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Goal of a unified real and momentum space TU-FRG

• Why merging the two?

• Source of superconductivity in quasicrystals 1

• Many body-localization in two and more dimensions 2

• Majorana/topological edge modes 3

• Large unit cells (twisted materials etc.)

• Quasi-1D geometries

• Wannierized multi-band DFT models to FRG

• Need for efficient approximations

1K. Kamiya et al. “Discovery of superconductivity in quasicrystal”. en. In: Nature Communications 9.1 (Dec. 2018), p. 154.
2Eli Chertkov, Benjamin Villalonga, and Bryan K. Clark. “Numerical Evidence for Many-Body Localization in Two and Three Dimensions”. In:

Phys. Rev. Lett. 126 (18 May 2021), p. 180602.
3Rahul Nandkishore, LS Levitov, and AV Chubukov. “Chiral superconductivity from repulsive interactions in doped graphene”. In: Nature Physics

8.2 (2012). Publisher: Nature Publishing Group, p. 158.
1



Issue

• Flow for the effective interaction

• scales O(N6
oN

3
kN

3
ω) and memory O(N4

oN
3
kN

3
ω)

• impossible for more than 4 orbitals → need to find more efficient basis

• Focus on momentum and orbitals
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Solution?

• momentum space - exploit diagrammatic structure4

• Analog in realspace - pertubative argument5,6

• Model interaction is short ranged - assume on-site interaction

U(i , k, j , l) = Uδi,kδj,l , δi,j
• What index structure follows from single channel FRG?
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• Each channel 2 main indices

• Expand in bonds and truncate expansion

4J. Lichtenstein et al. “High-performance functional Renormalization Group calculations for interacting fermions”. In: Computer Physics

Communications 213 (Apr. 2017), pp. 100–110.
5Lukas Weidinger, Florian Bauer, and Jan von Delft. “Functional renormalization group approach for inhomogeneous one-dimensional Fermi

systems with finite-ranged interactions”. In: Physical Review B 95.3 (Jan. 2017).
6Lisa Markhof et al. “Detecting phases in one-dimensional many-fermion systems with the functional renormalization group”. In: Physical Review B

97.23 (June 2018). arXiv: 1803.00272, p. 235126. 3



Real-Space TUFRG

• Project on main dependence δi+bi ,k =
î k

- bond bi connecting site i and k

• Projected channels I = ÎϕI

dP
bi ,bj
i,j

dΛ =
î k

i ′j j′

k′ l′

ĵ l ≈ î k î ′k′ ĵ′l′ ĵ l

• Restrict the set of bonds

• Scaling O(N3
oN

3
bo) (compared to O(N6

o ))

• Issues:

• Near phase boundary - multiple-channels diverge, cross feedback cut away!

• biased towards short ranged fluctuations

• projections from one channel to another are approximate
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Add in momentum

• formally: separate unities, ff shells and

real-space bonds

• site dependent momentum form-factors

gbi (oj , k)

• Use sharp cutoff R(Λ) = Θ(Λ− ω)

(numerically convenient)
Figure 1: Taken from Jonas B. Hauck

and Dante M. Kennes. “TU2FRG: a

scalable approach for truncated unity

functional renormalization group in generic

fermionic models”. In: The European

Physical Journal B 95.3 (Mar. 2022) with

permission of the authors
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Application: Graphene topological superconductivity

• Graphene near van-Hove → TSC 7

• Topological edge modes 8

• Van-Hove doping achieved 9

• Large diameter Nanotube (C 2 symmetry)

• Hubbard-type Model

• TU2FRG

H = −(tδ⟨i,j⟩ + t ′δ⟨⟨i,j⟩⟩ + µδi,j)c
†
i cj + Unini

with t = 2.8 eV, t ′ = 0.1 eV, U = 10.08 eV
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7Rahul Nandkishore, LS Levitov, and AV Chubukov. “Chiral superconductivity from repulsive interactions in doped graphene”. In: Nature Physics

8.2 (2012). Publisher: Nature Publishing Group, p. 158.
8Annica M. Black-Schaffer. “Edge Properties and Majorana Fermions in the Proposed Chirald-Wave Superconducting State of Doped Graphene”.

In: Physical Review Letters 109.19 (Nov. 2012).
9Philipp Rosenzweig et al. “Overdoping Graphene beyond the van Hove Singularity”. In: Phys. Rev. Lett. 125 (17 Oct. 2020), p. 176403.
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Compare slab and periodic
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Figure 2: Slab and periodic system without

self-energy feedback

• qualitative agreement

• periodic: dxy and dx2−y2 exactly

degenerate (2D E2 irrep)

• open: C6v broken into C2

• dxy and dx2−y2 in trivial irrep =⇒
mixing s

7



Behavior of the attraction at the boundary
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Figure 3: Attractive pairing interaction at a site at the boundary compared to a site in the bulk as a

function of the real space positions
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Including the static self-energy
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Figure 4: Slab and periodic system with self-energy

feedback

Figure 5: non interacting local density of states

Figure 6: interacting local density of states
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Outlook/Conclusion

• New unified TU approach

• Higher harmonics at boundaries

• Charge reordering =⇒ splitted van-Hove

• Next steps

• Make code open access with python interface

• Apply to SBE-FRG

• Special Thanks to D. Kennes, L. Klebl and J. Beyer. The authors gratefully

acknowledge the computing time granted through JARA on the

supercomputer JURECA 10 at Forschungszentrum Jülich.

9Jülich Supercomputing Centre. “JURECA: Data Centric and Booster Modules implementing the Modular Supercomputing Architecture at Jülich

Supercomputing Centre”. In: Journal of large-scale research facilities 7.A182 (2021).
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Implementation

Scaling

• Flow equations O(NqN
3
oN

3
bf )

• Projections O(N2
qN

2
oN

3
bf )

• Loop O(N2
qNfineN

2
oN

2
bf )

• Self energy O(N2
qN

2
oN

2
bf )

Run-time example: No = 3, Nbf = 47,

Nq = 1296 and Nfine = 400 =⇒ ≈ 1h

(rwth gpu cluster, w. o. self-energy)

Requirement for simulations:

• real-space basis of unit cell (UC)

• positions of orbitals in UC

(optional: type of orbitals)

• Hamiltonian

Many optional inputs (Interaction,

Distance measure etc.)
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FF-generation issue
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