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This talk

¢ Analytic Continuation: methods,
common challenges.
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e Results for model systems

e Results for GW calculations

e Nevanlinna Theory and
connection to Analytic
Continuation

e Pick matrices
e Hamburger Moments

e (Carathéodory Generalizations
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e (Qutlook and future prospects

Not in this talk

e Physics

e Real-world applications

Phys. Rev. Lett. 126, 056402 (2021)
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Analytic Continuation

Finite-temperature simulations

Analytic continuation

_ —BH 1 [1
Z = Tre Gliw,) = __/ @G(w)dw
, T Wy, — W
G(r) = = Trfe” P eemH e oy L [ ImG(w)e vdu
(7) T 1+ e Pw

s
Gliw,) = / dre=ienT G(7)
0

Alw) = _—11mG(w)

T

Spectral function

Emanuel Gull, equll@umich.edu

Operational problem: inversion of the kernel K,

G(iwy,) = K(iwy,,w)G(w)
!
G(w) = [K (iwn,w)] G (iwy,)

...is ill conditioned. Small changes on the imaginary
axis cause large changes on the real axis.
Phys. Rev. Lett. 126, 056402 (2021)



Analytic Continuation
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Algorithm | — Rational Function Interpolation

e @Given 2n points on the Matsubara axis, find a rational polynomial
interpolant (“Padé”) with degree n+1 in denominator, degree n in
numerator, and ~1/iwn high frequency decay

. e FEvaluate polynomial just above the real axis to obtain retarded
lWn : :
o Green’s function

e Often works well at low T for near-zero-frequency properties

e Does not respect the analytic properties of the Green’s
functions (more later)

¢ Resulting spectral function tends to go negative, oscillate,
violate moments, ...

* Never to be used with noisy data!
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Emanuel Gull, equll@umich.edu Phys. Rev. Lett. 126, 056402 (2021)
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Algorithm Il — Maximum Entropy Method

e Define a functional Q that, for a given spectral function A,
balances the effect of deviations from a default model with the
desire to fit imaginary time data as accurately as possible.

1 2

Q:(XS—§

Deviation from a default model S[A] — — / deo [A(w) log A(w)]

Deviation from the input data

Minimize Q. First term will keep spectral functions smooth, second term will fit imaginary
time data as well as possible.

Emanuel Gull, equll@umich.edu Phys. Rev. Lett. 126, 056402 (2021)
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A practitioner’s guide to continuation...

All of this is a sign of the ill-conditioned continuation matrix and an intrinsic problem
of the finite-temperature Green’s function formalism

The higher the frequency, the less trustworthy your data
Trust integrals over wide areas

Trust the first gap / peak but nothing behind it. Trust evolutions of features
(emergence of gap/peak etc with control parameters)

You can always trade a bit of a shoulder for a bit of peak height

Careful with bosonic functions: continuations are even less reliable due to
multiplication with bosonic frequency.

If you find that your results depend on the type of
continuation method used, the type of default model used,
the choice of alpha, the precise noise statistics, etc, they
are probably not reliable

Best practice: only interpret when you can see a clear
signature on the imaginary axis
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Our motivation for revisiting AC

e | ots of experianca with AC in Onantiim Maonte Carln

e New data: 10

e |sver
y 5
e Spans - 5
e MaxEn © L 4 osed,
otherw -S washed out
- 3
e Whatdoo >

e Take b art of self-
energy —10

e Downfi W G X W L G

e Use ‘ql Maxent, orbital- and k-resolved fects uncertain

¢ Missing capabilities: Off-diagonal entries of self-energies & GF, real-frequency Dyson
equation, optics

Emanuel Gull, equll@umich.edu Phys. Rev. Lett. 126, 056402 (2021)
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Green’s functions & Lehmann Representation

Lehmann representation

L~ [(mlelIn)
C(2)= 2> s E B

m,n

| 2

(G_BEn _|_ 6_5Em)

G coincides with Matsubara Green’s function on imaginary axis, with
retarded Green’s function just above real axis. Define

A= Z(mlctn)[2(eBB + ¢=BEn) > 0
For . Z !
Zszjﬂy A _ A(w+ B, — B, — iy)
(x+E, —Ep)+iy (x4 E, — Ep)?+ 92
ImS =

—AY
($+En_Em)2‘|‘92

And therefore for any Green’s function, independent of the system:

Im G,(2) <0 for z€ C*

Emanuel Gull, equll@umich.edu Phys. Rev. Lett. 126, 056402 (2021)
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Nevanlinna and Schur functions

Nevanlinna functions are functions with a positive imaginary part on the
upper half of the complex plane.

