$$
\begin{array}{ll}
\text { generalized trajectory } & k \mapsto\left(\Gamma_{k}, \bar{g}_{k}^{s c}\right) \\
\text { running D'Alembertian } & \left.\square_{k} \equiv \square_{\bar{g}}\right|_{\bar{g}=\overline{g_{k}^{s c}}}
\end{array}
$$

$$
-\square_{k} \quad \chi_{n m}(x ; k)=\mathscr{F}_{n}(k) \chi_{n m}(x ; k)
$$

Cutoff modes (COMs):

$$
\chi_{n_{C O M(k)}}(x) \text { with }
$$

$$
\left.\mathscr{F}_{n}(k)\right|_{n=n_{\text {СОM }}(k)}=k^{2}
$$

Remarks The cutoff modes are located precisely at the threshold between "already integrated out at RG scale", and "not yet integrated out" if the fluctuations propagate on a background which is self-consistent at that given k.

COMs are a valuable link between the bare off-shell world under the path integral, and the effective level of the on-shell expectation values.

RG trajectory

Trajectory of the Type Illa

$S^{4}\left(L^{s c}(k)\right)$

self-consistent spheres

$$
\mathscr{F}_{n} \sim n^{2}
$$

$n_{C O M}(k) \sim k L^{S c}(k)$
Less DOFs in the UV!

Limitations on the distinguishability of spacetime points

Schwindt \& Reuter 2005
Pagani \& Reuter 2019

Physical interpretation:

	k-dependence of $n_{C O M}(k)$	Resolution
$0 \leq k \leq k_{T}$	increasing $n_{\text {COM }} \propto k$ S^{4} harmonics of increasing angular momentum	increasing as $2 \pi / n_{\text {COM }}(k)$ continuously improving resolving power
classical		
$k>k_{T}$	decreasing $n_{\text {COM }} \propto \frac{1}{k}$	Higher eigenvalue - lower fineness!
quantum	rapid shrinking of spacetime	
$k \rightarrow \infty$	$n_{C O M} \approx n_{C O M}^{*}$ fixed finite value	Fixed limited resolution: FUZZYNESS
UV-FP		Why not an unlimited resolving power in the UV?

Resolution

increasing as $2 \pi / n_{\text {COM }}(k)$ continuously improving resolving power

Higher eigenvalue - lower fineness!

Fixed limited resolution: FUZZYNESS
Why not an unlimited resolving power in the UV?

This apparent paradox is explained by the rapid shrinking of spacetime caused by the enormous shrinking of $L^{s c}(k)$ for $k \rightarrow \infty$.

$$
n_{C O M}(k)=k L^{s c}(k)
$$

Background independence

Self-consistent Lorentzian spacetimes

DE SITTER SPACE

Rigid de Sitter Space (off-shell)

Conformal coordinates:

$$
d s^{2}=b(\eta)^{2}\left[-d t^{2}+d \mathbf{x}^{2}\right]=\frac{-d t^{2}+d \mathbf{x}^{2}}{H^{2} \eta^{2}}
$$

Eigenvalue equation:

$$
-\square_{d S_{4}} \chi_{\nu, \mathbf{p}}(\eta, \mathbf{x})=\mathscr{F}_{\nu} \quad \chi_{\nu, \mathbf{p}}(\eta, \mathbf{x})
$$

$$
v_{\nu, p}^{\prime \prime}(\eta)+\left[p^{2}-\frac{\nu^{2}-1 / 4}{\eta^{2}}\right] v_{\nu, p}(\eta)=0
$$

Eigenfunctions:

$$
\chi_{\nu, \mathbf{p}}(\eta, \mathbf{x})=-\eta v_{\nu, p}(\eta) e^{i \mathbf{p} \cdot \mathbf{x}}, \quad v_{\nu, p}(\eta)=(p|\eta|)^{1 / 2}\left[A_{p} J_{\nu}(p|\eta|)+B_{p} Y_{\nu}(p|\eta|)\right]
$$

Eigenvalues:

$$
\mathscr{F}_{\nu}=\left(\nu^{2}-\frac{9}{4}\right) H^{2}
$$

Type	Eigenvalue	$\mathcal{F}_{\nu} / \mathbf{H}^{2}+\mathbf{2}$	Index
spacelike: $\mathcal{F}>0$	$\mathcal{F}_{\nu} \in(0, \infty) H^{2}$	$\nu^{2}-\frac{1}{4} \in(2, \infty)$	$\nu \in\left(\frac{3}{2}, \infty\right)$
null: $\mathcal{F}=0$	$\mathcal{F}_{\nu}=0$	$\nu^{2}-\frac{1}{4}=2$	$\nu=\frac{3}{2}$
timelike: $\mathcal{F}<0$	$\mathcal{F}_{\nu} \in\left(-\frac{9}{4}, 0\right) H^{2}$	$\nu^{2}-\frac{1}{4} \in\left(-\frac{1}{4}, 2\right)$	$\nu \in\left(0, \frac{3}{2}\right)$
	$\mathcal{F}_{\nu} \in\left(-\infty,-\frac{9}{4}\right) H^{2}$	$\nu^{2}-\frac{1}{4} \in\left(-\infty,-\frac{1}{4}\right)$	$i \nu \equiv \bar{\nu} \in(0, \infty)$

The $\nu-p$ plane

$$
v_{\nu, p}^{\prime \prime}(\eta)+\left[p^{2}-\frac{\nu^{2}-1 / 4}{\eta^{2}}\right] v_{\nu, p}(\eta)=0
$$

Scale dependent dS 4 $^{\text {solutions (on-shell) } \quad H(k)=\sqrt{\frac{\Lambda(k)}{3}}}$

Self-consistent dS background: $\quad\left(g_{k}^{s c}\right)_{\mu \nu}^{k} d x^{\mu} d x^{\nu}=\frac{-d \eta^{2}+d \mathbf{x}^{2}}{\eta^{2} H(k)^{2}}$

Running eigenvalues: $\quad \mathscr{F}_{\nu}(k)=\left(\nu^{2}-\frac{9}{4}\right) H(k)^{2}=\left(\nu^{2}-\frac{9}{4}\right) \frac{\Lambda(k)}{3}$

Evolving COM quantum numbers

What can we conclude about the resolution?

