

QUANTUM GRAVITY AMPLITUDES: FROM FIRST PRINCIPLES TO OBSERVABLES

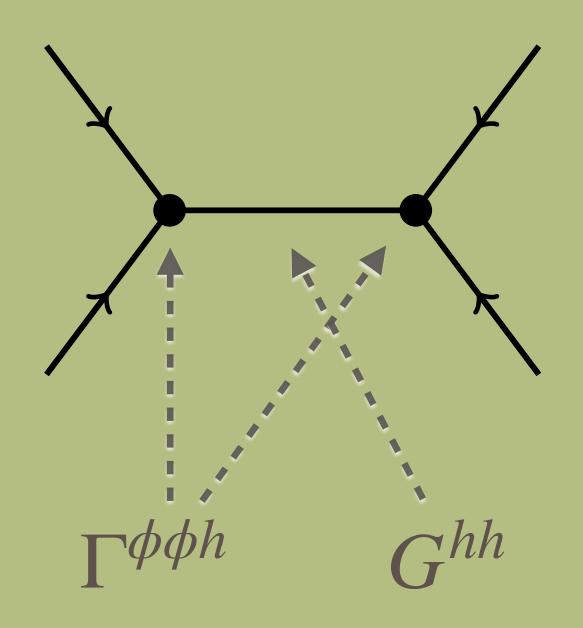
BENJAMIN KNORR

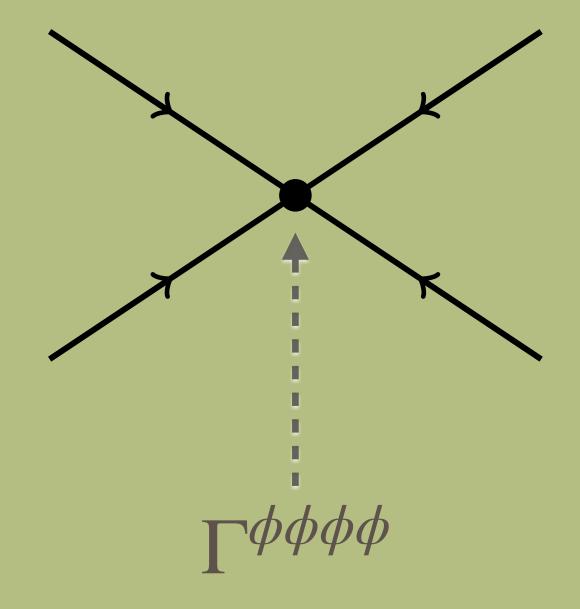
ERG 2022 BERLIN

QG AMPLITUDES

- scattering amplitudes that include (internal or external) graviton lines
- derived from quantum effective action only tree-level
- why bother?
 - probes quantum gravity effects
 - direct link to observables (cross sections, cosmological observables etc.)
 - do not depend on arbitrary choices

FROM FIRST PRINCIPLES TO OBSERVATION


- three step process for any amplitude:
 - parameterise parts of effective action that contribute to the amplitude
 - compute these parts from first principles (within e.g. asymptotic safety)
 - derive observables and compare with measurements and consistency conditions


PART I: PARAMETERISING AMPLITUDES

more details: talk by Chris today 16:15

PARAMETERISING THE AMPLITUDE

• 2-to-2 scattering event of a scalar in flat spacetime:

PARAMETERISING THE AMPLITUDE

• in flat background spacetime, we need:

$$G^{hh}$$

$$\Gamma^{\phi\phi\to\phi\phi} = \frac{1}{16\pi G_N} \int d^4x \sqrt{-g} \left[-R + R f_{RR}(\Delta) R + C^{\mu\nu\rho\sigma} f_{CC}(\Delta) C_{\mu\nu\rho\sigma} \right]$$

$$+ \int d^4x \sqrt{-g} \left[\frac{1}{2} \phi f_{\phi}(\Delta) \phi + f_{R\phi\phi}(\Delta_1, \Delta_2, \Delta_3) R \phi \phi + f_{Ric\phi\phi}(\Delta_1, \Delta_2, \Delta_3) R^{\mu\nu} D_{\mu} \phi D_{\nu} \phi \right]$$

$$+ \int d^4x \sqrt{-g} f_{\phi\phi\phi\phi} \left(-\{D_i \cdot D_j\} \right) \phi \phi \phi \phi$$

$$\Gamma^{\phi\phi\phi}$$

full momentum dependence is key

form factor toolbox: Knorr, Ripken, Saueressig '19

AN ATLAS OF AMPLITUDES

- progress in mapping out these most general QFT amplitudes:
 - gravity-mediated scalar-scalar scattering

Draper, Knorr, Ripken, Saueressig '20

• gravity-mediated scalar-photon and photon-photon scattering

Knorr, Pirlo, Ripken, Saueressig '22

- long-term aim: characterise all 2-to-2 SM+gravity amplitudes
- efforts to go beyond flat spacetime scattering

Knorr, Ripken '20 Ferrero, Ripken '21

PART II: COMPUTING PROPAGATORS AND VERTICES

COMPUTING INGREDIENTS

- most effort so far: graviton (and partly matter) propagators (by the "HD" and "Nijmegen" schools)
- some local/bilocal/trilocal/... computations of graviton vertices
- concerted effort needed to compute necessary correlation functions

SELECTED HIGHLIGHTS

computation of the full graviton propagator (all modes disentangled)

Knorr, Schiffer '21

Wick rotation of Euclidean propagator

Bonanno, Denz, Pawlowski, Reichert '21

• computation of Lorentzian propagator and graviton spectral function

Fehre, Litim, Pawlowski, Reichert '21

more details: talk by Manuel tomorrow 11:30

PART III: OBSERVATIONS AND CONSISTENCY CONDITIONS

OBSERVATIONS AND CONSISTENCY CONDITIONS

- observables beyond scattering cross sections more difficult, less explored from this general viewpoint
- consistency conditions:
 - unitarity&causality
 - positivity bounds
 - swampland conjectures

• • • •

Platania, Wetterich '20, Platania '22

recall talk by Scott this morning

Basile, Platania '21 Basile, Borissova, Knorr, Platania, Schiffer wip

more details: talk by Alessia on Thursday 14:30

RELATED RECENT DEVELOPMENTS

RECENT DEVELOPMENTS

- (minimal) essential RG (Baldazzi, Ben Alì Zinati, Falls '21)
- only essential couplings enter observables like scattering amplitudes
- set up RG flow for essential couplings only tremendous reduction of complexity

more details: talk by Kevin on Wednesday 11:00 talk by Oleg on Wednesday 17:55

work in progress:
Knorr, Platania
Knorr, Ripken
Baldazzi, Falls, Kluth, Knorr

SUMMARY

- amplitudes: one of the hot topics in asymptotic safety
 - some computations done, many still ahead
 - critical questions about asymptotic safety: causality, unitarity, swampland bounds, ...
 - promising path to connect to other fields and ideas
 - QG observables