NG = -G Is a Nevanlinna function

The invertible Mobius transform h maps the upper half plane to
the unit disk Rolf Nevanlinna

. D=1z: |zl <1}
< — 1 . —
hz):z— ”%m ={z:|z] <
(2) 12 = —— D={z:]z| <1}

Nevanlinna functions can be mapped onto Schur functions: Schur functions map the open
unit disk D to the closed unit disk D (‘contractive’ functions). Every Schur function has a
continued fraction expansion. Given a set of interpolation points, a Schur function can be
constructed using a recursive algorithm.

Combine mapping to contractive functions with Schur’s continued fraction expansion to
obtain an intrinsically causal expansion for Green’s functions.

Emanuel Gull, equll@umich.edu Phys. Rev. Lett. 126, 056402 (2021)
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The Schur algorithm

Input data f)=¢ i=12....M Y; = iwy € C* and G; € C*
_Contracuve 8(Y;) = A; = h(C) = Gl 12, M
interpolant Ci+i

Start the interpolation by constructing an interplant through Y+. Express
this contractive interpolant as a function that is zero at Y4, and a
constant As:

Issai Schur

J. Schur, Uber potenzreihen, die im innern des einheit-
z—-Y, skreises beschrinkt sind, Journal fiir die reine und angewandte

. + A
Functional form 6(z) = ,{'}S;()Z) I Where  ¢(2)=—3:01(z)  wathemaik 1918, 122 (1918,

Such that ¢ € Band ¢(Y1) =0

Note that 61(z) is now an arbitrary contractive function. Express it as a sum of a function that is
A2 at Y2 and an arbitrary contractive function. Express that one as the sum of a function that is
Az at Y3 and an arbitrary contractive function, iterate and repeat for all interpolation points.

This will result in an expression for all possible interpolants in terms of a remaining arbitrary
Schur/Nevanlinna function. We will use this freedom later.

Emanuel Gull, equll@umich.edu Phys. Rev. Lett. 126, 056402 (2021)
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The Pick criterion: existence of interpolnts

it g(z;)=vy; (z; €D,y; €D)

Then a Schur interpolant to g can be found iff the
Pick matrix is positive semi-definite. It has a unique solution
if furthermore the Pick matrix is singular.

G. Pick, Uber die beschrinkungen analytischer funktionen,
welche durch vorgegebene funktionswerte bewirkt werden-

B = ber die beschridnkungen analytischer funktionen, welche durch k- . "
1 * vorgegebene funktionswerte bewirkt werden, Math. Ann. 78,
— * . 270 (1917). .
y?, y] Georg A. Pick
" 1 T; Tk “

Provides a straightforward check on any input data. Transform

the data to the unit circle, evaluate Pick matrix, check if it has
negative eigenvalues. If it does, there WILL NOT be a positive  wp 7
spectral function. vp  10/p 50/p

Interesting observation: Monte Carlo data never fulfills this criterion. GW data only if very
well converged and not too many interpolation points. Synthetic benchmark data shows
very high precision at high frequency needed to make it work. Sign of the very constrained
nature of Nevanlinna/Schur function space.

Emanuel Gull, equll@umich.edu Phys. Rev. Lett. 126, 056402 (2021)
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The Hamburger moment problem

i ‘\\‘x Hans Ludwig

Hamburger

The (truncated) Hamburger moment problem aims to
construct a measure ¢ (w ) on the real axis such that

hk — /wkda(w) b= (h@,hl,hg,...) .

In our context think of do (w) — A(w)dw H. Hamburger, Math. Ann. 81, 235 (1920).

The Hamburger-Nevanlinna theorem establishes a one-to-one correspondence between
solutions to the moment problem and a subset of Nevanlinna functions.

It is possible to combine the moment with the

NG(iwp) = =G (iwy,) interpolation problem to both enforce moments and

/5 drG(r)e iw.+ Interpolation values. This further constrains the solution.
0 The Hamburger moments are routinely
2 (=) H(G® (B) + GH)(0)) computed in a high-frequency talil
= = (it )1 analysis of the Green’s functions, where
k=0 " they typically supplement Green’s
ho hq ho functions outside of the interval where
T o, (iwn)2  (iwn)® data is available.

