Precision calculation with FRG
the 2D Bose gas as an example
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Benchmarking the FRG

comparison with (nearly exact) numerical simulations

3D Ising universality class

DE v Ui

s=0 0.65103 0

§i=2 0.627 52 0.045 51

s=4 0.63057 0.033 57

s=6 0.63007 0.036 48
Conformal bootstrap 0.629971(4) 0.036 297 8(20)
Six loop 0.6304(13) 0.0335(25)
High T 0.630 12(16) 0.036 39(15)
MC 0.630 02(10) 0.03627(10)

Balog et al. PRL 2019

De Polsi et al. PRE 2020

comparison with integrable model
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soliton and anti-soliton masses in the sine-Gordon model
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comparison with experiments: 2D Bose gas
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Universal thermodynamics of a 2D Bose gas

experiment vs classical field simulations vs FRG

Tan’s two-body contact in a 2D Bose gas

experiment vs classical field simulations vs FRG



Dilute Bose gas
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At low energies, the potential V() is fully characterized by the s-wave scattering length a_
(scattering in the s-wave channel only)

e quasi-2D

Harmonic trap: Vg (z) = —mw3z
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A~1/1, UV momentum cutoff
‘ as . : Petrov & Shl ikov, PRA 2001
with mg = 87TZ—3 Iteraction constant [Petrov yapniov ]
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scattering length: ag ~ Ke mg



universal thermodynamics
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vacuum (no particles) 0 dilute gas

weak-coupling limit

Quantum Critical Point
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only parameter: mg = v 87rc;—3 = 0.109(5)

F(p/T,mg)

Reduced pressure P Phase space density D Entropy per particle S/kg
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Monte Carlo simulations of a (classical) 2D ¢* theory
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Two-body contact [s. Tan, Ann. Phys. 2008]

* thermodynamic definition: P(u, T, as) = I

_ )\217(%,5,@)) with  §(T) = §(ma2T)
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Tan's two-body contact across the superfluid
transition of a planar Bose gas

Y.-Q. Zou', B. Bakkali-Hassani', C. Maury1, E. Le Cerf!, S. Nascimbene® ' J. Dalibard® ' & J. Beugnon =

Tan's contact is a quantity that unifies many different properties of a low-temperature gas
with short-range interactions, from its momentum distribution to its spatial two-body cor-
relation function. Here, we use a Ramsey interferometric method to realize experimentally
the thermodynamic definition of the two-body contact, i.e., the change of the internal energy
in a small modification of the scattering length. Qur measurements are performed on a
uniform two-dimensional Bose gas of 8/Rb atoms across the Berezinskii-Kosterlitz-Thouless
superfluid transition. They connect well to the theoretical predictions in the limiting cases of a
strongly degenerate fluid and of a normal gas. They also provide the variation of this key
quantity in the critical region, where further theoretical efforts are needed to account for our

findings.
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BKT virial expansion [Ren 2004]

Y
1.8 classical field simulation

|~ [Prokofev, Svistunov 2002]
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Fig. 3 Contact measurement. Variations of the normalized Tan 's contact
C/Cq with the phase-space density D. The encoding of the experimental
points is the same as in Fig. 2. The colored zone indicates the non-
superfluid region, corresponding to D<D_ =~ 7.7. The continuous black line
shows the prediction derived within the Bogoliubov approximation. Inset:
Zoom on the critical region. The dashed blue line is the prediction from
ref. 46, resulting from a virial expansion for the 2D Bose gas. The dotted red
line shows the results of the classical field simulation of ref. 4.



FRG calculation of the contact
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Classical field predictions [Prokof’ev, Svistunov 2002]

* very accurate for the equation of state Phase space density D
50 | | T I /,
40 .
Yefsah et al. 2011 30 |- ﬁr———— classical field
i 7 prediction
20 I
I f+(
10 , o _|
0 .o !M | b)

e contact — first method [Zou et al. 2021]
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Article

Observation of first and second soundina
BKT superfluid
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Julian Schmitt'® & Zoran Hadzibabic'

Received: 24 August 2020

Accepted: 12 April 2021

Superfluidity in its various forms has been of interest since the observation of
frictionless flow in liquid helium II**. In three spatial dimensions it is conceptually
associated with the emergence of long-range order at a critical temperature. One of
the hallmarks of superfluidity, as predicted by the two-fluid model** and observed in

Published online: 9 June 2021
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Fig.3|Thesound speeds and the superfluid density. a, Normalized sound density. b, The superfluid phase-space density, 0, deduced using the
speeds, ¢,/c, (red) and c,/c; (blue), and the corresponding theoretical measured sound speeds. The solid line, showing the universal jump of &, from O
predictions without any free parameters. Owing to scaleinvariance in two to4at =1, isthe infinite-system theoretical predictionwithout any free
dimensions, the predicted ¢, ,/c, are functions of just T/T_and g. Their parameters. The dashed line corresponds toa 100% superfluid (o, = 0). All

discontinuities at T_correspond to the infinite-system jump in superfluid error bars showstandard statistical errors.



Conclusion

The planar Bose gas provides us with a good experimental platform to benchmark
the FRG.

The experimental dertermination of the equation of state is in very good agreement
with both the FRG and Monte Carlo simulations of a classical field theory.

The recent measurement of Tan’s contact is very well fitted by the FRG (but not by
the classical field theory).

Does FRG also agree with the recent measurement of the first- and second-sound
velocities?



Thank you !
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