EFT and cutoff modes

Effective quantum geometry at scale k

Which are the geometrical features that are displayed by the "on-shell" mean field configurations?
Are there structures which have a size that is comparable to the length scale at which Γ_{k} defines a "good effective field theory"?

Resolving structures on a time slice: effective spatial geometry

For every fixed time η and scale k the modes possess unlimited resolving power for spatial structures on the respective 3D time slice of the dS manifold.

We have no way of controlling the η-dependence of the modes if we use up all our
freedom by optimizing the spatial resolution.

> Impose conditions on the space of detectable modes inspired by experimental setting

The characteristic COM proper lengths

Proper wavelength

$$
L_{p}(\eta, k) \equiv b_{k}(\eta) \Delta x_{p}=\frac{2 \pi}{|\eta| p H(k)}
$$

Transition wavelength

It is the largest possible proper wavelength a cutoff mode can posses in the harmonic regime.

$$
L_{\text {COM }}^{+}(k)=\frac{2 \pi}{k} \sqrt{\frac{3}{3+2 \lambda(k)}}
$$

depends on k, it is independent of η
Consider the ratio: $\quad \frac{L_{\text {COM }}^{+}(k)}{L_{H}(k)}=2 \pi \sqrt{\frac{\lambda(k)}{3+2 \lambda(k)}}$
Near the turning point $\left(\frac{L_{C O M}^{+}(k)}{L_{H}(k)}\right)_{\max } \approx \frac{2 \pi}{\nu_{\text {COM }}^{+}\left(k_{T}\right)} \approx 2 \pi\left[\frac{4}{9} G_{0} \Lambda_{0}\right]^{1 / 4}$

$$
\rightarrow L_{\text {СОМ }}^{+}(k) \ll L_{H}(k)
$$

Detector model

For every k, only η-independent COMs and combinations thereof are registered. All observed structures of field configurations are strictly time independent then.

$$
L_{p}=L_{C O M}^{+}(k)
$$

Patterns observed in the Universe should display a maximum size which is significantly smaller than the Hubble radius (CAUSALITY).

Physics and geometry is well described within a patch by one of the effective field theories $\left\{\Gamma_{k}\right\}_{k \geq 0}$.

Counting boxes

How many of those "COM boxes" would fit into one Hubble volume?

$$
\begin{gathered}
N_{b}(k)=\left(\frac{L_{H}(k)}{L_{C O M}^{+}(k)}\right)^{3}=\frac{1}{(2 \pi)^{3}}\left[2+\frac{3}{\lambda(k)}\right]^{3 / 2} \\
N_{b}^{\max }=N_{b}\left(k_{T}\right) \approx \frac{1}{(2 \pi)^{3}}\left[\frac{4}{9} \varpi G_{0} \Lambda_{0}\right]^{-3 / 4}
\end{gathered}
$$

$$
\text { E.g.: } \varpi=O(1), \quad G_{0} \Lambda_{0} \approx 10^{-120}
$$

$$
N_{b}^{\max } \approx 10^{90}
$$

CMBR photons

More than an analogy?

$$
\mathcal{S}(T, V) / N(T, V)=2 \pi^{4} \mathrm{k}_{\mathrm{B}} / 45 \zeta(3)
$$

$$
\delta \approx 10^{90} \mathrm{k}_{\mathrm{B}} \quad \begin{gathered}
\text { agrees precisely with the } \\
\text { inter-domain entropy } N_{b}\left(k_{T}\right)
\end{gathered}
$$

Just a coincidence?

$$
\begin{gathered}
N(T, V)=\frac{V}{\left[\begin{array}{ll}
1.27 & \lambda_{\text {peak }}(T)
\end{array}\right]^{3}} \quad \lambda_{\text {peak }} \approx 1.06 \mathrm{~mm} \\
L_{C O M}^{+}\left(k_{T}\right) \approx\left(10^{30} H_{0}\right)^{-1} \approx\left(10^{-30} m_{P l}\right)^{-1} \approx 10 \mu \mathrm{~m}
\end{gathered}
$$

Conclusions

On-shell spectral flow along the functional RG trajectories

Fineness and resolving power of the cutoff modes no longer improves when k is increased beyond k_{T}, it rather deteriorates quite considerably when it approaches the Planck scale, until Asymptotic Safety establishes a constant fixed point value.

Euclidean

limitation on the distinguishability of points in spacetime
microscopic effect

Lorentzian
no analogous restriction for the resolvability of points on the 3D spatial manifold related to the foliation
macroscopic effect
nonperturbative quantum gravity-generated vacuum structures of the 3D space, seen as a slice through dS 4

$$
\mathcal{S} \approx 10^{90} \mathrm{k}_{\mathrm{B}}
$$

Thank you for your attention

 Renata Ferrero and Martin ReuterBased on arXiv:2203.08003 (accepted for publication in JHEP)

ERG 2022 - Berlin, 26th July 2022