Emanuel Gull, equll@umich.edu Phys. Rev. Lett. 126, 056402 (2021)
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Hardy function optimization

A positive definite Pick matrix guarantees an infinite number of solutions. In the Schur
algorithm the freedom appears as an arbitrary Nevanlinna function that can be added to
the solution. For any such function, the resulting interpolant will still be a Nevanlinna

function and interpolate all possible solutions.

The freedom of choosing an additional function can be used to impose additional
properties of the interpolant, e.g. impose smoothness on the real axis. . K
z— z)
(255) heen

B(2) = { /mt(z+1i) \z+1

We chose Hardy functions — other choices are possible
3rd real 37 imag conj 3" real conj 3’4 imag

20

10

0 . : :
conj 20" real

" 20" real 20" 1mag conj 20" imag
-20 0 20 -20 0 20 -20 0 20 -20 0 20

Real and imaginary
parts of the 3rd and
20th Hardy function
mapped to the upper
complex plane

10

-0.7846 -0.2059 -0.0540 -0.0142 -0.0037 0.0010 0.0038 0.0147 0.0559 0.2129 2

Minimize F, optimize smoothness F[Ag,, (w)] = ’1 —/ Ap,, (w)dw
while respecting norm

Emanuel Gull, equll@umich.edu

2
+A

dzAgM (w)
dw?

Phys. Rev. Lett. 126, 056402 (2021)
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Results for synthetic systems
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0

Figure 1.4: Continuation with and without Hardy function optimization. Off-centered J peak (top left),
Gaussian (top right), two-peak scenario (bottom left), and a three-peak scenario (bottom right). g = 100,

with 36 Matsubara positive frequency points.
@umich.edu

id [13, 141I
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Emanuel ngll equ

Phys. Rev. Lett. 126, 056402 (2021)
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Hardy function contribution
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FIG. 1. Optimization with 5, 15 and 25 Hardy basis functions. Top panels: resulting spectral
functions A(w). Bottom panels: real and imaginary part of the exact and fitted parametric
functions Oyr41 (Oar41 : CT — D). The needed pr41 is what would restore our synthetic input
A(w) when plugged into the final interpolant (Eq. 7 in the manuscript). The fitted Oar41 is
expanded by the hardy functions with the optimized coefficients axs and bis. Note that 15 hardy
functions would give a better result than 25, as the function optimization of the smoothing norm
works better.

Emanuel Gull, equll@umich.edu Phys. Rev. Lett. 126, 056402 (2021)
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Effects of temperature, grid points, noise
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Figure 1.5: Top left: effect of the number of interpolation nodes (IR grid [13, 14]) used. Top right: effect
of Matsubara spacing (inverse temperature) uniform grid w, = 2n+ 1)1 46 used. Bottom two panels:
effect of independent Gaussian noise with relative standard dev1at10n of 10* (left) and 10~ (right), four
sample curves each.

Emanuel Gull, equll@umich.edu Phys. Rev. Lett. 126, 056402 (2021)
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Comparison to Maximum Entropy

I Band structure is Both continuations
_ visible, individual bands operating on same
; can be separated input data!

T T
o = N w B w )] ~

_ 10
[ .
w G X w L G
Maxent, orbital- and k-resolved - 2.0
0
- 1.5
Fully self-consistent GW of
Si, no quasiparticle or similar >
approximations, analytic
continuation of fully 10k
interacting Green’s function.
W G X W L G

Nevanlinna, orbital- and k-resolved
Emanuel Gull, equll@umich.edu Phys. Rev. Lett. 126, 056402 (2021)




Comparison to Maximum Entropy

—— DOS (Nevan)
— —— DOS (Maxent)
2, 100 _l —— DOS (exact)
o- 41=L
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32100+ l ‘ ‘ II || | m L
<
0
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Figure 1.6: LDA band structure (Kohn Sham eigenvalues, DOS) of solid Si (green) at the I and the X point

as well as Nevanlinna (blue) and MaxEnt (orange) continuations of the corresponding Green’s functions.
T=316 K, 52 non-uniform [14] IR Basis [13] Matsubara positive frequency points.

