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❑  In the SR: a line of fixed points  

❑  Numerical results: hard to get 
  

❑  Analytical mappings fail beyond n-n couplings 
(e.g. Villain, Sine-Gordon representations) 



Nearest-neighbors case: 

Short-range BKT transition

Low-temperature approximation

Gaussian power-law correlations
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What about topological configurations? 

Vortex fugacity  

Coulomb gas representation: 



BKT flow equations

Gaussian FPs line 

Vortices relevant for 

Low-temperature phase 



Long-range perturbation: 

Field-theoretical approach: long-range

Non-local  

Interacting  

Tricky continuous limit

Dimension of the perturbation 



BKT transition 
survives 

Gaussian FPs line  

Destroyed by vortices  Destroyed by long-range   



Vortices 

Long-range 



For low temperatures:  

Low-Temperature phase

Effective Gaussian theory 



Universal scaling 

  

Slowing down   
Infinite order phase transition



Long-range 
always 
relevant 



Villain model

Long-range version of the Villain model   

Always a relevant perturbation 

Not in the same universality class of XY! 

Continuous   

Discrete link variables 



Vortices gas Hamiltonian  

Vortex-vortex potential 
  

Always irrelevant    

Puzzling results! 



Conclusions

? 



Non-Hermitian many-
body phases of matter 



Adiabatic Elimination

Γ ≫ δ, Ω

ℋ̂eff = ∫ dxΨ̂†(x)(−
ℏ2 ∇2

2m
+ V(x)) Ψ̂(x) +

g
2 ∫ dxΨ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x)
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Cold atoms in imaginary potential



Tomonaga Luttinger Liquid Theory

ĤTLL = ∫ dx
ℏv
2π [K (∂x

̂θ)
2

+
1
K (∂x

̂ϕ)
2]

Ψ̂†(x) = ̂ρ(x)e−i ̂θ(x)Bosonic field:
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Y. Ashida, S. Furukawa & M. Ueda  Nat. Comm. 8, 15791 (2017)



PT-Symmetric sine-Gordon model



BKT Flows compared

3.1 Introduction 37

Ĥ0 +
1
π

∫
dx
[
αc cos(2φ̂)+ αs sin(2φ̂)

]
. (3.24)

Finally, employing the translational invariance φ̂ → φ̂ − π/8, we arrive at the sine-
Gordon model:

ĤsG =
∫

dx
{

!v
2π

[
K
(
∂x θ̂

)2
+ 1

K

(
∂x φ̂

)2]
+ α

π
cos(2φ̂)

}
. (3.25)

It is well known that the RG equations of K and g = α/(!v&2) in the sine-Gordon
model are given by (up to the third order in g) [78]

dK
dl

= −g2K 2,

dg
dl

= (2 − K )g + 5g3. (3.26)

Figure3.2 shows the RG phase diagram of the sine-Gordon model. In the regime
K < 2, the potential perturbation is relevant and its strength g flows into the strong-
coupling limit, suppressing the fluctuations of the field φ̂ by the cosine potential
cos(2φ̂). In this limit, the phase φ̂ is locked and the system exhibits the gapped
phase (blue regon). For example, in a 1D Bose gas subject to a periodic potential,
the locking indicates the suppression of density fluctuations and thus the gapped
phase corresponds to theMott insulator (MI) phase as we will discuss later. From the
equivalence between a 1D quantum system and a 2D classical system, we can also
view this locking as the condensation of bounded pairs of the vortex and antivortex

Fig. 3.2 Renormalization group flows of the sine-Gordon model. When the Tomonaga-Luttinger
liquid (TLL) parameter K satisfies K < 2, the potential perturbation (whose strength is denoted by
g) is relevant and the system flows into the gapped phase (blue region). In contrast, for K > 2, the
perturbation is irrelevant and the low-energy behavior is described by the critical phase known as the
Tomonaga-Luttinger liquid (red region). In between these two phases, there exists the Berezinskii-
Kosterlitz-Thouless (BKT) transition. As for a one-dimensional bosonic system to be discussed
later, the gapped phase is the Mott insulator (MI) phase
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Fig. 3.8 RG flows of the generalized sine-Gordon model in the nonperturbative regime of the plane
gr = 0 (PT broken phase). In the vicinity of K ! 2, the RG flows reproduce the semicircular flows
found in the perturbative analysis (cf. Fig. 3.4d). Below K < K ∗, the flows no longer go back to
the TLL fixed line and gi flows into the strong-coupling limit

dz
dl

= 1
24π

g2r(
1 − g2r

)3/2 , (3.91)

where l = − ln" is the logarithmic RG scale. These equations reproduce the well-
known RG phase diagram of the sine-Gordon model [110] (cf. Fig. 3.2). We note
that for small coupling gr the equations are consistent with the perturbative results
in Eq. (3.26).8

gr = 0 and gi $= 0 case: isine-Gordon model

We now move onto the analysis of the generalized sine-Gordon model. For the sake
of simplicity, we first focus on the model with only an imaginary potential, namely,
the isine-Gordon model:

#" =
∫

d2x
[
1
2
z"(∂µφ)2 − igi," cos(φ)

]
, (3.92)

where gi is the depth of the imaginary potential. Analytically continuing Eqs. (3.90)
and (3.91) by replacing gr → −igi, we obtain the following RG equations:

dgi
dl

= 1
2π zgi

[
1 −

√
1+ g2i

]
+ 2gi, (3.93)

dz
dl

= − 1
24π

g2i(
1+ g2i

)3/2 . (3.94)

8Note that the definitions of gr in the perturbative RG analysis and the FRG analysis coincide aside
from a constant factor.
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FRG description of the sine-Gordon model
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non-Hermitian RG vs FRG 
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(ū2
1,k − ū2
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non-Hermitian RG vs FRG 
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