Emanuel Gull, equll@umich.edu Phys. Rev. Lett. 126, 056402 (2021)



Comparison to Real Time propagation

—— GF2-RT
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FIG. 10. GF2 spectral function (blue) from real-time propagation compared to the spectral function obtained by analytical
continuation of the GF2 solution in imaginary time using the Nevanlinna method (orange) [26], for LiH in the cc-pVDZ basis
at B = 200 and equilibrium inter-atomic distance 7o = 1.62 A, on a linear scale (upper panel) and logarithmic y-axis (lower
panel). The spectral functions are scaled so that a non-degenerate single-particle state has a peak height of unity.

Emanuel Gull, equll@umich.edu Dong, Gull, Strand, arXiv:2206.04181



Slides: https://bit.ly/3ihRKV6

Matrix-valued Carathéodory generalization

The Carathéodory class of matrix-valued analytic functions in the unit disk
(or: upper half plane) is defined as

C={Mz): M(z)+M'(2)>0 V |z| <1}

Notethat  pr(2) 4 MT(2) >0 « Re{z'M(2)z > 0}

i.e. the real part of M is positive semidefinite.

. < C. Carathéodory, Uber den variabilititsbereich der koeffizien- K(DVOTGVT(VOQ,
G (w) is Carathéodory: en o pienrie, dic gegene e nicht e, Kapabeodwpn
< e
G5(w) =2mi Y —— (nlcjlm) (mleiln)d(w — En + Enm)
mmn

Insert x, do the Math:

(@l —iG<@)a) = 27 Y |(m| Y ciai|n) Fo(w — En + En)

Emanuel Gull, equll@umich.edu Phys. Rev. B 104, 165111 (2021)
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Carathéodory in many-body

—iG< (w) is Carathéodory / has positive semidefinite real part on upper half plane
iG” (w) is Carathéodory / has positive semidefinite real part on upper half plane

iG (iwy,) is Carathéodory / has positive semidefinite real part on upper half plane

Without proof here: if we split the Self-energy into a Hartree term and a
dynamical term, and the non-interacting Hamiltonian is quadratic, then

iZ(iwn) is Carathéodory / has positive semidefinite real part on upper half plane

Define the ‘cumulant’ as M_l(z) — G_l(z) + F

(The ‘Green’s function without the Fock matrix’)

ZM(Z) is Carathéodory / has positive semidefinite real part on upper half plane

Emanuel Gull, equll@umich.edu Phys. Rev. B 104, 165111 (2021)
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Carathéodory mapping

The interpolation of Carathéodory functions is a well-known problem. Proceed by Mdbius
transform to unit disc, Schur algorithm, evaluation on the boundary, and Mo&bius transform
back. Guaranteed to give intrinsically PSD interpolants with full off-diagonal structure!

Conformal mapping of Matsubara points: Fon o
Z—1
h:Ct =D,z — ,
zZ 41

Conformal mapping of function values w1p

(all quantities are matrices):

U(z)=[I - F(2)[I + F(z)]"
...where F is the PSD function to be interpolated, i.e.

Set Fl(x;)=Y; ' '
e ( ) \IJ(ZZ) _ [I_m][1+n]_1 With Psi a Schur class

function on the unit disc
Emanuel Gull, equll@umich.edu Phys. Rev. B 104, 165111 (2021)
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Generalized Pick criterion

Carathéodory interpolants for the original problem exist if and only if the Pick matrix is
positive semi definite, a unique solution only exists if the Pick matrix is singular.

Yk+}/l*

1 - ZZ <l ] (mn)x(mn)

P - |

Each matrix Y has size m, we have n interpolation points, i.e. this is a rather large matrix.

Observation with numerical data: Pick matrix is extremely sensitive to noise in the input
data.

Note that the Pick matrix elements are linear in the Matsubara values. ‘Pickifying’is a
semidefinite program

Emanuel Gull, equll@umich.edu Phys. Rev. B 104, 165111 (2021)
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The Hubbard Dimer

] | |
=== exact {1 === exactw I-I

=== exact

=20 [ w—fit -200 = fit =20 [ w—fit
1.1 L | L 1 1

— orig basis
=== rotated basis

FL 2
250 < 10 -

-5 0 5

Figure 2.2: The Hubbard dimer model interpolation, 2 random non-zero entries [rows are real(1), imag-
inary(1), real(2), imaginary(2) part] of the 4 x 4 matrices, on the real axis. Using input data with 107
standard deviation Gaussian noise. Left are Green’s functions, middle are self-energies, right are cumu-
lants. The exact data comes from analytic model formula. Fitted data comes from continuing matrices
from the imaginary axis, which we get from analytic formula and disturbed with noise.

Emanuel Gull, equll@umich.edu Phys. Rev. B 104, 165111 (2021)
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Dyson commutes with continuation

G from X

G from M

X W

Band structure of crystalline Silicon (26 orbitals per unit cell), simulation in Gaussian
orbitals with fully self-consistent GW; matrix valued continuation followed by Dyson

equation.
Giw,) enie Dyson wn) Eq. (32: M (iw,,)

) i)

G(w) —tire 3(w) ‘—. M (w)

Emanuel Gull, equll@umich.edu Phys. Rev. B 104, 165111 (2021)
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Careful with approximations to Sigma!

Gw)=lw+in+wl—F-2()]™" Hw+in+wl—FI7! [(w+in+u) —F = Zgagw)™*

/N (AR X

« e

—~ D 5 5
>

Q o 0 0 - 2
3 -5 -5 -5

W G X W L G W G X W L G W G X W L G

Truncation of the dynamical part of the self-energy (just the Fock matrix of the fully
interacting system); or truncation of the self-energy to just diagonal parts.

‘Diagonal’ approximations to the self-energy have a large effect on the band structure.
Truncation is often done in LDA+DMFT-type ‘real materials’ calculations.

Careful with (self-consistent/non-self-consistent) quasiparticle approximation (diagonal
truncation & lowest frequency only)

Emanuel Gull, equll@umich.edu Phys. Rev. B 104, 165111 (2021)
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Revealing ab-initio spin-orbit & correlations

e Spin-orbit coupling emerges ab-initio from the solution of the Dirac, rather than the
Schrddinger equation. Electrons and Positrons!

e Recent development in quantum chemistry: exact two-component relativistic
approach. In the x2c1e approximation, the two-body integrals remain non-relativistic

* Neglects relativistic corrections to the two-body integrals

e Diagrammatic structure remains unchanged, interaction vertices remain
unchanged, bare propagators pick up relativistic contributions. (Identical impurity

solvers!)

Example: self-consistent GW
simulation of Agl in the x2c1e
approximation “ 7

Parameter free ab-initio spin-
orbit coupling splits bands 0

No way to see this w/o
) Nevanlinna techniques -4 RY ..
r X WK r L UW r X WK r L UW
Non-relativistic Relativistic x2c1e
Emanuel Gull, equll@umich.edu C-N Yeh, A. Shee, Q. Sun, E. Gull, D. Zaid, arXiv:2202.02252
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A few remarks

¢ This math is done by non-experts! (i.e. tell us we’re wrong, we won't be

offended... ... tell us how to do better! We know there’s much more out
there...)

e Most of the ‘deep’ insights come from 1910-1930; technology has not been
used in this context at all, most of the theory seems to be forgotten.

e | showed some successes, but there are challenges/questions/problems:

e Can we find a basis for Nevanlinna functions? (...so we can expand in it/
project to it...?)

¢ Plenty of stability issues (everything done in multi precision arithmetics).
Is there a way to avoid this?

e Data that is non-causal: would like to find the ‘closest’ Nevanlinna function
to a given set of input data.

Emanuel Gull, equll@umich.edu Phys. Rev. Lett. 126, 056402 (2021)
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In conclusion

¢ Analytic Continuation remains difficult. No way to bring information back that
isn’t in the data. Carful with ‘p-hacking’ analytic continuation

e _..but by using the appropriate Math we can obtain much more accurate
continuations

e Build in causality
e Build in moments

e ...New capabilities: continuation of off-diagonal terms that respect the
analytic structure of the Green’s function

¢ ...New capabilities: continuation of moments and self-energies

e Complex Analysis is very powerful!

Emanuel Gull, equll@umich.edu Phys. Rev. Lett. 126, 056402 (2021)
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Many Thanks to Jiani & Chia-Nan!

Jiani Fei Chia-Nan Yeh

Emanuel Gull, equll@umich.edu Phys. Rev. Lett. 126, 056402 (2021)






